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Reproducibility Summary

Scope of Reproducibility — In this work, we attempt to reproduce the results of the NeurIPS
2022 paper “Towards Understanding Grokking: An Effective Theory of Representation
Learning” [1]. This study shows that the training process can happen in four regimes:
memorization, grokking, comprehension and confusion. We first try to reproduce the
results on the toy example described in the paper and then switch to the MNIST dataset.
Additionally, we investigate the consistency of phases depending on data and weight
initialization and propose smooth phase diagrams for better visual perception.

Methodology — There is no open‐source code for the paper. Therefore, we re‐implemented
all described experiments by ourselves. We also used the code provided by the authors
to validate training hyperparameters not stated in the paper. As for the computational
resources, we spent around 30 CPU and 125 GPU hours on the NVIDIA V100 GPU.

Results —We succeeded in reproducing phase diagrams for the toy example. For the
MNIST dataset, we observed a behavior similar to the one from the paper. We used
a wider range of hyperparameters leading us to an extra area with the memorization
phase. We also argue that the original memorization phase is even more delayed
grokking. Therefore, the authors’ findings about the MNIST phases are incomplete.

Whatwas easy — After receiving additional instructions from the authors about the details
notmentioned in the paper, the reproduction of all results was easy because the authors
put significant work into the setup description. Moreover, it was easy to suggest new
experiments, as they followed logically from the previous.

What was difficult — Generally, it was difficult to reproduce the results because some crit‐
ical hyperparameters (the activation function for the toy model and the batch size for
MNIST) were not stated in the paper. Considering MNIST, it took too much time to iter‐
ate over all hyperparameters’ values, as grokking requires about 100k training iterations,
which is approximately 30minutes on the V100 GPU.

Communicationwith original authors —Wecontacted the authors two times and asked for the
validation of the setup. They responded quickly and were very helpful. The authors pro‐
vided us with the code for the toy example and theMNIST dataset. We did not execute it
for our experiments but used it for checking the training details and hyperparameters.

Copyright © 2023 S. Alexander, S. Ildus and S. Evgeniy, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Shabalin Alexander (amshabalin@hse.ru)
The authors have declared that no competing interests exist.
Code is available at https://github.com/isadrtdinov/grokking-reproduction. – SWH swh:1:dir:ccc65ca6bac0009168d60348463bee1d59e8b1f8.
Data is available at http://yann.lecun.com/exdb/mnist/.
Open peer review is available at https://openreview.net/forum?id=Vz9VLcJqKS.
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1 Introduction

Grokking is a phenomenon in neural network training when generalization happens
well past the point of overfitting, which is contrary to the common intuition of machine
learning. It was firstly discovered by [2] and until now was only observed on toy exam‐
ples.
In this work, we attempt to reproduce the findings of the paper “Towards Understanding
Grokking: An Effective Theory of Representation Learning” [1], in which the authors
succeeded in capturing grokking on the MNIST dataset constructing a specific setup for
this purpose. They also visualize the division of the learning process into four phases
by displaying phase diagrams from a grid search of hyperparameters.

2 Scope of reproducibility

The authors consider grokking as one of four learning phases. Grokking and comprehen-
sion lead to generalization, though the former has delayed generalization. Memorization
is a synonym for overfitting when the model performs well on the training set but can
not generalize to the validation set. Finally, confusion is an indicator of a training failure
when a model can not even memorize the training set. One of the main contributions
of the paper is an attempt to describe grokking from the theoretical point of view while
we focus on its experimental part. Therefore, we study the following claims from the
original paper:

• Claim 1: Themodel trainingmay happen in four phases depending on the training
hyperparameters.

• Claim 2: Grokking is an intermediate phase between comprehension and memo‐
rization. It occurs if the training hyperparameters are not tuned properly.

• Claim 3: Grokking is a more general phenomenon which is not restricted to toy
algorithmic datasets.

3 Methodology

Weconduct our experiments using the PyTorch framework [3]. We re‐implemented both
the toy setup and the MNIST experiments ourselves.

3.1 Datasets

Toy model — Following the authors, we consider a toy dataset consisting of integer pairs
(i, j), where i, j ∈ {0, . . . , p−1}. The target is defined as i+j, i. e. non‐modular addition
of the two features. There are p(p− 1)/2 unique (i, j) pairs (the pairs i+ j and j + i are
considered the same). We set p = 10 with a total of 55 pairs and use a 45/10 random
train‐validation split.

MNIST — The authors use the default version of the MNIST dataset [4], but for training,
they randomly sample 1k images out of a possible 60k. The validation set is kept un‐
changed.

