
A Simple Python Testbed for Federated Learning

Algorithms

Miroslav Popovic

University of Novi Sad

Faculty of Technical Sciences

Novi Sad, Serbia

miroslav.popovic@rt-rk.uns.ac.rs

Miodrag Djukic

University of Novi Sad

Faculty of Technical Sciences

Novi Sad, Serbia

miodrag.djukic@rt-rk.uns.ac.rs

Marko Popovic

RT-RK Institute for Computer Based

Systems

Novi Sad, Serbia

marko.popovic@rt-rk.com

Silvia Ghilezan

University of Novi Sad & Mathematical

Institute SASA

Novi Sad, Serbia

gsilvia@uns.ac.rs

Ivan Kastelan

University of Novi Sad

Faculty of Technical Sciences

Novi Sad, Serbia

ivan.kastelan@uns.ac.rs

Abstract—Nowadays many researchers are developing

various distributed and decentralized frameworks for federated

learning algorithms. However, development of such a

framework targeting smart Internet of Things in edge systems

is still an open challenge. In this paper, we present our solution

to that challenge called Python Testbed for Federated Learning

Algorithms. The solution is written in pure Python, and it

supports both centralized and decentralized algorithms. The

usage of the presented solution is both validated and illustrated

by three simple algorithm examples.

Keywords—distributed systems, edge computing, decentralized

intelligence, federated learning, Python

I. INTRODUCTION

Federated learning was introduced by McMahan et al. [1]
as a decentralized approach to model learning that leaves the
training data distributed on the mobile devices and learns a
shared model by aggregating locally computed updates. They
presented FedAvg, a practical method for the federated
learning of deep networks based on iterative model averaging,
see Algorithm 1 FederatedAveraging in [1] on page 5. The
main advantages of federated learning are: (i) it preserves
local data privacy, (ii) it is robust to the unbalanced and non-
independent and identically distributed (non-IID) data
distributions, and (iii) it reduces required communication
rounds by 10–100x as compared to synchronized stochastic
gradient descent (FedSgd).

McMahan’s seminal paper [1] inspired many researchers’
papers and in this limited space we mention just few of them.
Immediately after [1], Bonawitz et al. [2] introduced an
efficient secure aggregation protocol for federated learning,
and Konecny et al. [3] presented algorithms for further
decreasing communication costs. More recent papers are
focused on data privacy [4, 5].

TensorFlow Federated (TFF) [6], [7] is Google’s
framework supporting the approach introduced in [1], which
provides a rich API and many examples that work well in
Colab notebooks. However, TFF is a framework for

applications in the cloud-edge continuum, with a heavyweight
server executing in the cloud, and therefore not deployable to
edge only. Besides, TFF is not supported on OS Windows,
which is used by many researchers, and TFF has numerous
dependencies that make its installation far from trivial.

BlueFog [8], [9] is another framework with the same
limitations as TFF. In their note on page 5 in [9], BlueFog
authors say that they consider deep training within high-
performance data-centre clusters. Recently, Kholod et al. [10]
made a comparative review and analysis of open-source
federated learning frameworks for IoT, including TensorFlow
Federated (TFF) from Google Inc [6], Federated AI
Technology Enabler (FATE) from Webank’s AI department
[11], Paddle Federated Learning (PFL) from Baidu [12],
PySyft from the open community OpenMined [13], and
Federated Learning and Differential Privacy (FL&DP)
framework from Sherpa.AI [14]. Based on the results of their
analysis, they concluded that, currently, the application of
these frameworks in the Internet of Things (IoTs) environment
is almost impossible. In summary, at present, developing a
federated learning framework targeting smart IoTs in edge
systems is still an open challenge.

In this paper, we present our solution to that challenge
called Python Testbed for Federated Learning Algorithms
(PTB-FLA). As the word “testbed” in its title suggests, PTB-
FLA was developed with the primary intention to be used as a
framework for developing federated learning algorithms
(FLAs), or more precisely as a runtime (or execution)
environment for FLAs under development on a single
computer (i.e., localhost). An important direction of our future
work is to extend PTB-FLA to run on a local area network,
and perhaps even to be used as a runtime in edge systems.

