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Abstract— This paper presents a visual SLAM system that
uses both points and lines for robust camera localization, and
simultaneously performs a piece-wise planar reconstruction
(PPR) of the environment to provide a structural map in
real-time. One of the biggest challenges in parallel tracking
and mapping with a monocular camera is to keep the scale
consistent when reconstructing the geometric primitives. This
further introduces difficulties in graph optimization of the
bundle adjustment (BA) step. We solve these problems by
proposing several run-time optimizations on the reconstructed
lines and planes. Our system is able to run with depth and
stereo sensors in addition to the monocular setting. Our pro-
posed SLAM tightly incorporates the semantic and geometric
features to boost both frontend pose tracking and backend map
optimization. We evaluate our system exhaustively on various
datasets, and show that we outperform state-of-the-art methods
in terms of trajectory precision. The code of PLP-SLAM has
been made available in open-source for the research community
(https://github.com/PeterFWS/Structure-PLP-SLAM).

I. INTRODUCTION

In human-made environments, surrounding structures can
often be represented by planes and line segments. Leveraging
those higher-level features in visual SLAM systems has the
potential to improve camera localization performance and to
generate structural maps instead of unstructured point clouds.
While most of the existing systems are based only on feature
points and use sparse points clouds to describe the scenes
and estimate the camera poses [6], [7], [9], [21], [33], these
methods face various challenges in practical application,
such as lacking points in low-texture environments, or poor
matching performance in changing light conditions.

A line segment is a geometric primitive that has dual
relation with the point, and can therefore be used in SLAM
systems as efficiently as points. PL-SLAM systems [13],
[35] were proposed using points and lines following the
pipeline of ORB-SLAM2 [33]. However, these systems adopt
a representation of a 3D line with two endpoints, which can
lead to ambiguities on the line direction and thus on line
description (see Fig. 2 (a)) and suffer from occlusions or
misdetections. In an attempt to solve this problem, mono PL-
SLAM [35] followed the idea of EPnPL [43] by forcing the
endpoint correspondences with a two-step procedure when
minimizing the reprojection error. However, this two-step
procedure is not compatible with optimizations based on
graph optimization frameworks (e.g. g2o [22]). In recent
works such as Structure-SLAM [27], the optimization of the
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reprojection error on 3D lines is operated by optimizing two
3D endpoints, a representation that is over-parameterized.
Since this over-parametrization cannot reliably reconstruct
3D lines, it is a factor of deficiency in the system. To
overcome these problems, in our framework, we represent
3D lines using Plücker coordinates which can be converted to
an orthonormal representation with minimal parameterization
[3]. In order to simplify the map visualization, 3D-2D
correspondences search, and graph optimization, we maintain
both endpoints and Plücker coordinates, and use different
representations for different tasks.

Planes, especially for indoor environments, are predomi-
nant structures that are less affected by measurement noise,
as planes can be extracted e.g. from the depth image [54].
Hence, planes are often used in RGB-D SLAM [16], [17],
[19], [20], [24] with an ICP-like registration and optimiza-
tion, or constraints such as Manhattan World (MW) [5], [8],
[51]. Another benefit of using planar structures is that large
areas can be mapped very efficiently and used as a semantic
indicator to enable intuitive and useful AR applications [36].
However, very limited works employ monocular SLAM as
the backbone when considering planes due to scale ambiguity
and the difficulty of fitting planes without depth sensors. In
our case, following the work of Pop-up SLAM [48] which
segments the ground plane using a neural network, we use
an instance planar segmentation CNN [29], [45], [46] to
generate a plane prior, then we incrementally reconstruct and
refine the 3D piece-wise planar structure using directly the
sparse point cloud generated by the monocular SLAM.

The contributions of our structure PLP-SLAM algorithm
are threefold: (1) We first propose a modularized multi-
feature monocular SLAM system that exploits line detection,
tracking and mapping, real-time piece-wise planar recon-
struction, and joint graph optimization in addition to the
standard feature points. (2) We show that the loop closure
can be efficiently done with a corrected line map and propose
a re-localization module based on the pre-built point-line
map. (3) We propose an extension of our system for RGB-D
and stereo cameras. This makes our framework versatile and
sensor-agnostic while tightly incorporating semantic features
in SLAM. In addition, our SLAM framework is designed to
be robust to noisy input in order to reduce the dependency
on predictions of the CNN-based semantic planar detection.
In practice, the environment observed by the camera might
be very diverse, and therefore the lines and planes are
reconstructed and optimized without the need of any strong
assumption such as MW. Since points, lines and planes are
tightly integrated as basic features, our system is not limited
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Fig. 1: The proposed SLAM system utilizes point and line cloud for robust camera localization, with piece-wise planar
reconstruction for semantic mapping. Here, the reconstructed maps are presented selectively for better visualization.

to small-scale scenes. We benchmark our SLAM exhaus-
tively on indoor datasets TUM RGB-D [40], ICL-NUIM
[14], and EuRoC MAV [4] showing superior quantitative
results compared to other state-of-the-art SLAM systems.
The workflow of our SLAM framework is illustrated in
Fig. 1, qualitatively showing that our reconstructed maps are
accurate, intuitive, and semantically meaningful.

