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Reproducibility Summary

Scope of Reproducibility — In this work, we analyze the reproducibility of “Behavior Trans‐
formers: Cloning k modes with one stone” [1]. In assessing the Behavior Transformer
(BeT) model, we analyze its ability to generate performant and diverse rollouts when
trained on data containing multi‐modal behaviors, the relevance of each of its compo‐
nents, and its sensitivity to critical hyperparameters.

Methodology —We use the open‐source PyTorch [2] implementation released by the au‐
thors to train and sample rollouts for BeT. However, the implementation does not in‐
clude all the environments, evaluation metrics, or ablations studied in the paper. Con‐
sequently, we extend it by following the details in the paper and filling in the missing
parts to have a complete pipeline and support all the experiments performed in this re‐
port. We conducted our experiments on an NVIDIA GeForce GTX 780 GPU, requiring
276 GPU hours to train our models.

Results — Running the code released by the authors does not produce an evaluation of
BeT according to themetrics reported in the paper. After extending the implementation
with the proper evaluation metrics, we obtain results that support the main claims of
the paper in a significant subset of the experiments but that also diverge in many of the
actual values obtained. Therefore, we conclude that the paper is largely replicable but
not readily reproducible.

What was easy — It was easy to identify the main claims of the paper and the experiments
supporting them. Moreover, thanks to the open‐source implementation released by the
authors, training the model and sampling rollouts were straightforward tasks.

What was difficult — Setting up the development environment was hard due to dependen‐
cies not being pinned. Not having the code for evaluation metrics available hindered
our efforts to achieve similar numbers. Assessing the sources of discrepancies in our
numbers was also difficult, as training curves and model weights were not accessible.

Communicationwith original authors —Wecommunicated via emailwith the authors through‐
out the project. They provided clarifications and resources that helped uswith our study.
However, the communication was insufficient to reach a complete reproduction.

Copyright © 2023 S. Moalla et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Skander Moalla (skander.moalla@epfl.ch)
The authors have declared that no competing interests exist.
Code is available at https://github.com/skandermoalla/bet-reproduction – DOI 10.5281/zenodo.7937169. – SWH
swh:1:dir:4a562f75c0fd44672b806498e18b67690a5baabd.
Data is available at https://github.com/skandermoalla/bet-reproduction – DOI 10.5281/zenodo.7937169.
Open peer review is available at https://openreview.net/forum?id=E0qO5dI5aEn.
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[Re] Reproducibility Study of Behavior Transformers

1 Introduction

Reinforcement Learning (RL) [3] has been a successful method for training agents in
sequential decision‐making tasks [4]. When a reward signal is available to judge the
actions performed by the learning agent in the environment, RL can be used to optimize
the total rewards obtained by the agent throughout its experience. However, such a
reward signal is often hard to design in real‐world environments such as autonomous
driving or robotic manipulation, where it could be subjective or hard to attribute to
individual actions [5]. Behavior Cloning (BC) [6] can be used in cases where a dataset of
expert demonstrations is available instead of the reward function. BC trains the agent to
mimic the actions performed in the expert demonstrations at every state in a supervised
learning fashion. More precisely, given a dataset of observation and expert action pairs
D ≡ {(ot, at)} ⊂ O × A, the aim is to learn a policy π : O → ∆(A) that specifies a
distribution over the actions to be performed by the agent for a given observation. A
typical approach is to model the policy by choosing a hypothesis class parameterized by
some θ ⊂ Θ and optimize the likelihood of observed expert actions:

θ∗ = argmax
θ⊂Θ

∏
t

π(at|ot; θ) (1)

Still, this formulation assumes that the demonstrations come from a single Markovian
expert demonstrator, a strong assumption that may not hold in large real‐world settings
or which may restrict the amount of data available to the learner.

Shafiullah et al.[1] propose the Behavior Transformer (BeT) to overcome two key assump‐
tions in the above BC formulation. First, instead of assuming a Markovian policy, they
model π(at|ot, ot−1, . . . , ot−h+1; θ) for window size h to learn a policy that conditions on
a history of size h. Second, instead of assuming a unimodal action distribution, they
learn a mixture of k Gaussians. They leverage the Transformer [7] architecture for this
context‐based multi‐modal prediction task, adapting the discrete classes predicted by
transformers to continuous actions. With this architecture, the authors claim that:

1. BeT generates rollouts with higher performance than other BC baselines when
trained on multi‐modal datasets.

2. BeT captures themulti‐modality of these datasets instead of collapsing onto single
modes.

2 Scope of reproducibility

Shafiullah et al.[1] train BeT on expert trajectories exhibiting multiple modes in four
different environments of varying complexity. For each environment, they compute
two types of metrics on the rollouts generated by BeT:

1. Performancemetrics to measure the performance of the model during the rollouts,
e.g., the number of completed tasks. This directly supports their first claim (1).

2. Diversity metrics to measure the diversity of the rollouts, e.g., the entropy of the
completed tasks. This directly supports their second claim (2).

To assess the claims above, we reproduce the experiments performed in three of the four
environments using BeT with hyperparameters specified by the authors. We find that,
although we cannot produce the authors’ results for all experiments, BeT is a generally
robust method that achieves the stated goals of the paper.
In addition to reproducing the previous work, we also assess critical design choices and
claims, addressing the following questions:
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3. Are all proposed components of the BeT architecture relevant to both the perfor‐
mance and the diversity of its rollouts?

4. How sensitive is BeT to critical hyperparameters such as k and h?

5. Are the design choices made in the evaluation metrics empirically justified?

3 Methodology

3.1 Datasets

Shafiullah et al.[1] run experiments in four environments of varying complexity. For
each environment, they use a dataset of trajectories with different modes and a gym [8]
environment to deploy trained models and generate rollouts. We briefly summarize the
datasets below and refer the reader to appendix B for more details.
Point mass is a toy dataset to showcase the limitations of different baselines and the
representational power of BeT in faithfully capturing the different modes.
CARLA [9] has similar multi‐modality complexity to Point mass but features higher‐
dimensional observations. We do not use the CARLA self‐driving environment [9] due
to limitations in computational resources and explain our choice in appendix B.
Blockpush [10] is a multi‐modal dataset whose stochasticity adds extra complexity.
Kitchen [11] is the most complex environment due to its large action space and longer
trajectories coming from real human demonstrations.
The authors provide all the datasets and the implementations of their environments,
except for the Point mass dataset and environment. In all experiments, we follow the
original paper in using 95% of the dataset for training and the remaining 5% for testing.