PTB-FLA is written in pure Python, which means that it
only depends on the standard Python packages, such as the
package multiprocessing, and it was intentionally written this
way for the following two reasons: (i) to keep the application
footprint small so to fit to IoTs, and (ii) to keep installation as
simple as possible (with no external dependencies).

PTB-FLA enforces two restrictions that must be obeyed
by the algorithm developers. First, a developer writes a single
application program, which is later instantiated and launched
by the PTB-FLA launcher as a set of independent processes
whose behaviour depends on the process id. Second, a
developer only writes callback functions for the client and the

Copyright © 2023 IEEE. This post-print is as accepted at ZINC 2023.

The final paper is published by IEEE Xplore:

https://doi.org/10.1109/ZINC58345.2023.10173859.

 Funded by the European Union (TaRDIS, 101093006). Views

and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European

Union nor the granting authority can be held responsible for them.

https://doi.org/10.1109/ZINC58345.2023.10173859

server roles, which are then called by the generic federated
learning algorithms hidden inside PTB-FLA.

PTB-FLA supports both centralized and decentralized
federated learning algorithms. The former is as defined in [1],
whereas the latter are generalized such that each process (or
node) behaves as both a client and a server or more precisely
it alternatively takes server and client roles from [1].

The rest of the paper is organized as follows. Section I.A
presents related work. Section II presents the PTB-FLA
design, Section III validates and illustrates the PTB-FLA
usage by three simple algorithm examples, and Section IV
concludes the paper.

A. Short Discussion of Closely Related Work

The word “testbed” in the name PTB-FLA may be
misleading, it was selected by ML & AI developers in our
project, because they see PTB-FLA as an “algorithmic”
testbed where they can plugin and test their FLAs. However,
PTB-FLA is a federated learning framework and not a system
testbed, such as the one that was used for testing the system
based on PySyft in [15].

Another important point that needs clarification is that
PTB-FLA is just a FL framework, and it is not a complete
system such as CoLearn [16] and FedIoT [17]. CoLearn is an
FL system based on the open-source Manufacturer Usage
Description (MUD) implementation osMUD and the FL
framework PySyft, whereas FedIoT is a system for realistic
IoT devices (e.g., Raspberry PI) that comprises a specialized
FL framework for IoT cybersecurity named FedDetect.

PTB-FLA is an early work in progress. At this time, it only
executes on a localhost, still we can compare its design
principles with PySyft and FedDetect. PySyft is centralized
whereas PTB-FLA supports both centralized and
decentralized FLAs. FedDetect is both centralized and
specialized whereas PTB-FLA is generic.

We can also compare the target edge systems. Currently,
both CoLearn and FedIoT are edge system comprising
computers and laboratory IoT devices like Raspberry PI,
whereas PTB-FLA on its roadmap also has swarms of just IoT
devices (without computers) that may use MicroPython as an
OS, which is becoming common in embedded systems (see an
interesting toy example in [18]). Perhaps the most challenging
edge system on PTB-FLA roadmap is a swarm of LEO
satellites, which is one of the use cases in TaRDIS project
[19].

In summary, the problem that we are attempting to solve
is how to construct a FL framework that is well-structured,
generic, and based on restricted programming (and therefore
easy to formally verify – this is also one of the stops on the
PTB-FLA roadmap), and we think this is important because it
leads to an exciting roadmap we briefly sketched. PTB-FLA
is just a first step, and we hope it’s in the right direction.

II. PTB-FLA DESIGN

This section presents the PTB-FLA design details. For
brevity, the term system based on PTB-FLA is abbreviated as
the term PTB-FLA system. The next subsections present the
PTB-FLA system architecture (Subsection II.A), the PTB-
FLA API (Subsection II.B), and the PTB-FLA system
operation (Subsection II.C).

A. PTB-FLA System Architecture

The PTB-FLA system architecture, see Fig. 1, consists of
the application launcher process s, the distributed application
A = {a1, a2, …, an}, which is a set of application program
instances ai, and the distributed testbed T = {t1, t2, …, tn},
which is a set of testbed instances ti, where i = 1, 2, …, n, and
n is the number of instances in both A and T.

The system starts as follows. Once the launcher process s
is manually started from the command line interface (CLI), it
instantiates n application program instances ai, i = 1, 2, …, n,
and launches them as n independent processes (in Fig. 1 this
is illustrated as a set of rays radiating from s). Each application
program instance ai in turn creates its testbed instance ti. At
the end, the testbed instances conduct the startup handshake
by exchanging hello messages (details in II.C).

a1 t1

s

. . .