II. METHOD

In this section, we describe our monocular SLAM system
built upon OpenVSLAM [42] which is a derivative of ORB-
SLAM2 [33] with high usability and extensibility. Then we
highlight our contributions and the added modules.

A. Structure-based Monocular SLAM

One of the central modules of a SLAM system is the
joint optimization of the map and the camera poses in
bundle adjustment (BA). Since we are aiming at integrating
higher-level features in addition to feature points, we need
a proper and efficient representation of 3D lines as well as
the corresponding Jacobian matrix for iterative optimization.
We integrate the planes, by adding a constraint only between
3D points and 3D planes, because the definition of a repro-
jection error for planar primitives is ambiguous due to their
invariance to certain translations and rotations.

1) Exploiting Line Segments: We extract 2D line seg-
ments using LSD [44] and match them across frames via
LBD descriptors [53]. The parameters of LSD are optimized
for the best trade-off between computation efficiency and
accuracy via a hidden parameter tuning and length rejection
strategy, as reported in PL-VINS [10]. Following the same
idea, we achieve line segment extraction which is 3 times
faster than the original implementation from OpenCV. We
then use two types of representations for the line segments:

Simple Representation of Two Ending Points. For the
visualization of a 3D line segment in the map, we use the two
endpoints. This brings the advantage of a trivial projection of

the 3D endpoints on the image plane, which can be used for
fast retrieval of 3D-2D line matches using LBD descriptors.
It also allows us to track partially occluded lines, even when
one the of endpoints falls outside of the image frustum. It
is important to note that the choice of the 3D endpoints has
no influence on the non-linear optimization since we use
another 3D line representation for the BA, as introduced in
the following.

Plücker Coordinates and Orthonormal Representation.
A 3D line can be represented with the 6D vector of Plücker
coordinates as L = (m>,d>)>, where the vector m ∈ R3

(also called as the moment vector) is the normal to the
interpretation plane containing the line L, and d ∈ R3

indicates the line direction, see Fig. 2 (b). Notice that it is an
infinite 3D line representation, where m and d do not need
to be unit vectors in the implementation. In this way, a 3D
line can be transformed from world coordinates to camera
coordinates via a transformation matrix similar to 3D points,
and then be projected on the image plane:

Lc =

[
mc

dc

]
= TcwLw =

[
Rcw [tcw]×Rcw

0 Rcw

] [
mw

dw

]
(1)

l = [l1, l2, l3]> = KLmc, (2)

where the Rcw ∈ SO(3) and tcw ∈ R3 are the standard
rotation and translation of the camera pose. The KL is the
intrinsic matrix used to project 3D line on the image plane:

KL =

 fy 0 0
0 fx 0

−fycx −fxcy fxfy


Hence, we are able to define the reprojection error of the

3D line Lw with its 2D correspondence in the image:

el =

[
xs
>l√

l21 + l22
,

xe
>l√

l21 + l22

]>
(3)



(a) Endpoints representation. (b) Plücker coordinates.

(c) Two-view triangulation. (d) Endpoints trimming.

Fig. 2: The 3D line representations and reconstruction.

where {xs,xe} are the 2D starting point and ending point
of an extracted line segment from LSD.

This error term is used in BA for optimizing 3D lines and
camera poses. However, Plücker coordinates are still over-
parameterized, as it presents 3D line with 5-DOF in homo-
geneous coordinates satisfying the Klein quadric constraints
m>d = 0 [15]. For updating the Plücker coordinates during
the iterative optimization, we convert them to the minimal 4-
DOF orthonormal representation [3], and convert back after
the optimization step. The conversion between orthonormal
representation and Plücker coordinates is given in [10], [52].
We implement the bundle adjustment using g2o [22].

Two-view Triangulation of Lines. Reconstructing a line
Lw in 3D can be achieved by forward projecting matched
2D line segments l1 and l2 from two image views to give
two 3D planes, and intersecting these two planes:

π1 = l>1 P1,π2 = l>2 P2 (4)

where P1 and P2 are the standard 3×4 camera projection
matrices. 2D lines are constructed via their two endpoints
{xs,xe} using cross product: l = xs × xe. After that, the
Plücker coordinates (m>,d>)> can be extracted from the
dual Plücker matrix L∗ [15], which has the properties of:

L∗ = π1π
>
2 − π2π

>
1 =

[
[d]× m
−m> 0

]
(5)

However, the triangulated 3D line is an infinite line from
two intersected 3D planes, see Fig. 2 (c). In order to estimate
the 3D endpoints for visualization and matching, using the
method of endpoints trimming as discussed below.

Endpoints Trimming and Outlier Rejection. The end-
points of a 3D line can be estimated using the corresponding
2D line segment from its reference keyframe, as illustrated
in Fig. 2 (d). Endpoints trimming was introduced in [25],
[52] as a standalone method only for visualization. In this

(a) 3D plane reconstruction with
spatial coherence.

(b) The possible distribution of 3D
map points around a plane [23].

