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Abstract—Nowadays many researchers are developing 

various distributed and decentralized frameworks for federated 

learning algorithms. However, development of such a 

framework targeting smart Internet of Things in edge systems 

is still an open challenge. In this paper, we present our solution 

to that challenge called Python Testbed for Federated Learning 

Algorithms. The solution is written in pure Python, and it 

supports both centralized and decentralized algorithms. The 

usage of the presented solution is both validated and illustrated 

by three simple algorithm examples. 

Keywords—distributed systems, edge computing, decentralized 

intelligence, federated learning, Python 

I. INTRODUCTION 

Federated learning was introduced by McMahan et al. [1] 
as a decentralized approach to model learning that leaves the 
training data distributed on the mobile devices and learns a 
shared model by aggregating locally computed updates. They 
presented FedAvg, a practical method for the federated 
learning of deep networks based on iterative model averaging, 
see Algorithm 1 FederatedAveraging in [1] on page 5. The 
main advantages of federated learning are: (i) it preserves 
local data privacy, (ii) it is robust to the unbalanced and non-
independent and identically distributed (non-IID) data 
distributions, and (iii) it reduces required communication 
rounds by 10–100x as compared to synchronized stochastic 
gradient descent (FedSgd). 

McMahan’s seminal paper [1] inspired many researchers’ 
papers and in this limited space we mention just few of them. 
Immediately after [1], Bonawitz et al. [2] introduced an 
efficient secure aggregation protocol for federated learning, 
and Konecny et al. [3] presented algorithms for further 
decreasing communication costs. More recent papers are 
focused on data privacy [4, 5]. 

TensorFlow Federated (TFF) [6], [7] is Google’s 
framework supporting the approach introduced in [1], which 
provides a rich API and many examples that work well in 
Colab notebooks. However, TFF is a framework for 

applications in the cloud-edge continuum, with a heavyweight 
server executing in the cloud, and therefore not deployable to 
edge only. Besides, TFF is not supported on OS Windows, 
which is used by many researchers, and TFF has numerous 
dependencies that make its installation far from trivial.  

BlueFog [8], [9] is another framework with the same 
limitations as TFF. In their note on page 5 in [9], BlueFog 
authors say that they consider deep training within high-
performance data-centre clusters. Recently, Kholod et al. [10] 
made a comparative review and analysis of open-source 
federated learning frameworks for IoT, including TensorFlow 
Federated (TFF) from Google Inc [6], Federated AI 
Technology Enabler (FATE) from Webank’s AI department 
[11], Paddle Federated Learning (PFL) from Baidu [12], 
PySyft from the open community OpenMined [13], and 
Federated Learning and Differential Privacy (FL&DP) 
framework from Sherpa.AI [14]. Based on the results of their 
analysis, they concluded that, currently, the application of 
these frameworks in the Internet of Things (IoTs) environment 
is almost impossible. In summary, at present, developing a 
federated learning framework targeting smart IoTs in edge 
systems is still an open challenge. 

In this paper, we present our solution to that challenge 
called Python Testbed for Federated Learning Algorithms 
(PTB-FLA). As the word “testbed” in its title suggests, PTB-
FLA was developed with the primary intention to be used as a 
framework for developing federated learning algorithms 
(FLAs), or more precisely as a runtime (or execution) 
environment for FLAs under development on a single 
computer (i.e., localhost). An important direction of our future 
work is to extend PTB-FLA to run on a local area network, 
and perhaps even to be used as a runtime in edge systems. 

PTB-FLA is written in pure Python, which means that it 
only depends on the standard Python packages, such as the 
package multiprocessing, and it was intentionally written this 
way for the following two reasons: (i) to keep the application 
footprint small so to fit to IoTs, and (ii) to keep installation as 
simple as possible (with no external dependencies). 

PTB-FLA enforces two restrictions that must be obeyed 
by the algorithm developers. First, a developer writes a single 
application program, which is later instantiated and launched 
by the PTB-FLA launcher as a set of independent processes 
whose behaviour depends on the process id. Second, a 
developer only writes callback functions for the client and the 
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server roles, which are then called by the generic federated 
learning algorithms hidden inside PTB-FLA. 