A T

Legend: s – application launcher, A – application, ai –
application program instance, T – testbed, ti – testbed
program instance.

ai ti

. . .

aj tj

. . .

an tn

Fig. 1. Block diagram of the PTB-FLA system architecture.

During normal system operation, the distributed
application A uses the distributed testbed T to execute the
distributed algorithm, which is specified by the callback
functions within the application program (i.e., in the
application Python modules). PTB-FLA supports both
centralized and decentralized federated learning algorithms by
providing the API functions that implement the generic
centralized algorithm and the generic decentralized algorithm,
named fl_centralized and fl_decentralized, respectively.

The distributed federated learning algorithm (either
centralized or decentralized) is executed as follows. Each
instance ai prepares its input data for the generic API function
based on its command line arguments (including its
identification i, the number of instances n, etc.) and then calls
the desired generic API function (either fl_centralized or
fl_decentralized) on its testbed instance ti.

The testbed instance ti in turn plays its role (determined by
its id i) in the generic algorithm by exchanging messages with
other testbed instances and by calling the associated callback
function at the right point of the generic algorithm (details in
II.C). In case of a centralized algorithm, the graph of testbed
instances takes the form of a star, whereas in the case of a
decentralized algorithm it takes the form of clique (or
complete graph). In Fig. 1, on the right side, the solid oval
edges connecting t1 (a server) with other testbed instances
(clients) illustrates the former case, whereas all the branches
(solid and dashed) illustrate the latter case.

Application launch

PtbFla launcher

mpapi

Listener &
Client

Application
layer

PTB-FLA
layer

Python
layer

CLI APIPtbFla API

mpapi API

L&C API

subprocess.
Popen

subprocess
API

Fig. 2. UML class diagram of the PTB-FLA system architecture.

The PTB-FLA system architecture comprises three layers:
the distributed application layer on top (comprising the
application modules and the console script launch), the PTB-
FLA layer (comprising the class PtbFla in the module ptbfla
and the modules mpapi and launcher), and the Python layer
(including classes Process, Queue, and Listener & Client from
the package multiprocessing and Popen from the package
subprocess).

As shown in Fig. 2, the console script launch uses the
module launcher (which in turn uses Popen) to launch the
distributed application comprising n independent processes,
pi, i = 1, 2, …, n, where each pi comprises the corresponding
pair of instances (ai, ti) and executes in a separate terminal
(i.e., window). On the other hand, the application module uses
the PtbFla API (comprising PtbFla functions) to create or
destroy a testbed instance (by calling the constructor or the
destructor) and to conduct its role in the distributed algorithm
execution (by calling the API function fl_centralized or the
API function fl_decentralized).

The API functions fl_centralized and fl_decentralized,
within an instance ti, use the module mpapi (mpapi is the
abbreviation of the term message passing API) to
communicate with other instances. The module mpapi in turn
instantiates the Python multiprocessing classes Listener and
Client to create the mpapi server and the mpapi client, which
are hidden with the module mpapi and should not be confused
with the server and client roles in the federated learning
algorithms.

The mpapi API is strictly an internal API providing
services to PtbFla only, and it should never be used by the
distributed algorithms’ developers, instead they should only
use the PtbFla API in their application program modules.

B. PtbFla API

The PtbFla API comprises the following four functions
(the variable after “/” is the function return value):

1. PtbFla(noNodes, nodeId, flSrvId=0) / None

2. fl_centralized(sfun, cfun, ldata, pdata, noIters=1) / ret

3. fl_decentralized(sfun, cfun, ldata, pdata, noIters=1) / ret

4. PtbFla() / None

The first is the constructor that is called as a global
function and does not have a return value, the second and the
third are member functions that are called on the instance of
PtbFla, and the fourth is the destructor that is called implicitly
by the garbage collector or explicitly when deleting an object.

The arguments are as follows: noNodes is the number of
nodes (or processes), nodeId is the node identification, flSrvId
is the server id (default is 0; this argument is used by the
function fl_centralized), sfun is the server callback function,
cfun is the client callback function, ldata is the initial local
data, pdata is the private data, and noIters is the number of
iterations that is by default equal to 1 (for the so called one-
shot algorithms), i.e., if the calling function does not specify
it, it will be internally set to 1. The return value ret is the node
final local data. Data (ldata and pdata) is application specific.