Fig. 3: The interpretation of 3D plane: (a) An example
of 3D plane fitting optimized with spatial coherence. We
initialize the plane by the given instance planar segmentation.
Note that if two planes are wrongly segmented as one (e.g.
due to texture similarity), they are separated later thanks to
our graph-cut within a local neighborhood graph in 3D, as
highlighted. (b) The possible distribution of the 3D points.

work, we further utilize the endpoints trimming within the
iterative local BA for outlier rejection and map culling,
in addition to the χ2 distribution test on the reprojection
error. It is integrated as part of the positive depth checking
(such as Zc > 0), and evaluates if the absolute change
of the position ∆X of the 3D endpoints compared to the
median depth of the scene is less than a ratio (0.1) after
optimization finished. If it is not the case, the 3D line is
an outlier (possibly from mismatching or triangulated with
two-view ambiguity when the 3D line is located close to the
epipolar plane). Experimentally, we found that this makes the
BA more efficient and robust to outliers, the reconstructed
line cloud remains accurate, compact, and clean, which can
be observed from Fig. 1 and Fig. 4. Moreover, endpoints
trimming is also used to correct the line map during the
loop closure (see Sec. II-C).

2) Exploiting 3D Planar Structures: The reconstruction
of 3D planes in a monocular SLAM is challenging because of
the limited 3D information. At the same time, the Manhattan
World (MW) assumption does not necessarily hold if we are
trying to reconstruct all the possible plane instances observed
from a single image (not limited to the perpendicular layout).
In order to reconstruct planes, we leverage the pairwise
relationship between the 3D points and 3D planes in SLAM
backend, and utilize the geometric relationship to minimize
the 3D distance, as illustrated in Fig. 3 (b). Here, we adopt
the infinite plane representation π = (n>, d)> [19], where n
is the plane normal and d is the distance to the world origin.

A 3D plane instance is reconstructed by fitting a set of
sparse and noisy 3D points triangulated in real-time. We
initialize the set of points belonging to a single plane by
predicting the instance planar segmentation of the input im-
ages using PlaneRecNet [46] (only on keyframes). However,
in order to cope with possible misclassification from the
neural network, especially on the unseen data of SLAM
benchmarks, the reconstruction is conducted as a sequential
RANSAC [38] coupled with an inner local optimization of
Graph-cut [1]. In this way, we locally optimize the spatial



coherent planes in 3D space, as shown in Fig. 3 (a). To this
aim, we formulate the plane fitting problem as an optimal
binary labeling problem [18] with the energy term:

E(Π) =
∑
v

‖Πv‖+ λ ·
∑

(u,v)∈N

δ(Πu 6= Πv) (6)

where the first term
∑
v ‖Πv‖ counts inliers for the target

plane model using 0-1 measurement:

‖Πv‖{0;1} =


0 if (Πv = 1 ∧ dist(v,π) < εd) ∨

(Πv = 0 ∧ dist(v,π) ≥ εd)
1 otherwise.

(7)

In Eq. (6), Π = {Π|v ∈ V } is the assignment of
plane models to 3D point v, and V indicates the set of
3D vertices from a neighborhood graph. Here, we use the
distance between a 3D point and the plane as the geometric
error measure in Eq. (7): dist(v,π) = |n

>v+d
‖n‖ |.

Moreover, in Eq. (7) the parameter Πv ∈ {0, 1} indicates
the labeling. Here, the unary energy penalizes nothing when
a 3D point is labeled as an inlier (close to the plane) or
it is labeled as an outlier (far from the plane). The second
term of Eq. (6) indicates the spatial regularization [18] which
penalizes neighbors with different labels in the graph. δ(·)
is 1 if the specified condition inside the parenthesis holds,
and 0 otherwise. The neighborhood graph N is constructed
using the Fast Approximate Nearest Neighbors algorithm
[30] according to a predefined sphere radius r (= 2εd),
and the minimum samples (3 points formulate a plane) are
sampled uniformly. λ is a parameter balancing the two terms,
which is set as 0.6 in our experiments.

Incremental Merging and Refinement. In order to cope
with possibly large planes, we add a merging mechanism in
the local mapping thread. Two planes are merged if the fol-
lowing two conditions are met: first they should have nearly
parallel normals: |cos(θ)| = | ninj

‖ni‖‖nj‖ | > Tθ (set as 0.8 in
this work) and second, they should be geometrically close
to each other: | di‖di‖ −

dj
‖dj‖ | < Td. The new plane equation

is then updated according to a model residual threshold εΠ
in a RANSAC loop. Following this, all associated point
landmarks are projected on the plane by minimizing the
point-plane distance via: v̂ = v − dist(v,π) n

‖n‖ .
Adaptive Geometric Thresholds. Some of the parameters

introduced in the previous equations need to be adjusted
according to different environments. Examples of such pa-
rameters are εd in Eq. (7), the parameter Td used to merge
planes, and the model residual εΠ used to stop the RANSAC
loop. In order to avoid case-dependent parameter-tuning,
we follow the work of [38] with an adaptive parameter
setting strategy, where the above-mentioned thresholds will
be adjusted dynamically according to the scene depth of the
local map observed by the reference keyframe.