PTB-FLA supports both centralized and decentralized 
federated learning algorithms. The former is as defined in [1], 
whereas the latter are generalized such that each process (or 
node) behaves as both a client and a server or more precisely 
it alternatively takes server and client roles from [1]. 

The rest of the paper is organized as follows. Section I.A 
presents related work. Section II presents the PTB-FLA 
design, Section III validates and illustrates the PTB-FLA 
usage by three simple algorithm examples, and Section IV 
concludes the paper. 

A. Short Discussion of Closely Related Work 

The word “testbed” in the name PTB-FLA may be 
misleading, it was selected by ML & AI developers in our 
project, because they see PTB-FLA as an “algorithmic” 
testbed where they can plugin and test their FLAs. However, 
PTB-FLA is a federated learning framework and not a system 
testbed, such as the one that was used for testing the system 
based on PySyft in [15]. 

Another important point that needs clarification is that 
PTB-FLA is just a FL framework, and it is not a complete 
system such as CoLearn [16] and FedIoT [17]. CoLearn is an 
FL system based on the open-source Manufacturer Usage 
Description (MUD) implementation osMUD and the FL 
framework PySyft, whereas FedIoT is a system for realistic 
IoT devices (e.g., Raspberry PI) that comprises a specialized 
FL framework for IoT cybersecurity named FedDetect. 

PTB-FLA is an early work in progress. At this time, it only 
executes on a localhost, still we can compare its design 
principles with PySyft and FedDetect. PySyft is centralized 
whereas PTB-FLA supports both centralized and 
decentralized FLAs. FedDetect is both centralized and 
specialized whereas PTB-FLA is generic. 

We can also compare the target edge systems. Currently, 
both CoLearn and FedIoT are edge system comprising 
computers and laboratory IoT devices like Raspberry PI, 
whereas PTB-FLA on its roadmap also has swarms of just IoT 
devices (without computers) that may use MicroPython as an 
OS, which is becoming common in embedded systems (see an 
interesting toy example in [18]). Perhaps the most challenging 
edge system on PTB-FLA roadmap is a swarm of LEO 
satellites, which is one of the use cases in TaRDIS project 
[19]. 

In summary, the problem that we are attempting to solve 
is how to construct a FL framework that is well-structured, 
generic, and based on restricted programming (and therefore 
easy to formally verify – this is also one of the stops on the 
PTB-FLA roadmap), and we think this is important because it 
leads to an exciting roadmap we briefly sketched. PTB-FLA 
is just a first step, and we hope it’s in the right direction. 

II. PTB-FLA DESIGN 

This section presents the PTB-FLA design details. For 
brevity, the term system based on PTB-FLA is abbreviated as 
the term PTB-FLA system. The next subsections present the 
PTB-FLA system architecture (Subsection II.A), the PTB-
FLA API (Subsection II.B), and the PTB-FLA system 
operation (Subsection II.C). 

A. PTB-FLA System Architecture 

The PTB-FLA system architecture, see Fig. 1, consists of 
the application launcher process s, the distributed application 
A = {a1, a2, …, an}, which is a set of application program 
instances ai, and the distributed testbed T = {t1, t2, …, tn}, 
which is a set of testbed instances ti, where i = 1, 2, …, n, and 
n is the number of instances in both A and T. 

The system starts as follows. Once the launcher process s 
is manually started from the command line interface (CLI), it 
instantiates n application program instances ai, i = 1, 2, …, n, 
and launches them as n independent processes (in Fig. 1 this 
is illustrated as a set of rays radiating from s). Each application 
program instance ai in turn creates its testbed instance ti. At 
the end, the testbed instances conduct the startup handshake 
by exchanging hello messages (details in II.C). 

a1 t1

s

. . .

A T

Legend: s – application launcher, A – application, ai – 
application program instance, T – testbed, ti – testbed 
program instance.

ai ti

. . .

aj tj

. . .

an tn

 

Fig. 1. Block diagram of the PTB-FLA system architecture. 

During normal system operation, the distributed 
application A uses the distributed testbed T to execute the 
distributed algorithm, which is specified by the callback 
functions within the application program (i.e., in the 
application Python modules). PTB-FLA supports both 
centralized and decentralized federated learning algorithms by 
providing the API functions that implement the generic 
centralized algorithm and the generic decentralized algorithm, 
named fl_centralized and fl_decentralized, respectively. 