Typically, local data (ldata) is a machine learning model,
whereas the private data (pdata) is a training data that is used
to train the model. For example, in case of a simple linear
regression i.e., straight-line fit to data, y = ax + b, the machine
learning model is the pair of coefficients (a, b) where a is the
slope and b is the intercept, whereas the training data is the
given array of points i.e., pairs (xi, yi), i = 1, …, n, where n is
the number of points.

Normally, the testbed instances only exchange the local
data (i.e., their local machine learning models) and they never
send out the private data (that is how they guarantee the
training data privacy). The private data is only passed to
callback functions (within the same process instance) to
immediately set them in their working context.

Note that PTB-FLA at this time has a simple startup that
does not separate instances private data, but the startup in the
future distributed PTB-FLA version will do that.

C. PTB-FLA Operation

This subsection provides an overview of the PTB-FLA
operation by presenting the following three most important
scenarios: (i) the system startup handshake, (ii) the generic
centralized one-shot FLA (federated learning algorithm)
execution, and (iii) the generic decentralized one-shot FLA
execution.

The system startup handshake has two phases, see Fig. 3.
In the first phase, the instance a1 is waiting to receive (n – 1)
Hello messages from all other instances ai, i = 2, …, n, and in
the second phase, the instance a1 broadcasts the message Hello
to all other instances (note: conceptually, the index i takes
values from 1 to n, whereas in PTB-FLA Python
implementation it goes from 0 to n - 1).

ana1 ai

Hello

Hello

Hello

.

. . .

Hello

. . .

Fig. 3. The system startup handshake.

The generic centralized one-shot FLA has three phases,
see Fig. 4. Let’s assume that the instance a1 is the server and
the other instances ai, i = 2, …, n, are the clients. In the first
phase, the server broadcasts its local data to the clients, which
in their turn call their callback function to get the update data
and store the update data locally.

In the second phase, the server receives the update data
from all the clients, and in the third phase, the server calls its
callback function to get its update data (e.g., aggregated data)
and stores it locally. Finally, all the instances return their new
local data as their results.

ana1 ai

a1 local data

a1 local data

ai update data

.

. . .

an update data

. . .

Phase 1:
Server broadcasts
its local data

Phase 2:
Server receives
clients updates

Clients call their
callback function

Phase 3:
Server calls its
callback function

Fig. 4. The generic centralized one-shot FLA execution.

Unlike the generic centralized FLA that uses the single
field messages carrying data (local or update), the generic
decentralized FLA, being more complicated, uses the three
field messages carrying: the messages sequence number
(corresponding to the algorithm’s phase number), the message
source address (i.e., the source instance network address), and
the data (local or update).

ana1 ai

[1, 1, local data]

[1, 1, local data]

.

Phase 1:
Initial broadcast
(nodes act as
servers)

Phase 2:
Sending updates
(nodes act as
clients)

Phase 3:
Aggregating
updates (nodes
act as servers)

[2, 1, update]

[2, i, update]

[2, n, update]

Note: the term update in the messages
above means update data

Fig. 5. The generic decentralized one-shot FLA execution.

The generic decentralized one-shot FLA has three phases,
see Fig. 5. In the first phase, see the top of Fig. 5, each instance
acts as a server, and it sends its local data to all its neighbours.
These messages have the sequence number 1, and each
instance sends (n – 1) such messages. Note that each instance
is also the destination for (n – 1) such messages.

In the second phase, see middle of Fig. 5, each instance
acts as a client, and it may receive either a message with the
sequence numbers 1 (sent in the first phase) or 2 (sent during
the second phase). If the instance receives a message from the
second phase, it just stores it in a buffer for later processing,
whereas if the instance receives a message from the first
phase, it calls the client callback function to get the update

data, and then sends the reply to the message source. In the
reply, the instance sets the message fields as follows: the field
sequence number to 2, the field message source address to its
own address, and the field data to update data. Note that during
the second phase, the instance does not update its local data, it
just passes the update data it got form the client callback
function.