3.2 Model description

Behavior Transformer — To model a context‐based policy that outputs multi‐modal contin‐
uous actions with a transformer architecture, Shafiullah et al.[1] proceed by first decom‐
posing an action, a, into two components: a center, A⌊a⌋, and an offset, ⟨a⟩, such that
a := A⌊a⌋ + ⟨a⟩. The action centers are found by running a k‐means clustering algo‐
rithm on all the actions in the dataset, with k defined a priori, giving a set of k action
centers {A1, A2, . . . , Ak} ⊂ A fixed for the rest of the process. The offsets are uniquely
defined by assigning the center of a to the closest action center ⌊a⌋ := argmini∥a−Ai∥2.
We use the term “encode” to mean the decomposition of an action into its center and
offset and “decode” to its reconstruction (sum) from its components (see Figure 1 (A)).
In this setup, the Transformer takes as input a sequence of continuous observations
(oi, oi+1, . . . , oi+h−1) and learns a sequence‐to‐sequencemapping of each observation to
a categorical distribution over the k action centers (i.e., a 1 × k probability vector) and
k proposed action offsets, one for each action center (shape: k × dim(A)). The action
center probability distribution head is trained to the ground truth action centers with
the focal loss [12], a simple modification to the standard cross entropy loss that helps
model low‐probability classes in imbalanced datasets. The offset head loss consists of
the squared error to the ground truth offset, but only for the one corresponding to the
true action center. These two losses are then summed, with the offset rescaled to make
both terms similar in magnitude at initialization (see Figure 1).
After training, BeT interacts with the environment by first sampling an action center
given its observation history so far, where the probability of picking each action center
is given by the action center head output. Then, by adding the sampled action center
with the corresponding offset in the offset head, it recovers (decodes) the action to be
performed (see Figure 1 (C)).
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3.3 Experimental setup and code

Code — The authors provide a codebase [1] for training and generating rollouts for BeT.
However, neither the scripts required to run the experiments presented in the paper
nor those to compute and report the evaluation metrics and run the ablations are avail‐
able. Moreover, the development environment (a conda environment) released by the
authors was platform‐specific and could not be reproduced due to unpinned dependen‐
cies, making it difficult to get started with the reproducibility task and obtain the rele‐
vant metrics to verify the paper’s numbers and assess its contribution. In what follows,
we detail our efforts in extending the implementation provided by the authors to pro‐
vide a complete pipeline supporting all the experiments performed in this report, from
a reproducible development environment to reproducible reporting of evaluation met‐
rics.
First, we address the development environment setup. We use Cresset [13], a simple
MLOps template designed for research purposes. It supplies a flexible and reproducible
development environment that can be used in heterogeneous computing environments.
It provides configurable options for the OS, CUDA, and PyTorch versions, which are
necessary as different computing environments and hardware require different combi‐
nations of libraries. It also includes various options, such as providing an easy way to
compile PyTorch from source. This feature is necessary on GPUs that available PyTorch
binaries were not compiled for, such as the GPU we use for this reproduction. We adapt
Cresset for our use case, pin all versions of our direct and indirect dependencies, and
make the generated Docker image publicly available for others to reproduce our work.
Second, we aggregate the code in the authors’ repository to include the evaluation met‐
rics for every experimental environment in the reproducibility pipeline. We investi‐
gated critical design choices made in the evaluation metrics and noticed discrepancies
between the metrics reported in the paper and how they were computed in the code.
Both of these findings are described in appendix C, addressing point 5 of our repro‐
ducibility scope.
Finally, the numbers reported in the paper are all measured for single runs, which could
be subject to cherry‐picking and high variance. To have a more informed evaluation of
BeT, we include cross‐validation runs in our pipeline. For each cross‐validation run, we
train for the number of epochs specified by the authors and evaluate themodel which at‐
tained the lowest test loss, computed at the end of every epoch. The authorsmention us‐
ing early stopping for some baselines but do notmentionwhether they perform such val‐
idation for BeT. In addition, we perform a hyperparameter search in the pipeline, which
involved either a grid search/sweep or using theOptuna [14] library. These changes were
supported by refactoring the design of the Hydra [15] configurations.
A notable contribution we make is to vectorize the rollout generation code to have sev‐
eral copies of the environment running asynchronously in parallel, all consulting the
same model to leverage batching. With this, we achieve a speedup of Nx (20x in our
case) by running N environments in parallel.

Experiments —We perform all the experiments done with the BeT model in the original
paper on the subset of datasets described in section 3.1. These correspond to tables 1 and
2 in the original BeT paper and directly assess the two main claims of the paper (claims
1 and 2 in our reproducibility scope). They include training BeT on all the datasets,
rolling out the policies on their respective environments, and computing the relevant
metrics. Each environment features a set of performance metrics and diversity metrics.
We describe the metrics in detail in appendix C and describe the results in section 4.
Although the authors only reported the relative performance (in terms of reward) of the
BeT ablations they considered, we go beyond by carrying out a more granular analysis.
We report the full set of performance and diversitymetrics of each environment for all the
ablations addressing point 3 in our reproducibility scope. This is straightforward with
the pipeline we built. The relevant results are reported in section 4.
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Finally, we experiment with BeT with an LSTM trunk. Whereas Shafiullah et al.[1] re‐
ported it having a very low performance, we believe it to be a strong candidate for this
context‐basedmulti‐modal prediction task, as it has a similar representational power to
a Transformer trunk and test it on the Point mass environment.
Unlike the single‐run numbers reported by the authors, we report averages (with stan‐
dard deviation) across cross‐validation runs. Every command needed to run any of the
experiments is readily available as a shell script in our GitHub repository. They are
listed in the reproducibility_scripts directory and described in the readme. In addition,
we share a link in our readme to download the model weights, rollouts, and logs of all
runs we performed. These are also tracked on Weights & Biases1[16]. This allows the
inspection and reproduction of every single result in this report.