The distributed federated learning algorithm (either 
centralized or decentralized) is executed as follows. Each 
instance ai prepares its input data for the generic API function 
based on its command line arguments (including its 
identification i, the number of instances n, etc.) and then calls 
the desired generic API function (either fl_centralized or 
fl_decentralized) on its testbed instance ti. 

The testbed instance ti in turn plays its role (determined by 
its id i) in the generic algorithm by exchanging messages with 
other testbed instances and by calling the associated callback 
function at the right point of the generic algorithm (details in 
II.C). In case of a centralized algorithm, the graph of testbed 
instances takes the form of a star, whereas in the case of a 
decentralized algorithm it takes the form of clique (or 
complete graph). In Fig. 1, on the right side, the solid oval 
edges connecting t1 (a server) with other testbed instances 
(clients) illustrates the former case, whereas all the branches 
(solid and dashed) illustrate the latter case. 



Application launch

PtbFla launcher

mpapi

Listener & 
Client

Application 
layer

PTB-FLA 
layer

Python 
layer

CLI APIPtbFla API

mpapi API

L&C API

subprocess.
Popen

subprocess
API

 

Fig. 2. UML class diagram of the PTB-FLA system architecture. 

The PTB-FLA system architecture comprises three layers: 
the distributed application layer on top (comprising the 
application modules and the console script launch), the PTB-
FLA layer (comprising the class PtbFla in the module ptbfla 
and the modules mpapi and launcher), and the Python layer 
(including classes Process, Queue, and Listener & Client from 
the package multiprocessing and Popen from the package 
subprocess). 

As shown in Fig. 2, the console script launch uses the 
module launcher (which in turn uses Popen) to launch the 
distributed application comprising n independent processes, 
pi, i = 1, 2, …, n, where each pi comprises the corresponding 
pair of instances (ai, ti) and executes in a separate terminal 
(i.e., window). On the other hand, the application module uses 
the PtbFla API (comprising PtbFla functions) to create or 
destroy a testbed instance (by calling the constructor or the 
destructor) and to conduct its role in the distributed algorithm 
execution (by calling the API function fl_centralized or the 
API function fl_decentralized). 

The API functions fl_centralized and fl_decentralized, 
within an instance ti, use the module mpapi (mpapi is the 
abbreviation of the term message passing API) to 
communicate with other instances. The module mpapi in turn 
instantiates the Python multiprocessing classes Listener and 
Client to create the mpapi server and the mpapi client, which 
are hidden with the module mpapi and should not be confused 
with the server and client roles in the federated learning 
algorithms. 

The mpapi API is strictly an internal API providing 
services to PtbFla only, and it should never be used by the 
distributed algorithms’ developers, instead they should only 
use the PtbFla API in their application program modules.  

B. PtbFla API 

The PtbFla API comprises the following four functions 
(the variable after “/” is the function return value): 

1. PtbFla(noNodes, nodeId, flSrvId=0) / None 

2. fl_centralized(sfun, cfun, ldata, pdata, noIters=1) / ret 

3. fl_decentralized(sfun, cfun, ldata, pdata, noIters=1) / ret 

4. PtbFla() / None 

The first is the constructor that is called as a global 
function and does not have a return value, the second and the 
third are member functions that are called on the instance of 
PtbFla, and the fourth is the destructor that is called implicitly 
by the garbage collector or explicitly when deleting an object. 

The arguments are as follows: noNodes is the number of 
nodes (or processes), nodeId is the node identification, flSrvId 
is the server id (default is 0; this argument is used by the 
function fl_centralized), sfun is the server callback function, 
cfun is the client callback function, ldata is the initial local 
data, pdata is the private data, and noIters is the number of 
iterations that is by default equal to 1 (for the so called one-
shot algorithms), i.e., if the calling function does not specify 
it, it will be internally set to 1. The return value ret is the node 
final local data. Data (ldata and pdata) is application specific. 

Typically, local data (ldata) is a machine learning model, 
whereas the private data (pdata) is a training data that is used 
to train the model. For example, in case of a simple linear 
regression i.e., straight-line fit to data, y = ax + b, the machine 
learning model is the pair of coefficients (a, b) where a is the 
slope and b is the intercept, whereas the training data is the 
given array of points i.e., pairs (xi, yi), i = 1, …, n, where n is 
the number of points. 