B. Motion-only BA and Local BA
In this work, the reprojection errors of the points and lines

are minimized in two different bundle adjustments: motion-
only BA and local BA. The overall cost function is:

C =
∑
i,j

ρh(e>ijΩijeij) +
∑
i,z

ρh(el
>
izΩizeliz) (8)

implicitly with the minimized distance between 3D point
and 3D plane, because the planes are statistically fitted in
the optimal position via SVD, the associated 3D points are
projected on the plane as discussed in the last Sec. II-A.2:∑

j,k

dist(Xj ,πk)

where i, j, k, z are the number of camera views, 3D points,
3D planes, and 3D lines, respectively. In Eq. (8), the first
term indicates the standard reprojection error for feature
points, and the second term indicates the line reprojection
error explained by Eq. (3). Moreover, the 6-DOF camera
pose is represented as Lie algebra se(3), and the 4-DOF line
is represented as orthonormal representation. ρh is the Huber
robust cost function and Ωij ,Ωiz are the covariance matrices
associated with the scale (of image pyramid) at which feature
point or line segment was detected. In this work, we only
utilize the line segments extracted from the original image
resolution, thus Ωiz = I2×2.

The analytical Jacobians for point are well-known, while
the Jacobians for line can be analytically calculated by chain
rule to make derivations which are given in [3], [25], [55].

C. Loop Detection, Loop Closure and Global BA

Loop detection of monocular SLAM aims at estimating
the 7-DOF similarity transformation Sim(3) after a best-
validated loop candidate (keyframe) is found:

Sim(3) =

{
Spoint =

[
sR t
0 1

]
∈ R4×4

}
(9)

In this work, we do not address the place recognition
problem by re-building a BoW (Bag of Words) vocabulary
using the LBD descriptors as done in [13]. Instead, we use
the given DBoW vocabulary [11] built from ORB features
[32] for loop detection. The 3D line similarity transformation
[2] is then calculated according to Eq. (9):

Sline =

[
sR [t]×R
0 R

]
∈ R6×6 (10)

where both similarity transformations are expressed by the
same scale factor, rotation and translation matrices.

Thus, we are able to correct the 3D line map (represented
by the Plücker coordinates) in a similar way as the correction
of a 3D point cloud within the step of Loop Fusion described
in [31]. Thereafter, we optimize the Essential graph over
the similarity transformations, which distributes the loop
closing error along the graph and correct scale drifts [39].
Then the 3D map points and lines are transformed according
to the correction of the reference keyframe that observed
them. This procedure is illustrated in Fig. 1. To achieve the
optimal solution, we perform a global BA in a separate thread
[33], and endpoints trimming is used to re-estimate 3D line
endpoints and function as a map culling method.



(a) (Monocular) Map of
fr3 structure texture far. This
example shows that our line and
plane reconstruction are accurate
when using monocular SLAM.

(b) (RGB-D) Map of office room traj0. Here, the
ceiling (red) is perfectly reconstructed, and the fur-
niture can be observed combined with the plane
(blue/green) and lines. Same for the paintwork (yel-
low) on the wall. This example verifies that our
sparse semantic mapping is efficient and intuitive.

(c) (Stereo) Point-line map of MH 04 difficult. No
planar structure due to the failure of CNN on this
factory sequence. However, our map is as good as
the map reconstructed from PL-VINS [10] which is
a visual-inertial SLAM using points and lines.

Fig. 4: The qualitative results of various reconstructed maps under different sensor settings, complementary to Fig. 1.

Monocular Ours Ours Ours Structure Object-
(full) SLAM [27] Plane [47]

Config. point point point point point
+ line + line + line

+ plane + plane + plane + plane
+ normal + object

living rm 0 0.26 0.32 0.39 - 0.80
living rm 2 2.21 1.88 2.67 4.50 2.06
living rm 3 1.95 1.81 2.54 4.60 5.38
office 0 5.14 4.50 5.26 - 5.93
office 2 4.07 3.55 5.31 3.10 2.63
office 3 3.67 2.95 5.65 6.50 -
Avg. 2.88 2.50 3.64 4.68 3.36

TABLE I: Monocular SLAM evaluated on ICL-NUIM [14],
presented are the absolute trajectory errors (ATEs) RMSE
[cm] (- stands result not available). Each result from ours was
calculated as the average over 5 executions.

D. Re-localization

The existing method in feature-based SLAM utilizes the
global descriptor of BoW [11] for image retrieval, thereafter
using the O(n) closed-form solution of EPnP [26] to initial-
ize the iterative optimization, as the run-time requirement is
critical. Therefore, simply replacing the EPnP with EPnPL
[43] as done in mono PL-SLAM [35] brings no significant
improvement. In this work, we use a BA with both point
and line reprojection errors that provide better-refined camera
poses. Note that we optimize over orthonormal representation
of the line, instead of forcing the endpoints correspondence
as done in [35] (in the spirit of EPnPL), which means that
our method is naturally more efficient and avoids the shifting
ambiguity of the line during nonlinear optimization.

III. EXPERIMENTS AND RESULTS

We report our experiments on the datasets TUM RGB-D
[40] and ICL-NUIM [14] for monocular and RGB-D SLAM.
We only present the qualitative evaluation on EuRoC MAV
[4] due to limited pages, please refer to Fig. 1 and Fig. 4.

A. Performance of Visual SLAM System

Effectiveness of line segments. We present the trajectory
errors of our monocular SLAM compared to other state-
of-the-art systems. The evaluated dataset ICL-NUIM pro-
vides low-contrast and low-texture synthetic indoor image
sequences which are very challenging for monocular SLAM,
while the TUM RGB-D dataset provides real-world indoor
sequences under different texture and structure conditions.