3.4 Ablations
In addressing point 3 of our reproducibility scope, we focused on testing BeT’s architec‐
tural design choices (binning, offsets, history, and focal loss) and representational power
(replacing its Transformer trunk with an MLP). These ablations are detailed below2.
No offsets. The model only predicts action centers and uses them without offset correc‐
tion at rollout time. This ablation tests the need for learning an offset correction.
No binning. The model has a single action center (k = 1). With this, all the predictive
power of BeT is then put in the offset head. This ablation tests the fact that the discrete
action centers are responsible for the multi‐modal modeling capability of BeT.
Nohistory. Themodel has awindow size h = 1. It tests how the lack of historical context
harms BeT’s performance, recovering the standard Markovian model in BC.
[new] No focal loss. In the original paper, the focal loss is presented as a relevant com‐
ponent for appropriate learning of the action center Transformer head. However, no
ablations were conducted in the original work to confirm this. We test this claim by
setting the focal loss parameter γ to zero, recovering the standard binary cross entropy
loss. This addresses point 3 in our reproducibility scope.
Trunk MLP. The model has an MLP trunk instead of a Transformer. This tests the rele‐
vance of the Transformer architecture in the final performance. We follow the original
paper in setting the MLP with the same number of hidden layers and layer width as the
corresponding MinGPT.
[new] Trunk MLP (Opt). We noticed that the proposed MLP trunk ablation is under‐
parameterized when compared to the corresponding MinGPT. In particular, MinGPT
had ≈ 2.6e5 and ≈ 1.1e6 parameters for Blockpush and Kitchen, respectively. The cor‐
responding values for MLP were≈ 4.8e4 and≈ 9.2e5. Therefore, we performed a hyper‐
parameter search using the Optuna [14] framework in a domain where the largest pos‐
sible model has a similar number of parameters to those of MinGPT. The total number
of configurations tried by Optuna was 25 for both environments. The domain explored
is shown in Table 7. From that exploration, we pick the best‐performingmodel with the
smallest total loss in the validation set.

3.5 Hyperparameters
We adopt the hyperparameters proposed in the original paper in all the experiments.
This includes BeT and its ablations, except for theMLPablation, forwhichweperformed
a hyperparameter search described in the ablation study. In addition, we performed two
independent linear searches on two critical hyperparameters of the proposed approach:
the number of action centers, k, and the window size, h. These experiments tested the
sensitivity of the BeT architecture to those hyperparameters, assessing point 4 in our
reproducibility scope, and are described in detail in section 4.

1We provide a link to a W&B project in the readme of our GitHub repository.
2Novel ablations not considered by the authors are prefixed [new].
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3.6 Computational requirements
In this work, we used a singleNVIDIAGeForce GTX 780GPU for all the experiments. The
runtime required to obtain a trained model in different environments is 1 minute for
Point mass, 1 hour for Blockpush, and 1 hour for Kitchen. Considering all experiments,
this takes 276 GPU hours. We performed the training runs for Blockpush and Kitchen
in parallel on the same GPU, amounting to 128h in wall‐clock time.
We performed the online rollouts on 2 Intel Xeon E5‐2680 v3. A full online rollout takes
5 seconds for Point mass, 10 minutes for Blockpush (speedup: 20x), and 10 minutes for
Kitchen (speedup: 20x). Hence, it takes 55 CPU hours in total. Again, we divided the
work into 2 groups of 20 threads, yielding a total of 27.5h of actual run time.

4 Results

4.1 Results reproducing original paper
We report the results of our runs with BeT and its ablations, using the same table format
as Shafiullah et al.[1] and show BeT and its ablations in the same table for each experi‐
ment. We highlight the differences between our results and the authors’ and how they
relate to their claims. Discussions of the overall interpretation of the results, the sources
of discrepancies, and the global success of the reproduction are deferred to section 5.

Performance — Assessing the authors’ first claim (1).

Table 1. Performance of BeT and its ablations on the Blockpush environment. Performance is
measured by computing the probabilities of reaching one (R1) and two blocks (R2) and pushing
one (P1) and two blocks (P2) to the respective target squares. Best in bold.

Models #Runs R1 R2 P1 P2

BeT 5 1.00± 0.00 0.98 ± 0.01 0.94 ± 0.02 0.18 ± 0.01
No offsets 3 1.00± 0.00 0.96 ± 0.02 0.89 ± 0.09 0.11 ± 0.05
No binning 3 0.99 ± 0.01 0.68 ± 0.07 0.52 ± 0.11 0.04 ± 0.01
No history 3 1.00± 0.00 0.98 ± 0.01 0.94 ± 0.02 0.17 ± 0.04
Trunk MLP 3 0.93 ± 0.05 0.49 ± 0.06 0.01 ± 0.00 0.00 ± 0.00
[new] Trunk MLP (Opt) 3 0.95 ± 0.04 0.41 ± 0.15 0.03 ± 0.01 0.00 ± 0.00
[new] No focal loss 3 1.00± 0.00 0.96 ± 0.00 0.91 ± 0.05 0.20± 0.07
BeT (paper) 1 1.00 0.99 0.96 0.71
Demonstration 1.00 1.00 1.00 1.00

Blockpush (table 1) Regarding BeT, we recover the same R1, R2, and P1 numbers. How‐
ever, our P2 results diverge from those of the paper. Yet, those numbers still beat the
baselines reported by the authors, supporting their first (1) claim. Moreover, we show
that the variance across different training folds is low. Regarding the ablations, for the
no‐offsets, no‐binning, and no‐history ablations, we recover numbers coherent with
what the authors report in terms of relative cumulative reward. For the MLP ablation,
the authors report training collapse for P1 and P2, where performance is computed from
the reward. With our detailed reporting of the metrics, we can see that this ablated
model, nonetheless, reaches the blocks and pushes one block to a target in a few roll‐
outs. Finally, the focal loss ablation performs on par with BeT but with much higher
variance. This is consistent with its desired effects, and addresses point 3 in our repro‐
ducibility scope.
Kitchen (table 2) Our results diverge from the authors’ when BeT is evaluated on achiev‐
ing more than one task. Although the performance is still good, they make some base‐
lines reported by the authors stronger than BeT, thus refuting their first (1) claim. Our
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Table 2. Performance of BeT and its ablations on the Kitchen environment. Performance is mea‐
sured by computing the probabilities of n tasks being completed during an episode.