Normally, the testbed instances only exchange the local 
data (i.e., their local machine learning models) and they never 
send out the private data (that is how they guarantee the 
training data privacy). The private data is only passed to 
callback functions (within the same process instance) to 
immediately set them in their working context. 

Note that PTB-FLA at this time has a simple startup that 
does not separate instances private data, but the startup in the 
future distributed PTB-FLA version will do that. 

C. PTB-FLA Operation 

This subsection provides an overview of the PTB-FLA 
operation by presenting the following three most important 
scenarios: (i) the system startup handshake, (ii) the generic 
centralized one-shot FLA (federated learning algorithm) 
execution, and (iii) the generic decentralized one-shot FLA 
execution. 

The system startup handshake has two phases, see Fig. 3. 
In the first phase, the instance a1 is waiting to receive (n – 1) 
Hello messages from all other instances ai, i = 2, …, n, and in 
the second phase, the instance a1 broadcasts the message Hello 
to all other instances (note: conceptually, the index i takes 
values from 1 to n, whereas in PTB-FLA Python 
implementation it goes from 0 to n - 1). 

ana1 ai

Hello

Hello

Hello

. . . . . .

. . .

Hello

. . .

 

Fig. 3. The system startup handshake. 

The generic centralized one-shot FLA has three phases, 
see Fig. 4. Let’s assume that the instance a1 is the server and 
the other instances ai, i = 2, …, n, are the clients. In the first 
phase, the server broadcasts its local data to the clients, which 
in their turn call their callback function to get the update data 
and store the update data locally. 



In the second phase, the server receives the update data 
from all the clients, and in the third phase, the server calls its 
callback function to get its update data (e.g., aggregated data) 
and stores it locally. Finally, all the instances return their new 
local data as their results. 

ana1 ai

a1 local data

a1 local data

ai update data

. . . . . .

. . .

an update data

. . .

Phase 1:
Server broadcasts 
its local data

Phase 2:
Server receives 
clients  updates

Clients call their 
callback function

Phase 3:
Server calls its 
callback function

 

Fig. 4. The generic centralized one-shot FLA execution. 

Unlike the generic centralized FLA that uses the single 
field messages carrying data (local or update), the generic 
decentralized FLA, being more complicated, uses the three 
field messages carrying: the messages sequence number 
(corresponding to the algorithm’s phase number), the message 
source address (i.e., the source instance network address), and 
the data (local or update). 

ana1 ai

[1, 1, local data]

[1, 1, local data]

. . . . . .

Phase 1:
Initial broadcast
(nodes act as 
servers)

Phase 2:
Sending updates 
(nodes act as 
clients)

Phase 3:
Aggregating 
updates (nodes 
act as servers)

[2, 1, update]

[2, i, update]

[2, n, update]

Note: the term  update  in the messages 
above means  update data  

 

Fig. 5. The generic decentralized one-shot FLA execution. 

The generic decentralized one-shot FLA has three phases, 
see Fig. 5. In the first phase, see the top of Fig. 5, each instance 
acts as a server, and it sends its local data to all its neighbours. 
These messages have the sequence number 1, and each 
instance sends (n – 1) such messages. Note that each instance 
is also the destination for (n – 1) such messages. 

In the second phase, see middle of Fig. 5, each instance 
acts as a client, and it may receive either a message with the 
sequence numbers 1 (sent in the first phase) or 2 (sent during 
the second phase). If the instance receives a message from the 
second phase, it just stores it in a buffer for later processing, 
whereas if the instance receives a message from the first 
phase, it calls the client callback function to get the update 

data, and then sends the reply to the message source. In the 
reply, the instance sets the message fields as follows: the field 
sequence number to 2, the field message source address to its 
own address, and the field data to update data. Note that during 
the second phase, the instance does not update its local data, it 
just passes the update data it got form the client callback 
function. 

Since messages are sent asynchronously, they may be 
received in any order. Note that for the simplicity of 
presentation, Fig. 5 shows a scenario where all the instances 
receive the messages in the phase order. However, if an 
instance receives the messages out of the phase order, it uses 
the buffer to process them in the phase order. 