3.2 Model descriptions

Toy model — The training setup is borrowed from the original paper. The toy model con‐
sists of two parts: an embedding encoder and an MLP decoder (denoted as Dec). Input
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integers (i, j) are interpreted as characters and mapped to 1‐D embeddings Ei,Ej . The
model output is Dec(Ei + Ej). Generally, we solve a classification task predicting one of
2p − 1 possible sums (we call them classes for clarity). Following the authors, we train
the model in two setups: classification and regression. The former trivially optimizes
cross‐entropy loss, while for the latter we need to generate 2p−1 fixed random gaussian
vectors serving as targets, one for each class, and minimize mean squared error (MSE)
between the model output and the target vector for the ground truth class. We set the
size of these target vectors equal to 30. The final prediction is a class with the highest
probability in classification and a class with a target vector nearest to the model output
in regression. The decoder is a 3‐layerMLPwith a Tanh activation, with 1−200−200−19
dimensions for classification (as 2p− 1 = 19 outputs for p = 10) and 1− 200− 200− 30
dimensions for regression. The embeddings are initialized from a uniform distribution
U [− 1

2 ,
1
2 ], while the default PyTorch initialization is used for the linear layers in MLP.

MNIST — The authors use the same 3‐layer MLP with the hidden dimension of 200 but a
ReLU activation. The input image is flattened before feeding to themodel, so the overall
dimensions are 784 − 200 − 200 − 10. As the whole theory of grokking in the paper is
based on the encoder‐decoder idea, the authors call the first two layers an “encoder”
and the last one – a “decoder”. They initialize the model weights with Kaiming uniform
initialization [5] and then multiply them by 9, which means that initialization has an
increased scale. Instead of cross‐entropy loss, MSE loss with one‐hot targets is used.
The authors find that it helps the network to fit fast to the training set and much later to
the validation set.

3.3 Hyperparameters

Toy model —We train the toy model with AdamW [6] for 105 iterations as proposed by
the authors. The learning rate ηemb = 10−3 and weight decay λemb = 0 of embed‐
dings encoder remain fixed, while we sweep over decoder hyperparameters searching
for different learning phases. The ranges are taken from the original paper and make
up [10−5, 10−2] for the learning rate (logarithmic), [0, 20] for the weight decay in clas‐
sification, and [0, 10] for the weight decay in regression (both weight decay ranges are
linear). The batch size equals 45, meaning that a full sample gradient is calculated at
each iteration. The train‐validation split seed is fixed among different runs, as well as
the model initialization seed.

MNIST — Similar to the toy model, the authors use AdamW optimizer but fix the learning
rate ηenc = 10−3 only for the encoder part of MLP. Weight decay changes for the whole
model during sweeping in a logarithmic range of [10−5, 101], and the learning rate does
only for the decoder in a logarithmic range of [10−6, 100]. According to the paper, the
model is trained for 105 iterations with a batch size equal to 200. Both the data genera‐
tion seed and the model initialization seed are kept the same among different runs.

3.4 Experimental setup and code

For each pair of learning rate and weight decay, we train a model for 105 iterations, as it
was proposed by the authors. Then we classify the result of training as one of the four
phases. To do so, we count the number of steps to reach 90% accuracy on train and
validation sets, Ttrain and Tval respectively, for the toy example. For the MNIST dataset,
the threshold is 60% accuracy. Then the authors define the phases as in Table 1.
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criteria
Phase Ttrain ≤ 105 Tval ≤ 105 Tval − Ttrain < 103

Comprehension + + +
Grokking + + –

Memorization + – Not Applicable
Confusion – – Not Applicable

Table 1. The definition of training phases.

3.5 Computational requirements
We carried out the toymodel experiments on 16 Intel Xeon Gold 6240R CPU cores in par‐
allel because we were limited in computational resources. We found CPU computations
faster than running on a single NVIDIA V100. Every phase diagram has 21 ·21 = 441 pix‐
els, each representing a separate launch (i. e. a unique pair ofweight decay and learning
rate values). Full training for 105 iterations takes about 5minutes on a single CPU core,
so the budget for a single diagram constitutes 441 · 5÷ 16÷ 60 ≈ 2.5 CPU hours.
In fact, weused an early stopping after both training and validation accuracyhad reached
a threshold of 90%, so the actual budget can be reduced to a maximum of 5 times de‐
pending on the amount of “comprehension” phases on the diagram.
For theMNISTdataset experiments, weused a singleNVIDIAV100GPU. The full training
of a 3‐layer MLP took approximately 30minutes. To draw a phase diagram, we have run
14·15 = 210 training processes. Therefore, the total time consumption should have been
about 210 · 30÷ 60 = 105 hours. Using an early stopping with an accuracy threshold of
60% allowed us to reduce time costs twice, leading to approximately 50 GPU hours.
Experiments with the increased number of maximum iterations took proportionally
more time for both the toy model and MNIST. Overall, all experiments took roughly
30 CPU and 125 GPU hours.

4 Results

Generally, we succeeded in reproducing the phase diagrams from the original paper (for
both the toymodel andMNIST). All three claims proposed by the authors agree with our
experiments. Our contribution can be summarized as follows:

1. We reproduced the toymodel (Addition classification andAddition regression) and
obtained the diagrams with all 4 phases present, supporting Claim 1. Besides, we
study how phase diagrams change for different random seeds and decoder activa‐
tion functions in Appendix A, B.