Monocular Ours Ours Ours PL-SLAM Elaborate Structure
(full) [35] [25] SLAM [27]

Config. point point point point point point
+ line + line + line + line + line

+ plane + plane + plane
+ normal

fr1 xyz 1.06 1.05 1.09 1.21 1.02 -
fr1 floor 2.03 2.24 1.85 7.59 3.49 -
fr1 desk 2.02 1.65 1.82 - - -
fr2 xyz 0.26 0.26 0.25 0.43 0.31 -
fr2 desk 0.94 0.77 1.14 - 4.65 -
fr3 st tex far 0.99 1.11 1.05 0.89 0.87 1.40
fr3 st tex near 1.14 1.44 1.15 1.25 - 1.40
fr3 nst tex near 1.26 1.41 1.48 2.06 - -
fr3 nst tex far 3.24 3.37 3.51 - 3.68 -
fr3 long office 1.16 1.04 1.54 1.97 2.98 -
Avg. 1.41 1.43 1.49 2.20 2.43 -

TABLE II: Monocular SLAM evaluated on dataset TUM
RGB-D [41], presented are the ATEs RMSE [cm].

The effectiveness of adding line segments with a well-
formulated reprojection error in SLAM can be found in the
3rd column (ours: point + line) of Table I. We observe that
line segments improve the performance of monocular SLAM
remarkably in the case of lacking feature points under low-
texture and low-contrast environments. It also brings SLAM
a more robust camera localization performance when there
are enough point features tracked (on TUM RGB-D dataset
of Table II), and similar results can be observed from Table
III and Table IV with RGB-D setting.

The implicit constraint from 3D planar struc-
tures. In Table II, we observe that our implicit con-
straint that minimizes the distance between the 3D points
and planes brings performance improvement to monoc-
ular SLAM on pure planar scenes such as fr1 floor,
fr3 structure texture near and fr3 nostructure texture far,
fr3 nostructure texture near with loop. Moreover, in Table
III where we evaluate our RGB-D SLAM, when the depth
sensor is available, this simple and efficient constraint also
regularizes the point cloud (associated with certain planes)
triangulated from the depth image, which results in the
best average performance (ours: point + line + plane). This
point-plane distance constraint is theoretically possible to be
integrated into graph optimization [23] with a unary edge
linked to the 3D point vertex, while the position of the
plane is considered statistically optimal from RANSAC and
SVD, hence fixed during optimization. Practically, this is
equivalent to what we implemented via a simple projection
of the 3D point on the plane. We experimentally found out



Fig. 5: The evaluation of re-localization module. We
illustrate the absolute pose error (APE) [m] of all the relocal-
ized images from sequence freiburg3 long office household,
where the x-axis indicates the relative timestamps.

that adding this constraint into the pose-graph will disturb the
optimization procedure, because the local BA then becomes a
large-scale non-linear optimization problem since such unary
edges do not directly constrain the camera poses, and certain
planes (e.g. floor) may dominate the map and violates the
local optimization strategy.

Failure cases. We observed that, e.g., monocular SLAM
is not able to initialize on sequence living room 1 (of ICL-
NUIM) which can be solved by adjusting the initialization
threshold. On sequence office room 1 the monocular SLAM
will lose its tracking due to brutal movement when the
camera targets a no-texture corner of the room. This happens
to all other monocular SLAM systems, so we removed these
two sequences from evaluation for consistency (in Table I).
Another factor of failure in our framework is semantic planar
mapping, which will be discussed in the next section.

B. Sparse Semantic Mapping

In Fig. 1 and 4, we illustrate reconstructed point-line
and line-plane maps respectively. Our map representation
is designed as a lightweight sparse map, which intuitively
shows the scene structure. The 3D planar structure is visu-
alized using a rectangular plane-patch centered around the
associated 3D point. In this way, we make use of the non-
structure point cloud for visualizing the structural plane,
efficiently without added computation. 3D lines are naturally
observable, which illustrates most edge features of the scene.

3D plane reconstruction may fail, when the CNN-based
segmentation is too noisy or even fails on ambiguous images.
Thus, we use a graph-based optimization in RANSAC to fit
planes. However, it is not avoidable that some user-defined
thresholds of RANSAC are difficult to fine-tune. We solve
this partially by introducing our adaptive parameter setting
strategy [38]. One drawback of our planar map representation
is that it strongly depends on the map points, which brings
the limitation that no reliable plane can be fitted when there
are not enough point landmarks. Our map refiner only keeps
high-quality planes, which also omits smaller planes from the
map. This results in mapping failure for low-texture scenes.
Notice that the failure of planar mapping will not negatively
influence the tracking thread of SLAM using points and lines,
however, we remove the results from ours in Table IV if the
plane reconstruction failed.

RGB-D Ours Ours Ours Manhattan Structural SP-SLAM
(full) SLAM [51] RGB-D [28] [54]

Config. point point point point point point
+ line + line + line + line

+ plane + plane + plane + plane + plane
living rm 0 0.54 0.63 0.58 0.70 0.60 0.80
living rm 2 1.26 1.46 1.36 1.50 2.00 1.92
living rm 3 0.68 1.07 1.16 1.10 1.20 1.25
office 0 1.91 1.99 2.31 2.50 4.10 1.99
office 1 2.66 2.26 2.20 1.30 2.00 2.25
office 2 0.83 0.79 0.89 1.50 1.10 2.20
office 3 0.84 0.96 0.86 1.30 1.40 1.84
Avg. 1.25 1.31 1.34 1.41 1.77 1.75

TABLE III: RGB-D SLAM evaluated on dataset ICL-
NUIM [14], presented are the ATEs RMSE [cm].