Since messages are sent asynchronously, they may be
received in any order. Note that for the simplicity of
presentation, Fig. 5 shows a scenario where all the instances
receive the messages in the phase order. However, if an
instance receives the messages out of the phase order, it uses
the buffer to process them in the phase order.

The second phase is completed after the instance received
and processed all 2(n – 1) messages (from both phases). In the
third phase, each instance again acts as a server, and it calls
the server callback function to get its update data (e.g.,
aggregated data) and stores it locally. Finally, all the instances
return their new local data as their results.

III. PTB-FLA VALIDATION

This section validates and illustrates PTB-FLA usage by
three simple algorithm examples (see III.A, III.B, and III.C).

A. Example 1: Federated Map

This example is analogous to the McMahan’s federated
learning example for averaging the number of sensors
readings above the given threshold, see pp. 50-51 in [7].

Algorithm 1. The algorithm example 1

01: example1(noNodes, nodeId, flSrvId)

02: // Create PtbFla object

03: ptb = PtbFla(noNodes, nodeId, flSrvId)

04: // Set localData for FL server/clients as follows

05: if nodeId == flSrvId then

06: localData = 69.5 // Set the threshold

07: else // Set the client readings

08: localData = 68.0

09: if nodeId == noNodes – 1 then

10: localData = 70.5

11: // Call fl_centralized with noIterations = 1 (default)

12: ret = ptb.fl_centralized(servercb, clientcb, localData, None)

13: clientcb(localData, privateData, msg)

14: clientReading = localData

15: threshold = msg

16: tmp = 0.0

17: if clientReading > threshold then

18: tmp = 1.0

19: return tmp

20: servercb(privateData, msgs)

21: listOfIsOverAsFloat = msgs

22: return sum(listOfIsOverAsFloat) / len(listOfIsOverAsFloat)

The main function example1: (i) creates the object ptb as
an instance of the class PtbFla, (ii) sets the initial local data of
instance according to its nodeId, and (iii) calls the API
function fl_centralized on ptb. The initial local data for the

server is the given threshold (69.5), whereas the initial local
data for the clients are their sensor readings, which have the
value 68.0 (below the threshold) for all the clients except the
last one whose reading is 70.5 (above the threshold).

The client callback function clientcb: (i) receives the client
local data (its sensor reading) through the argument localData
and the server’s local data (the threshold) through the
argument msg that is the message the client received from the
server, (ii) sets the variable tmp to 0.0 if the reading is below
the threshold or to 1.0 otherwise, and (iii) returns tmp to the
generic function fl_centralized, which in turn forwards the tmp
to the server. The server in turn collects all the client replies
into a list and passes this list to the server callback function.

The server callback function servercb receives this list
through the argument msgs, and in turn returns the fraction of
sensor readings that are above the threshold.

B. Example 2: Centralized Data Averaging

This example is analogous to the McMahan’s federated
learning example for averaging the client models, see pp. 19-
27 in [7].

Algorithm 2. The algorithm example 2

01: example2(noNodes, nodeId, flSrvId)

02: // Create PtbFla object

03: ptb = PtbFla(noNodes, nodeId, flSrvId)

04: // Set localData for FL server/clients as follows

05: localData = [nodeId+1]

06: // Call fl_centralized with noIterations = 10

07: ret = ptb.fl_centralized(servercb, clientcb, localData, None, 10)

08: clientcb(localData, privateData, msg)

09: return [(localData[0] + msg[0])/2]

10: servercb(privateData, msgs)

11: tmp = 0.0

12: for lst in msgs:

13: tmp = tmp + lst[0]

14: tmp = tmp / len(msgs)

15: return [tmp]

Like in the previous example, the main function example2
creates the object ptb, sets the initial local data of an instance,
and calls the function fl_centralized on ptb. The initial local
data in this example is a simple model that is encoded as a list
with a single element that characterizes client behaviour (e.g.,
an average value of some variable). Of course, the model at
the server is more authoritative than models at the clients.

The client callback function clientcb averages this client
local model and the server’s model received through the
argument msg i.e., it returns the list whose element is the
average of the elements from this client local list and the list
in msg.

The server callback function servercb averages all the
client models, which it receives through the argument msgs
i.e., it returns the list whose element is the average of the
elements of all the lists in msgs.