Models # Runs 1 task 2 tasks 3 tasks 4 tasks 5 tasks

BeT 5 0.92 ± 0.06 0.69 ± 0.18 0.47 ± 0.19 0.20 ± 0.01 0.02 ± 0.01
No offsets 3 0.18 ± 0.04 0.03 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
No binning 3 0.99± 0.01 0.90 ± 0.12 0.74 ± 0.19 0.40 ± 0.16 0.06 ± 0.03
No history 3 0.87 ± 0.02 0.53 ± 0.14 0.32 ± 0.09 0.07 ± 0.02 0.00 ± 0.00
Trunk MLP 3 0.20 ± 0.17 0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
[new] Trunk MLP (Opt) 3 0.19 ± 0.07 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
[new] No focal loss 3 0.96 ± 0.02 0.77 ± 0.12 0.52 ± 0.14 0.25 ± 0.09 0.02 ± 0.01
BeT (paper) 1 0.99 0.93 0.71 0.44 0.02
Demonstration 1.00 1.00 1.00 0.98 0.00

no‐history andMLP trunk ablations results match the relative performance reported by
the authors. However, the numbers for the no‐offset and no‐binning ablations do not
match, with the no‐binning ablation outperforming BeT. Moreover, we can observe that
the focal loss performs on par with BeT and even outperforms it on its best random seed.
PointmassWeshowqualitatively in figure 5 that BeT produces trajectorieswith different
modes without collapsing, supporting the authors’ first (1) claim.

Diversity — Assessing the authors’ second (2) claim. When the performance results di‐
verge, so will the diversity results. However, we can still compare those numbers rela‐
tive to the performance obtained and thus assess claim 2 independently of claim 1.
Blockpush (table 3) In our experiments for BeT, we obtain results consistent with the au‐
thors’. BeT has equal probabilities of reaching and pushing blocks with different colors.
This result supports the authors’ second (2) claim. The authors did not provide diversity
metrics for the ablations, but we can see from our numbers that the no‐binning and
MLP ablations do not generate balanced rollouts, supporting the architectural choices
of BeT and addressing point 3 of our reproducibility scope.
Kitchen (table 4) In appendix C, we describe sources of divergence between our met‐
rics and the authors’. Our results support the authors’ claim 2 that BeT captures multi‐
modality. The relative entropy between BeT and the demonstrations is high and compa‐
rable to the authors’ for the task entropies, as are the sequence entropies, a new metric
thatwe compute. We also observe that ablationswith lowperformancehave low entropy
as they achieve fewer tasks. The no‐history ablation exhibits a significant decrease in
the diversity of its rollouts, supporting the authors’ architectural choices and address‐
ing claim 3 of our reproducibility scope. The no‐binning and no‐focal loss ablations,
however, achieve a higher entropy than BeT, but this cannot be disentangled from the
fact that they also perform better than BeT. We can only say that these ablations are not
detrimental to BeT’s ability to capture multi‐modality on the Kitchen dataset.
Point mass We show qualitative rollout plots in figure 5, showing that BeT exhibits dif‐
ferent modes, though not exactly as reported by the authors.

Sensitivity to critical hyperparameters — In Figure 6 of Shafiullah et al.[1], the authors show
a sweep over the number of action centers and claim that the range for near‐optimum
performance is quite wide. However, the figure does not fully support this claim as they
use a logarithmic scale over k. We performamore granular sweep over both the number
of bins k and the window size h independently to first reproduce their sweep results
over cross‐validation runs and, more importantly, better assess the claims concerning
the sensitivity of BeT near high‐performing hyperparameters. Results are in figure 4.
The results do not match the numbers obtained by the Shafiullah et al.[1]. However,
we can see that there is indeed a sweet spot around high‐performing hyperparameters,
supporting the authors’ claims.
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Table 3. Metrics to measure the ability of the models to capture the different modes in the datasets.
For Blockpush, we measure the relative frequencies of the first block to be reached, those of the
different targets to where the red block is pushed, and the different targets to where the green
block is pushed. These metrics are described in further detail in appendix C.

1st Block
Reached

Push: Red
Block Target

Push: Green
Block Target

Models #
Runs Red Green Red Green Red Green

BeT 5 0.51 ± 0.02 0.49 ± 0.02 0.29 ± 0.02 0.28 ± 0.01 0.28 ± 0.02 0.28 ± 0.01
No offsets 3 0.50 ± 0.01 0.50 ± 0.01 0.26 ± 0.04 0.24 ± 0.04 0.26 ± 0.03 0.25 ± 0.03
No binning 3 0.54 ± 0.03 0.45 ± 0.04 0.15 ± 0.03 0.13 ± 0.03 0.14 ± 0.02 0.14 ± 0.04
No history 3 0.50 ± 0.02 0.50 ± 0.02 0.29 ± 0.03 0.29 ± 0.02 0.27 ± 0.04 0.27 ± 0.06
Trunk MLP 3 0.51 ± 0.06 0.42 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Trunk MLP (Opt) 3 0.50 ± 0.03 0.45 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
No focal loss 3 0.50 ± 0.02 0.50 ± 0.02 0.27 ± 0.02 0.29 ± 0.02 0.27 ± 0.04 0.28 ± 0.06
BeT (paper) 1 0.54 0.46 0.43 0.44 0.41 0.40
Demonstrations 0.50 0.50 0.50 0.50 0.50 0.50

Table 4. Metrics to measure the ability of the models to capture the different modes in the datasets.
For Kitchen, we measure the task and sequence entropies of the distribution of tasks performed
during an episode. These metrics are also described in further detail in appendix C.