RGB-D Ours Ours Ours Manhattan SP-SLAM
(full) SLAM[51] [54]

Config. point point point point point
+ line + line + line

+ plane + plane + plane + plane
fr1 xyz 1.03 0.98 1.10 1.00 0.93
fr1 floor 1.21 1.40 1.36 - -
fr1 desk 2.02 1.89 1.87 2.70 1.43
fr2 xyz 1.45 1.68 1.42 0.80 -
fr3 st tex far 0.89 0.99 0.98 2.20 0.97
fr3 st tex near 1.00 1.05 0.95 1.20 0.84
fr3 nst tex near 1.59 1.19 1.64 - -
fr3 nst tex far 3.52 3.05 4.35 - -
fr3 long office 1.01 0.91 0.94 - -
fr3 large cabinet 4.99 4.37 5.03 8.30 2.97
fr3 st notex far - 1.46 - 4.00 2.20
fr3 st notex near - 0.98 - 2.30 1.25
Avg. 1.87 1.66 1.96 2.81 1.51

TABLE IV: RGB-D SLAM evaluated on dataset TUM
RGB-D [41], presented are the ATEs RMSE [cm].

C. Re-localization Module

Our re-localization module estimates the camera pose
without using any prior information other than the map. This
is useful when the previous camera location cannot be used,
such as when the tracking is lost. This problem was recently
addressed as the map-based visual localization problem [12],
[49], [50] or global localization [34], [37]. We evaluate our
re-localization module via conducting the single monocular
image map-based localization, which is based on a pre-built
map from our RGB-D SLAM system (as shown in Fig. 1
bottom-right, of sequence freiburg3 long office household).
Thus, given every single image from this data sequence, we
estimate the initial camera pose via image retrieval followed
by EPnP, and then optimize it using motion-only BA with
3D-2D point and line correspondences, as discussed in Sec.
II-D. To this end, we calculate the absolute camera position
errors (APEs) using all relocalized images. As shown in
Fig. 5, where the blue line indicates using points and lines
for pose optimization, which shows clearly smaller errors
compared to the one (green line) using points only.

IV. CONCLUSION

In this work, we presented a sparse visual SLAM method
that uses both points and line segments for robust camera
localization, together with a plane detection and reconstruc-
tion mechanism which increases both pose robustness and
map semantic interpretation. Our comprehensive evaluations
show high qualitative results of the reconstructed maps, and
better quantitative performance in terms of pose estimation
compared to state-of-the-art SLAM algorithms. As the sys-
tem was designed based on monocular assumption, future
work would be generalizing this full SLAM system to more
challenging scenarios, such as scenes with low textures. We
also plan to extend the system to other high-level features
such as 3D objects in the scene.
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V. SUPPLEMENTARY MATERIALS

A. Hidden Parameters of LSD Extractor

Name of the Parameter Value
opts.refine 1
opts.scale 0.5
opts.sigma scale 0.6
opts.quant 2.0
opts.ang th 22.5
opts.log eps 1.0
opts.density th 0.6
opts.n bins 1024
opts.min length 0.125 * min(img.cols, img.rows)

TABLE V: The hidden parameters used for extracting 2D
line segments using LSD, as discussed in PL-VINS [10],
which can be 3 times faster than the original implementation
in OpenCV. For the meaning of the parameters please refer
to the OpenCV documentation of LSD.

B. Conversion between Orthonormal Representation and
Plücker Coordinates

As an infinite line representation, the Plücker coordinates
Lw = (m>w ,d

>
w)> can be calculated by intersecting two 3D

planes as discussed in two-view triangulation or constructed
by two 3D endpoints X1 = (X1, Y1, Z1, 1)> and X2 =
(X2, Y2, Z2, 1)>:

Lw =

[
mw

dw

]
=


Y2Z1 − Y1Z2

Z2X1 − Z1X2

X2Y1 −X1Y2

X1 −X2

Y1 − Y2

Y1 − Y2

 (11)

The orthonormal representation (U,W) ∈ SO(3) ×
SO(2) of a 3D line can be computed using the QR decom-
position given the Plücker coordinates [10]:

[mw | dw] = U

ω1 0
0 ω2

0 0

 , with : W =

[
ω1 ω2

−ω2 ω1

]
(12)

where U and W denote a three and a two-dimensional
rotation matrix, respectively. Let R(θ) = U and R(θ) = W
be the corresponding rotation transformations, we have:

R(θ) = [u1,u2,u3] =

[
mw

||mw||
,

dw
||dw||

,
mw × dw
||mw × dw||

]
R(θ) =

[
ω1 ω2

−ω2 ω1

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

1√
(||mw||2 + ||dw||2)

[
||mw|| −||dw||
||dw|| ||mw||

]
(13)

where θ and θ denote a 3-vector and a scalar, respectively.
Within the iterative optimization in the BA, U and W

can be updated as U ← UR(θ) (notice that θ ∈ R3)
and W ← WR(θ) (notice that θ ∈ R). Therefore the

orthonormal representation has the minimal 4 parameters as[
θ>, θ

]
∈ R4.

