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1. Introduction
1.1 Computational Ethology

Behavior: The set of muscular responses of a living being because of an external 
stimulus and internal motivation.

Computational Ethology (CE):
 Discipline that studies the animal behavior

 Using the advances in Computer Vision and Artificial Intelligence.

 Focused on the natural behavior to perform real-world tasks

 In unrestricted environments

 Quantitative behavior characterization.

Pharmacological point of view: CE is useful to test new medicines comparing the 
effect on different subjects, obtained by genetic modifications.
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1. Introduction
1.2 State of the art in Computational Ethology

Sensors:
◦ RGB / depth / infrared cameras

◦ Pressure sensors

◦ Inertial sensors

◦ Microphones

Applications based on Artificial Intelligence:
◦ Tracking applications: DeepLabCut, Bonsai, SLEAP, …

◦ Behavior classification: JAABA, DeepEthogram, VAME, …

◦ Strain classification: SVM, k-NN
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Is it possible to implement a strain classifier from pressure signal and images by 
applying pre-trained models and transfer learning?

We focus on comparing spectrogram images from piezoelectric sensor during 
locomotion periods.
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3. Materials and Methods
3.1 Animals and Experimentation

12 mice with 2 different strains: 
◦ 7 wild-type (WT): non-mutated gene

◦ 5 transgenic Fmr1-knockout (Fmr1-KO): animal model to study Fragile X Syndrome

Recording system:
◦ Opaque-walled cage

◦ Base: piezoelectric platform with 3 sensors (20 kHz)

◦ Top video camera (25 fps)

◦ Computer with the Spike software to record piezoelectric signal

Animals introduced individually.

Procedure in accordance with EU directives for animal protection.
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3. Materials and Methods
3.2 Behavioral Data Processing

7

http://chronux.org/
https://www.sonicvisualiser.org/

Locomotion filter:
Minimum velocity of 2.5 cm/s
Minimum duration of 2500 ms
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3. Materials and Methods
3.2 Behavioral Data Processing
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3. Materials and Methods
3.2 Behavioral Data Processing
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3. Materials and Methods
3.2 Behavioral Data Processing
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3. Materials and Methods
3.2 Behavioral Data Processing
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3. Materials and Methods
3.3 Model Training and Evaluation

Binary classification problem to discriminate two phenotypes: WT (class 0) and Fmr1-KO (class 1)

Transfer learning to spectrogram images during locomotion with:
◦ Alexnet

◦ GoogLeNet

◦ ResNet50

Dataset divided into two parts:
◦ 80% train set

◦ 20% test set

5-fold cross-validation

Accuracy, Recall, Precision, F1 score.
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4. Results
4.1 Results for Spectrogram computed with Chronux library
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1 second window size and 0.1 seconds window step

2 seconds window size and 0.5 seconds window step



4. Results
4.2 Results for Spectrogram computed with Sonic Visualizer
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5. Conclusion and Future Work

Introduction of Computational Ethology and its state of the art.

Research question: Is it possible to discriminate phenotypes with pressure signals and 
images using transfer learning?

Binary classification problem with 2 different animal models:
◦ Wild-type

◦ Fmr1-KO

Spectrogram images from the piezoelectric pressure signal during locomotion periods.

Yes, we can differentiate phenotypes with high accuracy, precision, recall and F1 score.

Future work: apply this approach to an experimental study about healthy ageing in elderly 
to detect gait anomalies with recordings from an electroencephalogram (EEG) and a walking 
platform.
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