The second phase is completed after the instance received 
and processed all 2(n – 1) messages (from both phases). In the 
third phase, each instance again acts as a server, and it calls 
the server callback function to get its update data (e.g., 
aggregated data) and stores it locally. Finally, all the instances 
return their new local data as their results. 

III. PTB-FLA VALIDATION 

This section validates and illustrates PTB-FLA usage by 
three simple algorithm examples (see III.A, III.B, and III.C). 

A. Example 1: Federated Map 

This example is analogous to the McMahan’s federated 
learning example for averaging the number of sensors 
readings above the given threshold, see pp. 50-51 in [7]. 

Algorithm 1. The algorithm example 1 

01: example1(noNodes, nodeId, flSrvId) 

02:   // Create PtbFla object 

03:   ptb = PtbFla(noNodes, nodeId, flSrvId) 

04:   // Set localData for FL server/clients as follows 

05:   if nodeId == flSrvId then 

06:     localData = 69.5 // Set the threshold 

07:   else    // Set the client readings 

08:     localData = 68.0 

09:     if nodeId == noNodes – 1 then 

10:       localData = 70.5 

11:   // Call fl_centralized with noIterations = 1 (default) 

12:   ret = ptb.fl_centralized(servercb, clientcb, localData, None) 

13: clientcb(localData, privateData, msg) 

14:   clientReading = localData 

15:   threshold = msg 

16:   tmp = 0.0 

17:   if clientReading > threshold then 

18:     tmp = 1.0 

19:   return tmp 

20: servercb(privateData, msgs) 

21:   listOfIsOverAsFloat = msgs 

22:   return sum(listOfIsOverAsFloat) / len(listOfIsOverAsFloat) 

The main function example1: (i) creates the object ptb as 
an instance of the class PtbFla, (ii) sets the initial local data of 
instance according to its nodeId, and (iii) calls the API 
function fl_centralized on ptb. The initial local data for the 



server is the given threshold (69.5), whereas the initial local 
data for the clients are their sensor readings, which have the 
value 68.0 (below the threshold) for all the clients except the 
last one whose reading is 70.5 (above the threshold). 

The client callback function clientcb: (i) receives the client 
local data (its sensor reading) through the argument localData 
and the server’s local data (the threshold) through the 
argument msg that is the message the client received from the 
server, (ii) sets the variable tmp to 0.0 if the reading is below 
the threshold or to 1.0 otherwise, and (iii) returns tmp to the 
generic function fl_centralized, which in turn forwards the tmp 
to the server. The server in turn collects all the client replies 
into a list and passes this list to the server callback function. 

The server callback function servercb receives this list 
through the argument msgs, and in turn returns the fraction of 
sensor readings that are above the threshold. 

B. Example 2: Centralized Data Averaging 

This example is analogous to the McMahan’s federated 
learning example for averaging the client models, see pp. 19-
27 in [7]. 

Algorithm 2. The algorithm example 2 

01: example2(noNodes, nodeId, flSrvId) 

02:   // Create PtbFla object 

03:   ptb = PtbFla(noNodes, nodeId, flSrvId) 

04:   // Set localData for FL server/clients as follows 

05:   localData = [nodeId+1] 

06:   // Call fl_centralized with noIterations = 10 

07:   ret = ptb.fl_centralized(servercb, clientcb, localData, None, 10) 

08: clientcb(localData, privateData, msg) 

09:   return [(localData[0] + msg[0])/2] 

10: servercb(privateData, msgs) 

11:   tmp = 0.0 

12:   for lst in msgs: 

13:     tmp = tmp + lst[0] 

14:   tmp = tmp / len(msgs) 

15:   return [tmp] 

Like in the previous example, the main function example2 
creates the object ptb, sets the initial local data of an instance, 
and calls the function fl_centralized on ptb. The initial local 
data in this example is a simple model that is encoded as a list 
with a single element that characterizes client behaviour (e.g., 
an average value of some variable). Of course, the model at 
the server is more authoritative than models at the clients.  

The client callback function clientcb averages this client 
local model and the server’s model received through the 
argument msg i.e., it returns the list whose element is the 
average of the elements from this client local list and the list 
in msg. 

The server callback function servercb averages all the 
client models, which it receives through the argument msgs 
i.e., it returns the list whose element is the average of the 
elements of all the lists in msgs. 