Given an orthonormal representation (U,W), we can
recover its Plücker coordinates by:

Lw =
[
ω1u

>
1 , ω2u

>
2

]
, (14)

where ω1, ω2, u1, and u2 can be extracted from Eq. (13),
as ui the i-th column of U.

C. The Analytical Jacobians of 3D Line

The complete Jacobians of reprojection error of the line
[25] regarding to the orthonormal representations (see last
Sec. V-B) and camera poses se(3) are:

Jθ =
∂el
∂δθ

=
∂el
∂l

∂l

∂Lc

∂Lc
∂Lw

∂Lw
∂δθ

(15)

Jξ =
∂el
∂δξ

=
∂el
∂l

∂l

∂Lc

∂Lc
∂δξ

(16)

where the partial derivative of the line reprojection error w.r.t
the reprojected line l is:

∂el
∂l

=
1√
l21 + l22

 xs − l1xsl√
l21+l22

ys − l2xsl√
l21+l22

1

xe − l1xel√
l21+l22

ye − l2xel√
l21+l22

1


2×3
(17)

The partial derivatives of the reprojected line l w.r.t Lc, and
Lc w.r.t Lw:

∂l

∂Lc
=
∂KLmc

∂Lc
=
[

KL 03×3

]
3×6

∂Lc
∂Lw

=
∂TcwLw
∂Lw

= Tcw =

[
Rcw [tcw]×Rcw

03×3 Rcw

]
6×6

(18)
The derivative of Lw w.r.t the orthonormal representation is:

∂Lw
∂δθ

=

[
03×1 −ω1u3 ω1u2 −ω2u1

ω2u3 03×1 −ω2u1 ω1u2

]
6×4

(19)

The derivative of Lc w.r.t camera pose is:

∂Lc
∂δξ

=

[
−[Rm]× − [[t]×Rd]× −[Rd]×

−[Rd]× 03×3

]
6×6

(20)

D. Endpoints Trimming

Given an observed 2D line segment with endpoints
{xs,xe}, and correspondingly a reprojected line l, a per-
pendicular intersection plane is constructed via finding the
closet point x⊥ of xs (or xe) to the line l [25], [52]:

x⊥s = −
(
ys −

l2
l1
xs +

l3
l2

)
l1l2
l21 + l22

(21)

y⊥s = − l1
l2
x⊥s −

l3
l2

(22)

Calculating a random point x0s, e.g., with x0s = 0:



Monocular Ours Ours OpenVSLAM [42]
(full)

Config. point point point
+ line + line

+ plane
MH 01 easy - 0.043 0.045
MH 02 easy - 0.035 0.037
MH 03 medium - 0.038 0.039
MH 04 difficult - 0.155 0.177
MH 05 difficult - 0.088 0.075
Avg. - 0.072 0.074
V1 01 easy 0.093 0.096 0.095
V1 02 medium 0.062 0.065 0.064
V1 03 difficult 0.070 0.069 0.069
V2 01 easy 0.058 0.059 0.063
V2 02 medium 0.057 0.057 0.064
V2 03 difficult 0.151 0.106 0.127
Avg. 0.082 0.075 0.080

TABLE VI: Monocular SLAM evaluated on dataset EuRoC
MAV [4], presented are the absolute trajectory errors
(ATEs) RMSE [m] (- stands result not available due to
the failure of instance planar segmentation CNN on factory
image sequences MH 01 - 05). Each result from ours was
calculated as the average of over 5 executions.

Stereo Ours Ours OpenVSLAM [42]
(full)

Config. point point point
+ line + line

+ plane
MH 01 easy - 0.046 0.050
MH 02 easy - 0.056 0.058
MH 03 medium - 0.048 0.053
MH 04 difficult - 0.071 0.072
MH 05 difficult - 0.071 0.064
Avg. - 0.059 0.059
V1 01 easy 0.089 0.091 0.093
V1 02 medium 0.066 0.066 0.067
V1 03 difficult 0.064 0.065 0.073
V2 01 easy 0.060 0.061 0.061
V2 02 medium 0.060 0.061 0.064
V2 03 difficult 0.163 0.166 0.157
Avg. 0.084 0.085 0.086

TABLE VII: Stereo SLAM evaluated on dataset EuRoC
MAV [4], presented are the absolute trajectory errors
(ATEs) RMSE [m].

x0s = 0, y0s = ys −
l2
l1
xs (23)

By doing that, we could construct a 3D plane by:

πs = P>l⊥s (24)

where l⊥s = x⊥s × x0s. Given the Plücker coordinates of
the 3D line, we are able to calculate the 3D starting point
via intersecting the 3D plane and 3D line [15] via Xs =
(Xs/ω, Ys/ω, Zs/ω, 1)> = Lπs, where:

L =

[
[m]× d
−d> 0

]
(25)

The ending point of the 3D line is estimated by the same
procedure described above for the starting point.