Sequence
Entropy

Task
Entropy

Models
BeT 3.98 ± 0.65 2.63 ± 0.07
No offsets 1.16 ± 0.23 1.79 ± 0.10
No binning 4.26 ± 0.61 2.71 ± 0.04
No history 3.51 ± 0.43 2.39 ± 0.06
Trunk MLP 1.00 ± 0.85 1.59 ± 0.37
Trunk MLP (Opt) 0.98 ± 0.27 1.66 ± 0.09
No focal loss 4.16 ± 0.66 2.67 ± 0.05
BeT (paper) / 2.47*
Demonstrations 4.69 2.88

4.2 Results beyond the original paper

A limitation in BeT’s representation power — A major design choice in the action binning of
BeT is that action bins are determined from clusters computed on all the actions in the
dataset. In particular, this means that all actions at all timesteps “compete” to give the
bin centers. However, a model only needs to distinguish between the different modes
at the specific state it is considering, so there are actually fewer actions “competing” for
action centers at a given output step. As the idea is to capture the different modes with
these centers, BeT assumes that to clone k different modes, one can use k action bins,
but thismay be insufficient. For example, in Pointmass 1, we deem that k = 2 is enough
to clone the twomodes “up” and “down”, appearing at the early timestepwhen the agents
diverge in the up and down directions. When aggregating these up & down actions with
the third action going forward to obtain the bin centers, those 3 actionsmust be captured
with only 2 centers. In this case, it is possible that the k‐means clustering converges to
the centers [0, 0] and [1, 0], collapsing the up & down actions to a single bin and hence
collapsing the performance of BeT in the environment. We empirically show this failure
case in figure 6. We believe that considering a state‐dependent, or perhaps timestep‐
dependent, binning can be a valid solution to overcome this problem.

An LSTM trunk — Shafiullah et al.[1] report a surprisingly poor performance with an LSTM
trunk on the Blockpush and Kitchen environments. Although such recurrent neural net‐
work architectures are known to be slower and harder to train than a Transformer, we
are interested in showing that an LSTM can be a strong candidate for the context‐based
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multi‐modal prediction task BeT is addressing, as both models have similar representa‐
tional power. We run BeT with an LSTM trunk on the simple Point mass 2 environment
to avoid issues related to training and show in figure 5 that it provides performant roll‐
outs capturing the multi‐modality of the dataset. The hyperparameters of the model
were manually tuned and are listed in Table 8. The performance of the LSTM is ac‐
tually better than that of the Transformer using the hyperparameters provided by the
authors in that environment, which suggests that practitioners with relatively easy en‐
vironments may also consider using an LSTM trunk.

5 Discussion

In the following section, we use the terms reproduction and replication as defined in Re‐
Science C to evaluate the reproducibility of the BeT paper. In short, we use

• reproduction to mean “running the same computation on the same input data, and
then checking if the results are the same... Reproduction can be considered as
software testing at the level of a complete study... [It] verifies that a computation
was recorded with enough detail that it can be analyzed later or by someone else”.

• replication to mean “repeating a published protocol, respecting its spirit and inten‐
tions but varying the technical details [...] that everyone believes shouldn’t matter,
and see if the scientific conclusions are affected or not”.

Overall, we conclude that the work presented in “Behavior Transformers: Cloning k
modes with one stone” is largely replicable but is not readily reproducible.
Indeed, although the authors open source their code and data and describe how to use
their model, they do not provide a reproducible way to obtain the numbers reported in
the paper. Using their code is not enough, and extending it according to the specification
in the paper yields numbers that diverge from theirs inmultiple experiments, hence our
conclusion on the reproducibility of the paper.
However, most of our experiments support the paper’s main claims. From the Block‐
push andKitchen experiments, the proposedmethod exhibits the representational power
desired for multi‐model behavior cloning. Indeed, our Blockpush results beat all base‐
lines reported by the authors.
Regarding the ablations, we have observed that the model without offsets performed
almost as well as the base configuration when the action dimension space is low, such
as in Blockpush. However, offsets proved essential in Kitchen, where the action space
is higher dimensional, and the action centers are much less expressive. For the no‐
binning ablation where only a single bin is used, we obtain precisely the inverse situa‐
tion: the model underperforms in Blockpush but is the best model for Kitchen, both in
performance and diversity. We conjecture that this behavior is due to the model over‐
fitting to a single mode and thus being less prone to confound different modes and go
out‐of‐distribution. The runs where the model was given no history performed well in
Blockpush, as they stick to one performant modality, but less well in Kitchen when his‐
tory is needed to stick to one task. They also show a decrease in diversity. For the two
MLP ablations, we see that having a MinGPT trunk is critical as the MLPs fail to exhibit
the representation power to correctly model the sequence of received observations de‐
spite being fine‐tuned. Finally, we found that the focal loss decreased the variance of
the reported metrics, confirming the authors’ claim that it would help with unbalanced
splits, but at the same time, the model with no focal loss outperformed BeT in some
runs. Practitioners must, therefore, carefully consider the tradeoff between variance
reduction and performance.
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5.1 Limitations
Our replication is limited by sources of discrepancies that we could notmitigate, such as
a slightly different development environment due to the unreproducible environment
provided by the authors, differentways of computing evaluationmetrics not provided by
the authors, and in one case, incorrectly described, and limited computational budget,
which limited our ability to investigate more experiments.

5.2 What was easy
It was very easy to identify and understand the main claims of the paper and the exper‐
iments which supported them. Once we had the development environment set up, it
was easy to train models on the Blockpush and Kitchen datasets, thanks to the authors
sharing a link to their datasets and providing the code for the data loaders, model defini‐
tion, and training routine. Generating rollouts for the trainedmodels with the provided
code was also easy.