As expected, the local data models, i.e., the elements in the
lists are converging through the iterations to an average value.
Here we define the point in which the elements converged as

the iteration in which the difference between an element and
the average value is less than 0.02, for all elements.

Fig. 6 shows the convergence of the local data models for
this example. The point in which the elements converged is
the iteration 5, and the average value is 1.75. The model in the
first instance converged in the first iteration, whereas the
models in the second and third instance asymptotically
approach the average from below and above, respectively.

Fig. 6. Local data convergence for the centralized FLA in the example 2.

The average value 1.75 is not the simple average of the
initial values of instances 1, 2, and 3 (which is 2), but is as
expected because the model at the first instance (the server) is
more authoritative than models at the other two (the clients)
i.e., it has greater influence. Therefore, the average value 1.75
is somewhat closer to the server’s initial value 1 than the
simple (unweighted) average value 2.

C. Example 3: Decentralized Data Averaging

The pseudo code for this example, see Algorithm 3, is
practically identical as for the example 2.

Algorithm 3. The algorithm example 3

01: example3(noNodes, nodeId)

02: // Create PtbFla object

03: ptb = PtbFla(noNodes, nodeId)

04: // Set localData for FL server/clients as follows

05: localData = [nodeId+1]

06: // Call fl_decentralized with noIterations = 10

07: ret = ptb.fl_decentralized(servercb, clientcb, localData, None, 10)

08: clientcb(localData, privateData, msg)

09: return [(localData[0] + msg[0])/2]

10: servercb(privateData, msgs)

11: tmp = 0.0

12: for lst in msgs:

13: tmp = tmp + lst[0]

14: tmp = tmp / len(msgs)

15: return [tmp]

The main difference in the pseudo code for this example is
in the line 7, where the function fl_decentralized is called
instead of the function fl_centralized. The other difference is
that the variable flSrvId is not used, therefore the lines 1 and 3
are different. Note that callback functions (lines 8-15) are
identical, but here they are called from the API function
fl_decentralized, so the overall behaviour is of course
different.

Fig. 7 shows the convergence of the local data models for
this example. The point in which the elements converged is
the iteration 3, and the average value is 2.0. The model in the
second instance converged in the first iteration, whereas the
models in the first and third instance asymptotically approach
the average from below and above, respectively.

Fig. 7. Local data convergence for the decentralized FLA in the example 3.

The average value 2.0 is equal to the simple average of the
initial values of instances 1, 2, and 3 (which is 2), and this is
as expected because all models have equal authority i.e., they
have equal influence. Therefore, the resulting average value
2.0 is equal to the simple (unweighted) average value 2.

When comparing the points where the elements
converged, we see that the decentralized algorithm in the
example 3 required significantly less iterations to converge
than the centralized algorithm in the example 2 (we say
significantly because 3 iterations is almost half of 5 iterations).

IV. CONCLUSION

In this paper, we developed the federated learning
framework targeting smart IoTs in edge systems called Python
Testbed for Federated Learning Algorithms (PTB-FLA), with
the primary intention to be used as a framework for
developing FLAs on a single computer. The solution is written
in pure Python, and it supports both centralized and
decentralized algorithms. The PTB-FLA usage is both
validated and illustrated by three simple algorithm examples.

The main PTB-FLA advantages are the following: (i) it
keeps the application footprint small so to fit to smart IoTs and
(ii) it keeps the installation as simple as possible (with no
external dependencies).

The shortcomings of the current PTB-FLA are: (i) the
maximum number of nodes and edges is limited by the
available localhost hardware and OS resources, (ii) the
networking aspect is not supported, and (iii) it’s not validated
in any way to work on real IoT devices.

In our future work we plan: (i) to develop some commonly
used FLAs using PTB-FLA essentially by repacking their
sequential code into the client and server callback functions,
and (ii) to extend PTB-FLA to run on a local area network,
and perhaps even to be used as a runtime in edge systems.

ACKNOWLEDGMENT

We are grateful to Dragana Bajovic, Claudia Soares, and
Panagiotis Trakadas for their valuable presentations and
discussions on federated learning algorithms, as well as to all

the colleagues in TaRDIS project for the friendly atmosphere
and great collaboration.

REFERENCES

[1] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proc. of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), JMLR: W&CP
volume 54, pp. 1-10, 2017.

