Journal article Open Access

Energy efficiency facets: innovative district cooling systems

Passerini, Francesco; Sterling, Raymond; Keane, Markus; Klobut, Krzysztof; Costa, Andrea


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/818258</identifier>
  <creators>
    <creator>
      <creatorName>Passerini, Francesco</creatorName>
      <givenName>Francesco</givenName>
      <familyName>Passerini</familyName>
      <affiliation>R2M Solution Srl</affiliation>
    </creator>
    <creator>
      <creatorName>Sterling, Raymond</creatorName>
      <givenName>Raymond</givenName>
      <familyName>Sterling</familyName>
      <affiliation>National University of Ireland Galway</affiliation>
    </creator>
    <creator>
      <creatorName>Keane, Markus</creatorName>
      <givenName>Markus</givenName>
      <familyName>Keane</familyName>
      <affiliation>National University of Ireland Galway</affiliation>
    </creator>
    <creator>
      <creatorName>Klobut, Krzysztof</creatorName>
      <givenName>Krzysztof</givenName>
      <familyName>Klobut</familyName>
      <affiliation>VTT Technical Research Centre of Finland Ltd</affiliation>
    </creator>
    <creator>
      <creatorName>Costa, Andrea</creatorName>
      <givenName>Andrea</givenName>
      <familyName>Costa</familyName>
      <affiliation>R2M Solution Srl</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Energy efficiency facets: innovative district cooling systems</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>energy efficiency</subject>
    <subject>predictive controllers</subject>
    <subject>new system management algorithms</subject>
    <subject>new planning tool</subject>
    <subject>more efficient district cooling systems</subject>
    <subject>energy models</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-03-04</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/818258</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.9770/jesi.2017.4.3S(6)</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/indigo</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Cooling demand in buildings is globally increasing, therefore developing more efficient cooling systems is important for the sustainability of European cities. Directive 2012/27/EU of the European Parliament and of the council on energy efficiency states: “Member States should carry out a comprehensive assessment of the potential for high-efficiency cogeneration and district heating and cooling”. The EU project INDIGO is investigating this issue considering also the economic efficiency and the use of renewable energy sources. In a district cooling system different kinds of cooling production can be combined. E.g., the use of absorption chillers with waste heat or through the solar cooling or the use of free cooling (generally the heat is rejected to seas, lakes, rivers or waterways) offer the possibility of a more sustainable way of cooling. Controlling those systems in an efficient way is a complex problem (consider that the cooling demand is much more difficult to predict than the heat demand, particularly the peaks, and sources such as the solar energy and the waste heat are not predetermined by the designers). The main results of INDIGO will be the development of: - predictive controllers (responsible for obtaining the HVAC systems set-points and based on component dynamic thermos-fluid models, some of them also including embedded self-learning algorithms); - system management algorithms (focused on energy efficiency maximization or energy cost minimization); - an open-source planning tool (based on design and performance parameters as well as simulation and optimisation results; LCA framework will be used as a method for both economic feasibility and climate impact assessment). To validate the results, the consortium is analysing case studies, both through energy modelling and through on-site observations and measurements. The present paper focuses mainly on the development of dynamic energy models and on their use in the context of the project.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/696098/">696098</awardNumber>
      <awardTitle>New generation of Intelligent Efficient District Cooling systems</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
68
29
views
downloads
Views 68
Downloads 29
Data volume 17.8 MB
Unique views 67
Unique downloads 26

Share

Cite as