5.3 What was difficult
The authors provide a development environment specification via a conda environment
configuration file but only pin the direct dependencies. However, these dependencies
have sub‐dependencies whose versions were unpinned and made the environment un‐
usable when we started the reproduction, with some libraries crashing at runtime. This
in itself made the computations made in the paper non‐reproducible. Building our own
environment created an initial source of divergence between our methods and made it
difficult to isolate this divergence. Moreover, it was very hard to get the first evaluation
metrics and be confident that those were the ones computed by the authors as they did
not provide the code to do so, nor did they describe the exact formulas or the design
choices of the metrics in the paper. We had to get those from hints in the codebase and
clarifications from the authors, making the replicationmuchmore time‐consuming. Fi‐
nally, the paper did not provide model weights or training curves and reported single‐
run numbers without error bars, making it very hard to judge the extent of the discrep‐
ancy in our results and investigate its sources. As computations inmachine learning are
subject to randomness and non‐determinism, it is crucial to report evaluation metrics
on multiple runs with a central tendency (e.g. mean) & variations (e.g. error bars) [17]
to hope for similar numbers during a reproducibility test.

5.4 Communication with original authors
Wecommunicatedwith the original authors throughout the reproducibility project. They
helped us identify relevant parts in the code that we leveraged to complete our repro‐
ducible pipeline. Whenwe got drastically different results for somemetrics, they shared
the Jupyter notebooks they used to compute their numbers which allowed us to identify
discrepancies between how they were computing and reporting them. We greatly ap‐
preciate their effort in helping us reproduce their paper. However, we feel that many of
their clarifications should have been documented in the code or the paper.
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A Model Description

In figure 1, we present a diagram to visualize the approach proposed by Shafiullah et
al.[1].
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Figure 1. Architecture of the BeT pipeline, taken from Shafiullah et al.[1]. (A) Action encoding and
decoding process via clustering. (B) The BeT architecture and training. (C) Sampling an action
with BeT, given observations within its history.

B Datasets

A detailed description of the datasets used in Shafiullah et al.[1] is provided below:

Point mass. Point mass is a synthetic toy dataset used to demonstrate the benefits of
BeT’s representational power by showing that a history‐dependent policy implemented
with a transformer does not collapse when trained on a dataset of trajectories with mul‐
tiple modes and can represent them faithfully in rollouts. Observations and actions in
this environment are 2‐dimensional (x, y) coordinates. The dataset has two versions,
one with two modes and trajectories of lengths 8 and one with three modes and trajec‐
tories of lengths between 8 and 16.
Unfortunately, although this environment was used throughout the paper as a proof of
concept, the authors did not provide the dataset of demonstrations they used in this
environment. We found fragments of code that we used to generate the dataset dur‐
ing training, but some hyperparameters, such as the number of demonstrations and
noise level, differ from what is described in the paper. In particular, the authors do not
mention any source of stochasticity in this dataset in the paper. However, their figures
demonstrating Point mass do show stochastic behavior, significantly impacting the re‐
producibility of the paper.

CARLA. The authors use the CARLA self‐driving environment [9] to test BeT’s capabil‐
ity in learning from high dimensional observations of (224,224,3)‐dimensional RGB im‐
ages. We do not include this dataset in our experiments as we do not have the compu‐
tational requirements to get rollouts for it3. Nevertheless, we believe that as the dataset
only contains 2 modes, uses a pre‐trained ResNet‐18 for observation embeddings, and 2‐
dimensional actions, excluding it is not detrimental to assessing the paper’smain claims.

3Ideally, an 8‐GB GPU in addition to the one used for training. (Requirements reference)
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In particular, excluding high‐dimensional observations, Point mass has a similar com‐
plexity, and the following datasets have greater complexity.

Blockpush. The multi‐modal block‐pushing environment [10] features a robotic arm
moving two blocks of different colors in two targets of different colors. The observa‐
tions are 16‐dimensional, and the actions 2‐dimensional. The dataset has 1000 demon‐
strations generated from a deterministic controller, and its multi‐modality comes from
the different combinations of starting block and target colors. The greater complexity
of the environment comes from the stochasticity in the starting positions of the blocks
and the trajectory lengths varying between 85 and 201.

Kitchen. TheFrankaKitchen environment [11] features humandemonstrations recorded
via VR headsets in a virtual kitchen environment. The participants were instructed to
perform different sequences of four tasks from a list of seven possible tasks. The ob‐
servation and actions are 30 and 9‐dimensional, respectively. The dataset contains 566
demonstrations in total, with trajectories of lengths between 161 and 409. This is the
most complex environment due to its larger action space and longer trajectories com‐
ing from human demonstrations, which may differ from the simpler synthetic demon‐
strators in the previous datasets. This environment has a stochastic starting position, a
detail omitted in the paper.

For more details, the datasets are comprehensively described in the original paper [1]
(see Section 3.1 and appendix, Section A). The original authors provide a link to down‐
load all but the Point mass dataset in their repository README.

C Metrics

C.1 Metrics and Threshold Analysis

Franka Kitchen environment — This section describes the metrics used to analyze perfor‐
mance and diversity in the Franka Kitchen environment, referred to simply as “Kitchen”
below. We also delve into a more granular analysis of the threshold parameter, which de‐
fines task completion in this environment.

Metric definition The Franka Kitchen environment uses an array of observations to
track the position of the Franka Emika Panda robotic arm and various household items.
The distance between these observations and a set of predefined goals is computed at
each step. If this distance falls below a predefined threshold, the goal is achieved. The
following metrics are used to assess model performance and diversity in Kitchen:

• Number of tasks completed [Performance]: There are seven tasks in total, and the
agent has 280 timesteps to complete asmany of them as it can. The demonstration
dataset has rollouts with four tasks completed in each, and BeT is able to complete
more than four in the allotted time in a subset of rollouts.

• Reward [Performance]: The reward is calculated based on the number of tasks
completed during each rollout. More tasks completed lead to a higher reward.

• Task entropy [Diversity]: Entropy computed on the distribution of achieved tasks
during 1,000 rollouts. This is the main metric used by the authors.

• Sequence entropy [Diversity] [New]: Entropy computed on the sequence distribu‐
tion of achieved tasks during 1,000 rollouts. It takes into account the number of
unique and chronologically recorded task sequences. As the authors did not dif‐
ferentiate between different permutations of the same tasks when completed in a
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different order, we propose this additional metric to better measure the model’s
multimodality.