[2] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan,
S. Patel, D. Ramage, A. Segal, K. Seth, “Practical secure aggregation
for federated learning on user-held data,” in Proc. of the 2017 ACM
SIGSAC Conference on Computer and Communications Security
(CCS '17), pp. 1175–1191, 2017. DOI:10.1145/3133956.3133982

[3] J. Konecny, H.B. McMahan, F.X. Yu, A. T. Suresh, D. Bacon, P.
Richtarik, “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv:1610.05492v2, 2017.

[4] K. Bonawitz, P. Kairouz, B. McMahan, D. Ramage, “Federated
learning and privacy,” Communications of the ACM, vol. 65, no. 4, pp.
90–97, 2022. DOI: 10.1145/3500240.

[5] D. Perino, K. Katevas, A. Lutu, E. Marin, N. Kourtellis, “Privacy-
preserving AI for future networks,” Communications of the ACM, vol.
65, no. 4, pp. 52–53, 2022. DOI: 10.1145/3512343.

[6] TensorFlow Federated: Machine Learning on Decentralized Data
[Online]. Available: https://www.tensorflow.org/federated (accessed
on 15 March 2023)

[7] B. McMahan, “Federated Learning from Research to Practice,” a
presentation hosted by Carnegie Mellon University seminar series
[Online]. Available: https://www.pdl.cmu.edu/SDI/2019/slides/2019-
09-05Federated%20Learning.pdf (accessed on 15 March 2023).

[8] B. Ying, K. Yuan, H. Hu, Y. Chen, W. Yin, “BlueFog: Make
Decentralized Algorithms Practical for Optimization and Deep
Learning,” arXiv:2111.04287v1, 2021.

[9] B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, W. Yin, “Exponential Graph
is Provably Efficient for Decentralized Deep Training,”
arXiv:2110.13363v1, 2021.

[10] I. Kholod, E. Yanaki, D. Fomichev, E. Shalugin, E. Novikova, E.
Filippov, M. Nordlund, Open-Source Federated Learning Frameworks
for IoT: A Comparative Review and Analysis, Sensors, vol. 21, no.
167, pp. 1-22, 2021. DOI: 10.3390/s21010167.

[11] An Industrial Grade Federated Learning Framework [Online].
Available: https://fate.fedai.org/ (accessed on 15 March 2023).

[12] An Open-Source Deep Learning Platform Originated from Industrial
Practice [Online]. Available: https://www.paddlepaddle.org.cn/en
(accessed on 15 March 2023)

[13] A world where every good question is answered [Online]. Available:
https://www.openmined.org (accessed on 15 March 2023)

[14] Privacy-Preserving Artificial Intelligence to advance humanity
[Online]. Available: https://sherpa.ai (accessed on 15 March 2023).

[15] C. Shen, W. Xue, “An Experiment Study on Federated Learning
Testbed,” in: YD. Zhang, T. Senjyu, C. So-In, A. Joshi (eds) Smart
Trends in Computing and Communications, Lecture Notes in Networks
and Systems, Springer, Singapore, vol 286, pp. 209–217, 2021. DOI:
10.1007/978-981-16-4016-2_20.

[16] A. Feraudo, P. Yadav, V. Safronov, D.A. Popescu, R. Mortier, S.
Wang, P. Bellavista, J. Crowcroft, “CoLearn: Enabling Federated
Learning in MUD-compliant IoT Edge Networks,” in Proc. of the 3rd
International Workshop on Edge Systems, Analytics and Networking
(EdgeSys ’20), pp. 25–30, 2020. DOI: 10.1145/3378679.3394528.

[17] T. Zhang, C. He, T. Ma, L. Gao, M. Ma, S. Avestimehr, Federated
Learning for Internet of Things, In The 3rd InternationalWorkshop on
Challenges in Artificial Intelligence and Machine Learning for Internet
of Things (AIChallengeIoT 21), pp. 413–419, 2021. DOI:
10.1145/3485730.3493444.

[18] J.A.G. Peiro, “An Infinity of Pong - A Raspberry Pi Pico W handheld
writes its own games,” Spectrum, Feb. 2023, pp. 16-17 and 47, 2023.

[19] TaRDIS: Trustworthy And Resilient Decentralised Intelligence For
Edge Systems [Online]. Available: https://www.project-tardis.eu/
(accessed on 11 May 2023)