As expected, the local data models, i.e., the elements in the 
lists are converging through the iterations to an average value. 
Here we define the point in which the elements converged as 

the iteration in which the difference between an element and 
the average value is less than 0.02, for all elements. 

Fig. 6 shows the convergence of the local data models for 
this example. The point in which the elements converged is 
the iteration 5, and the average value is 1.75. The model in the 
first instance converged in the first iteration, whereas the 
models in the second and third instance asymptotically 
approach the average from below and above, respectively. 

 

Fig. 6. Local data convergence for the centralized FLA in the example 2. 

The average value 1.75 is not the simple average of the 
initial values of instances 1, 2, and 3 (which is 2), but is as 
expected because the model at the first instance (the server) is 
more authoritative than models at the other two (the clients) 
i.e., it has greater influence. Therefore, the average value 1.75 
is somewhat closer to the server’s initial value 1 than the 
simple (unweighted) average value 2. 

C. Example 3: Decentralized Data Averaging 

The pseudo code for this example, see Algorithm 3, is 
practically identical as for the example 2. 

Algorithm 3. The algorithm example 3 

01: example3(noNodes, nodeId) 

02:   // Create PtbFla object 

03:   ptb = PtbFla(noNodes, nodeId) 

04:   // Set localData for FL server/clients as follows 

05:   localData = [nodeId+1] 

06:   // Call fl_decentralized with noIterations = 10 

07:   ret = ptb.fl_decentralized(servercb, clientcb, localData, None, 10) 

08: clientcb(localData, privateData, msg) 

09:   return [(localData[0] + msg[0])/2] 

10: servercb(privateData, msgs) 

11:   tmp = 0.0 

12:   for lst in msgs: 

13:     tmp = tmp + lst[0] 

14:   tmp = tmp / len(msgs) 

15:   return [tmp] 

The main difference in the pseudo code for this example is 
in the line 7, where the function fl_decentralized is called 
instead of the function fl_centralized. The other difference is 
that the variable flSrvId is not used, therefore the lines 1 and 3 
are different. Note that callback functions (lines 8-15) are 
identical, but here they are called from the API function 
fl_decentralized, so the overall behaviour is of course 
different. 



Fig. 7 shows the convergence of the local data models for 
this example. The point in which the elements converged is 
the iteration 3, and the average value is 2.0. The model in the 
second instance converged in the first iteration, whereas the 
models in the first and third instance asymptotically approach 
the average from below and above, respectively. 

 

Fig. 7. Local data convergence for the decentralized FLA in the example 3. 

The average value 2.0 is equal to the simple average of the 
initial values of instances 1, 2, and 3 (which is 2), and this is 
as expected because all models have equal authority i.e., they 
have equal influence. Therefore, the resulting average value 
2.0 is equal to the simple (unweighted) average value 2. 

When comparing the points where the elements 
converged, we see that the decentralized algorithm in the 
example 3 required significantly less iterations to converge 
than the centralized algorithm in the example 2 (we say 
significantly because 3 iterations is almost half of 5 iterations). 

IV. CONCLUSION 

In this paper, we developed the federated learning 
framework targeting smart IoTs in edge systems called Python 
Testbed for Federated Learning Algorithms (PTB-FLA), with 
the primary intention to be used as a framework for 
developing FLAs on a single computer. The solution is written 
in pure Python, and it supports both centralized and 
decentralized algorithms. The PTB-FLA usage is both 
validated and illustrated by three simple algorithm examples. 

The main PTB-FLA advantages are the following: (i) it 
keeps the application footprint small so to fit to smart IoTs and 
(ii) it keeps the installation as simple as possible (with no 
external dependencies). 

The shortcomings of the current PTB-FLA are: (i) the 
maximum number of nodes and edges is limited by the 
available localhost hardware and OS resources, (ii) the 
networking aspect is not supported, and (iii) it’s not validated 
in any way to work on real IoT devices. 

In our future work we plan: (i) to develop some commonly 
used FLAs using PTB-FLA essentially by repacking their 
sequential code into the client and server callback functions, 
and (ii) to extend PTB-FLA to run on a local area network, 
and perhaps even to be used as a runtime in edge systems. 
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