Thread Ours ORB-SLAM2 [33] OpenVSLAM [42]
Tracking 28.41 20.43 19.47
Local Mapping 269.08 110.82 105.45
Functionality/Module Ours
System (Mono) Initialization 5.37
2D ORB Feature Extraction 11.39
2D Line Feature Extraction 13.70
Track Local Map (point + line) 12.69
Motion-only BA (point + line) 5.45
Instance Planar Segmentation 69.45
Point-Plane Map Initialization 22.14
Non-Planar Map Point Culling 0.56
New Plane Detection 2.07
Map Plane Merging/Expanding 0.92
Map Plane Re-estimation 1.11
Map Point-Plane Refinement 0.08
Map Point Two-keyframe Triangulation 0.01
Map Line Two-keyframe Triangulation 0.21
Map Point Culling 0.87
Map Line Culling 0.10
Local BA (point + line + endpoints trimming) 233.37

TABLE VIII: Runtime analysis [ms] (mean value evalu-
ated on dataset TUM RGB-D [41]: fr3 st tex far) of our
full SLAM system compared to original ORB-SLAM2 and
OpenVSLAM, under monocular setting, using a desktop
PC with an Intel Xeon(R) E-2146G 12 cores CPU @
3.50GHz, 32GB RAM. The PlaneRecNet [46] is evaluated
on a standard GPU of NVIDIA GTX 1650.

(a) Point-line map reconstructed from our monocular SLAM,
of data sequence living room traj0.

(b) Line-plane map (middle) and point-line map reconstructed
from our monocular SLAM, of data sequence living room traj2.

Fig. 6: A qualitative illustration of the map reconstructed
from our monocular SLAM, on ICL-NUIM dataset [14].

E. More Quantitative and Qualitative Results

Dataset EuRoC MAV. As presented in Table VI and
Table VII, we tested our monocular and stereo SLAM
on dataset EuRoC MAV [4] which consists of 11 stereo
sequences recorded with a MAV flying across three different
environments: two indoor rooms and one industrial scenario,



containing sequences that present different challenges de-
pending on the speed of the drone, illumination, texture, etc.
Note that results of exploiting planar reconstruction are not
available on factory image sequences MH 01 - 05, due to
the failure of instance planar segmentation CNN.

The exploitation of line segments barely increases the
accuracy on dataset EuRoC MAV, similar results were also
mentioned in stereo PL-SLAM [13]. Thus, stereo PL-SLAM
only reports the relative pose errors of the keyframes, which
are not compared in Table VII using ATEs. Still, our SLAM
system shows slightly superior performance for most of
the sequences in comparison to the point-only approach,
especially the reconstructed map is more intuitive.

More qualitative illustration. More examples from our
monocular SLAM on the ICL-NUIM dataset see Fig. 6.
Another example of our RGB-D SLAM is given in Fig. 7. As
mentioned in the main paper, we also provide a comparison
between ours and PL-VINS [10] in Fig. 8, qualitatively
showing that both our monocular and stereo SLAM provide
highly accurate point and line maps. Another example with
planar reconstruction is given in Fig. 9.

Computation Complexity. A detailed run-time analysis
(in ms) is given in Table VIII, of which our full monocular
SLAM system utilizes point and line features in the tracking
thread, and reconstructs 3D points, 3D planes, and 3D lines
in the local mapping thread.

One can observe that the tracking thread of our PLP-
SLAM needs more time on average (about 28ms) compared
to the original ORB-SLAM2 (about 20ms), but it can still
achieve a tracking performance of 30 frames per second.
Notice that several functionalities are implemented as multi-
thread processing, for example, the ORB and LSD features
are extracted in parallel threads. The mapping thread costs
more time due to the extended local BA with lines (about
230ms), while new 3D plane fitting (about 2ms), merging
(about 0.9ms), and refinement (about 1ms) are in general
very fast. During the experiments, we do not observe an
obvious delay in the mapping visualization. Hence, most
of the added computation burden is from the utilization of
the line feature. For interested readers, please note that the
results given in Table VIII may vary slightly if the hardware
configuration (e.g. CPU) changes, and may vary slightly on
different data image sequences (e.g. in the case of various
sizes of the map).

F. Remark

As concluded in the main paper, the plane detection and
reconstruction algorithms are mainly designed for monocular
settings. Therefore, the algorithms can be applied under
RGB-D or stereo camera settings, but are not necessarily
the optimal methods, since more information can be used
to detect and reconstruct planes when available (e.g. depth
image). Nevertheless, we found out the designed algorithms
can provide an intuitive map under RGB-D settings in low-
texture scenes, as a result of sparse semantic mapping, for
example, see Fig. 7.

Fig. 7: A qualitative illustration of the point-line-plane
map reconstructed from our RGB-D SLAM, on TUM RGB-
D dataset [41], of data sequence fr2 pioneer slam.

(a) Point-line map reconstructed from our monocular SLAM.

(b) Point-line map reconstructed from our stereo SLAM.

(c) Point-line map reconstructed from PL-VINS.

Fig. 8: A qualitative comparison between our stereo
SLAM and PL-VINS [10], on MH 04 difficult of EuRoC
dataset [4].



(a) Point cloud map reconstructed from our stereo SLAM.

(b) Line-plane map reconstructed from our stereo SLAM.

(c) Full visualization of map reconstructed from our stereo SLAM.

Fig. 9: A qualitative illustration of our stereo SLAM, on
V1 03 difficult of EuRoC dataset [4].
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