Discrepancies inmetric computation The authors kindly shared the Jupyter notebook
they used to compute their tables, allowing us to describe the twomain choiceswemade
regarding metric computation.
We describe below how their version of the metrics and our version of the metrics are
computed on the demonstration dataset. The same applies to computing themetrics on
a set of rollouts.

• The originalwork determines the task entropy byfirst sampling 100 task sequences
uniformly at random out of the 566 sequences in the demonstration dataset and
computing the entropy on the subset formed by all the tasks completed in these
100 task sequences. This process is repeated 5,000 times, and the final entropy
value is obtained by averaging the subset entropies. There was no seed to make
the process deterministic, and each entropy calculation will result in a slightly dif‐
ferent value. Since precise values were important for reproducibility and random
sampling was not considered essential for computing this metric, we decided to
made to calculate task entropy directly on all tasks completed in the 566 rollouts,
eliminating the stochasticity.

• Additionally, we acquire demonstration sequences directly from the training ob‐
servations (same as with sampled rollouts), as opposed to the authors obtaining
them from the ground truth dataset found in the Relay Policy Learning repository
by [11] creating a discrepancy with how they compute them on the rollouts. We
noticed that there is a slight difference between the sequences obtained through
these two methods, with 13 rollouts having only 3 completed tasks when obtained
from the training observations, while every sequence in the ground truth of 566
has 4 completed tasks.
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Figure 2. Visualization of the sequence distributions presented by the authors and the ones we
obtained. Made using the plotting function from Shafiullah et al.[1].

Threshold analysis An appropriate threshold is pivotal to obtaining a correct success
metric, as an incorrect threshold can result in significant performance misalignment.
In fact, a threshold that is too high for any single task can result in the agent receiving
a reward for an incomplete run, even if the obtained configuration would not adhere to
the standard expected by a human. Conversely, an excessively low threshold can lead
to an unrealistically null success rate.
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This value is set to 0.3 for all seven tasks in the original paper. We computed the achieve‐
ment rate for 24 different threshold values to validate their choice. We also computed
the number of rollouts for each tentative value where each task would be considered
completed over the human demonstration dataset. The results are then normalized.
As shown in figure 3, a threshold of 0.3 is an optimal value as it results in a balanced
achievement rate for each task.

Figure 3. Achievement rate of the different tasks from observations in the demonstration dataset
for different threshold values in the Kitchen. The value 0.3 results in a balanced rate for each task.

Blockpush environment — Similarly to Kitchen, we describe the metrics used to analyze
performance and diversity of models in the Blockpush environment [10]. Moreover, we
also investigate the influence of the threshold parameter in this environment.

Metric definition For the Blockpush tasks, Shafiullah et al.[1] adopted the PyBullet‐
based environment implemented by Florence et al.[10]. The objective of the XArm robot
agent is to successfully push a block into a target, defined as a square area of the plane.
If both blocks are successfully pushed into the two separate targets, the rollout is con‐
sidered complete, and the maximum reward is awarded. A block is considered cor‐
rectly pushed if the distance between its center and a target falls below a predetermined
threshold at any moment in time during the rollout. In this environment, we define the
following metrics to assess model performance and diversity in Blockpush, where each
probability is obtained by normalizing the number of occurrences over 1,000 rollouts.

• Reward [Performance]: The reward is based on howmany blocks are pushed into
the target: 0.49 when only one block is recorded as pushed and 1 when both are
pushed.

• R1 [Performance]: The probability of reaching one block.

• R2 [Performance]: The probability of reaching both blocks.
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• P1 [Performance]: The probability of pushing one block into a target.

• P2 [Performance]: The probability of pushing both blocks into the two different
targets.

• 1st block reached (red/green)[Diversity]: The probability of the block (red/green)
being reached first.

• Push: red block target (red/green) [Diversity]: The probability of the red block be‐
ing pushed to the (green/red) target.

• Push: green block target (red/green) [Diversity]: The probability of the green block
being pushed to the (green/red) target.

Proposedmetrics To further investigate BeT performance, we implemented additional
metrics that differ from the ones of Shafiullah et al.[1]. The authors determine if a block
has reached its goal bymeasuring the distance between the initial block position and its
position at each subsequent time step. The goal is considered reached if this distance is
less than 10−3. We decided to recompute this metric by checking the distance between
the arm and the block and to determine whether a block is reached if it falls below 0.05,
a value already used by the authors to record pushes. This decision is substantiated
by the fact that while pushing the first block to a target, the first block can cross and
interact with the second block, barely moving it, resulting in what we deem an uninten‐
tionally recorded reach of the second block. Our proposed metric seeks to reduce the
occurrence of these false positives, directly affecting the computed values of R1 and R2.
Moreover, by observing the rendered rollouts, we noticed that sometimes a block is only
momentarily pushed into a target and then pushed out, which would be considered a
valid push by the original metrics, even if the intended goal is not properly achieved.
A pattern that we observed, and that is considered BeT’s primary failure mode by the
authors, occurs when the first block is accurately reached but pushed just outside the
target; then, the armmoves to push the second block into the target. However, since the
rollout does not stop due to the first block beingmisaligned, the arm continues pushing
the second block further away from the target, following its initial path. In this sce‐
nario, both blocks are correctly recorded as reached, but the second block is wrongly
counted as successfully pushed, even if, by the end of the rollout, its position is outside
the intended target. To avoid these false positives, we compute the distances between
the blocks and the targets on the last timestep of each rollout and only count as correct
pushes the oneswhere the block actually stays in the target, disregarding the runswhere
the block is pushed in and then out the target. This directly affects the computation of
the values for P1 and P2. The differences in performance between the original way of
implementing the metrics and the ones we propose can be visualized in table 5.

Table 5. Comparison of the probabilities of reaching and pushing one or two blocks to the targets,
first using the metrics established by the author and then using our proposed metrics. Some
values are rounded to 3 decimal cases (contrarily to the rest of the paper) to better illustrate the
effect of the different metrics.

Distance between
block positions at t and t+1

Distance between
arm and block

Block enters
the target

Block stays
in the target

R1 R2 R1 R2 P1 P2 P1 P2
BeT 1.0 0.976 1.0 0.975 0.940 0.180 0.682 0.002
Demonstrations 1.0 1.0 1.0 1.0 1.0 0.996 0.997 0.983

It is possible to conclude that while the new metric regarding R1 and R2 does not cause
a significant deviation, the same does not hold for P1 and P2. In this paper, for the sake
of consistency, we considered the same metrics as the original paper. Nevertheless, it
is clear that they are not correctly capturing the primary objectives of the considered
environment in some cases and allowing the aforementioned false positives.
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Threshold analysis Similarly to Kitchen, the threshold parameter choice is crucial to
compute correct success metrics. Thus, we investigated how the probabilities of push‐
ing one and two blocks to respective squares would change when dealing with different
threshold values. We observed that Shafiullah et al.[1] used a higher threshold value
than the original implementation. The threshold value used by Florence et al.[10] is 0.04,
while the authors used 0.05. With a higher value, we naturally expected a higher success
rate.
This was accomplished by calculating success metrics for the two different thresholds
on the 1,000 demonstration rollouts from the training dataset and on 1,000 evaluation
rollouts using BeT with its original hyperparameter configuration. We also tested other
threshold values andnoticed that: i) a threshold≤ 0.03 is too strict,making it excessively
difficult to succeed; and ii) for a threshold≥ 0.06, it becomes too easy to achieve the goal,
and this criterion is no longer a good measure of success.
We observed that in the demonstration dataset, the probabilities remain unchanged
when computed using either a threshold of 0.04 or 0.05. A block was considered pushed
with a tolerance of 0.05 but not with 0.04 in only one instance out of the 1,000 samples.
During the evaluation rollouts using a BeT agent trained with the original hyperparam‐
eters, the differences in probabilities are more pronounced, as shown in table 6. We
can see that, even though 0.05 is still a reasonable threshold, it clearly simplifies the
problem for the model. Therefore, unless the threshold is the same for both cases, di‐
rect comparisons to other models also running in the Blockpush environment should
be carried out carefully and interpreted with a grain of salt.

Table 6. Comparison of the metrics proposed by the authors for the threshold values of 0.04, used
in the original implementation by Florence et al.[10], and 0.05, used by Shafiullah et al.[1]. The
two P2 values for “Demonstrations” are rounded to 3 decimal cases to highlight the influence of
different threshold values.

Demonstrations BeT
Threshold

0.05
Threshold

0.04
Threshold

0.05
Threshold

0.04
R1 (block‐block distance) 1.00 1.00 1.00 1.00
R2 (block‐block distance) 1.00 1.00 0.98 0.98
P1 (block enters the target) 1.00 1.00 0.94 0.86
P2 (block enters the target) 0.996 0.995 0.18 0.10

D Hyperparameter Sweeps

D.1 MLP hyperparameter optimization
This section presents the domain explored for the MLP trunk ablation model using the
Optuna framework for hyperparameter optimization. In particular, for each environ‐
ment, we trained the MLP trunk ablation model for 25 different sets of parameters pro‐
posed by the Optuna framework. The explored domain is shown in table 7.

D.2 Sensitivity sweep
In this section, we present the results concerning the sweeps performed on the number
of action centers and on the window sizes (see figure 4).

E Point mass figures

This section presents the results obtained by running models on the Point mass envi‐
ronment. In particular, we present the rollouts obtained for BeT (hyperparameters as
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Table 7. MLP hyperparameter domain explored by the Optuna algorithm. For the learning rate,
Optuna sampled values in a continuous interval. All other parameters were given discrete values.
The hyperparameters used in the original paper are underlined except for Batchnorm, as it is
unclear whether it was used in the original paper. The best hyperparameter configurations found
for both environments are in bold.

Hyperparameters Blockpush Kitchen
Learning Rate 1e‐5 to 1e‐1 (1e‐4, 3.05e‐4) 1e‐5 to 1e‐1 (1e‐4, 5.3e‐4)
Gradient Norm Clipping None, 1 None, 1
Weight Decay 0.01, 0.05, 0.1 0.01, 0.05, 0.1
Number Hidden Layers 4, 6, 8 6, 8, 10, 12
Hidden Layers Width 72 , 128, 144 120, 132
Batchnorm True, False True; False

num bins num bins

window sizewindow size

Figure 4. Boxplot for the average reward across rollouts for models swept in the number of action
centers (bottom) and of window sizes (top). These sweeps were run both for Blockpush (left) and
Kitchen (right). The hyperparameter values are shown on the x‐axis, while the y‐axis corresponds
to the average reward.

specified in the original paper [1]) and for the trunk LSTM ablation (manually fine‐tuned
in the domain described by Table 8) in figure 5. Moreover, in figure 6, we present the
limitation of BeT exposed in section 4.2.
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Table 8. Unlike the original work, where the LSTM suffered from training collapse, we find that
using a two‐layer LSTM trunk is a robust alternative to using a transformer decoder. Hyperparam‐
eters for the LSTMmodel were tuned manually instead of using automated search algorithms on
the Point mass environment. The best hyperparameters are in bold.

Hyperparameters
Optimizer Adam, AdamW
Adam(W) β2 0.95, 0.999
Hidden Width 512, 1024

Figure 5. Point mass 2 rollout results with state snapping for models trained on 20,000 training
samples without noise. The models used are BeT (left) and an LSTM (middle), both of which
target the same dataset (right). Hyperparameters for BeT as specified by Shafiullah et al.[1]. BeT’s
performance during rollouts is high, but it deviates quite often from the given trajectories. The
LSTM’s performance is almost perfect, with slight deviations around the last cell. We can clearly
distinguish the different modes in the rollouts generated by both models.

Figure 6. Left: Pointmass 1 dataset without noise. There are twomodes in the behaviors presented.
Right: Rollout exhibiting a limitation of BeT in a simple scenario. It cannot capture the twomodes
although it has k = 2 action center bins, the correct number of modes. This happens when k‐
means converges to vectors that do not allow the model to distinguish the modes with k bins.
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