2. We reproduced the MNIST experiments minding the authors’ code. We observed
all 4 phases, contributing to Claims 1, 3.

3. The Claim 2 describing the intermediate position of grokking also holds in both
experimental setups.

4. We set up additional experiments described in Section 4.2, which show smooth
transitions between phases, complementing Claim 1. We also doubt the existence
of memorization on MNIST, illustrating that this phase is even more delayed
grokking.

4.1 Results reproducing original paper
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Figure 1. Learning phases over decoder learning rate and weight decay for the toy model classifi‐
cation (left) and regression (right) setups.

Toy model — The phase diagrams for both classification and regression setups are shown
in Figure 1. The same diagrams plotted by the authors can be found in Section 4.1 of
the original paper (Figure 6). Clearly, all 4 phases are presented in both diagrams, sup‐
porting the Claim 1. The phases without generalization (memorization and confusion)
occur for the large values of decoder learning rate (in both setups) or for the large val‐
ues of decoder weight decay (classification setup). The rest values of hyperparameters
enable generalization, leading to comprehension (mainly for smaller values of weight
decay) or grokking (for larger values of weight decay). The area of grokking in both se‐
tups is located between comprehension and memorization, agreeing with the Claim 2.
However, the phase borders strongly depend on a data seed and slightly on amodel seed,
which we discuss in Appendix A.

Figure 2. Phase diagram for MNIST.
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MNIST — In Figure 2, we show the reproduced phase diagram of learning dynamics on
MNIST. The corresponding phase diagram from authors’ experiments can be seen in
Section 4.3 of the original paper (Figure 8). In our diagram we have all 4 phases in the
same order as in the diagram from the paper, with grokking sandwiched between mem‐
orization and comprehension, which proves all three claims from Section 2. However,
the area of confusion phase is much smaller in our results. In Section 4.2, we extend the
boundaries of hyperparameters and get a more similar phase diagram. In the same Sec‐
tion 4.2, we argue that, in fact there is no memorization phase for MNIST, so grokking
does not necessary stay between comprehension and memorization, which indicate an
inaccuracy in Claim 2, but it does not break any intuition about grokking.

4.2 Results beyond original paper
As a further investigation of grokking in the scope of the proposed setup, we ask two
questions:

1. Do we need to discretize phases?

2. Does memorization exist or is it even more delayed grokking?

Question 1 — By asking the first question, we argue that the boundaries of phases are
blurred and cannot be set by some threshold. In order to prove that, we construct
smooth phase diagrams using the following procedure. We trainmodels using the same
setup, but for eachmodelwe save the optimization steps at which themodel has reached
the desired train and validation accuracy, Ttrain and Tval, respectively. Thenwe split the
diagram in two parts. The first part corresponds to comprehension and grokking, which
both generalize to the validation set. For this part we draw the difference between vali‐
dation and train steps Tval − Ttrain. The second part corresponds to memorization and
confusion. As at these phases the model does not reach the desired validation accuracy.
We draw the number of train steps Ttrain for memorization and the maximum number
of optimization steps for confusion.

Question 2 — To answer the second question, we train the toy model for 3 · 105 iterations
(3x from the original training budget) and the MNIST model for 1.5 · 105 iterations (1.5x
from the original training budget). We plot the smooth phase diagrams described in the
previous paragraph and compare them to our reproduction of the original diagrams.

Results (Q1) —We have conducted such experiments for both toy model setups and the
MNIST dataset. The resulting diagrams (Figures 3, 4, 5) show that for the toy model,
there is no implicit gap between comprehension and grokking, as well as between mem‐
orization and confusion, while for the MNIST dataset, there is a noticeable gap between
all four phases.

Results (Q2) — Considering the toy model (Figures 3, 4), we observe that after increasing
the number of training iterations, the overall phase diagram is preserved. A few pixels
on the boundary of memorization and grokking have converted from the former to the
latter phase. However, a vastmemorization area is still present in the diagram,meaning
that this phase actually exists in the toy setup (i. e. memorization is not more delayed
grokking but rather a separate phase).
The results for the MNIST dataset are inpicted on Figure 5 and guide us to the following
observations. First, memorization in the upper left corner is actually an evenmore delayed
grokking because training themodel formore additional steps has led to convergence on
the validation set. Second, there is a notable gap in convergence steps on the validation
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Figure 3. Discrete (left) and smooth (right) phase diagrams for the Addition classification toymodel.
The discrete diagram has 105 max iterations of training, while the smooth diagram is extended to
3 · 105 training iterations.

Figure 4. Discrete (left) and smooth (right) phase diagrams for the Addition regression toy model.
The discrete diagram has 105 max iterations of training, while the smooth diagram is extended to
3 · 105 training iterations.

set between grokking and comprehensionphases. Therefore, the phases are indeedwell‐
separated. Third, we obtained a newunexpectedmemorization phase in the upper right
corner. We investigated how train and validation accuracy change over the optimization
process for this area of hyperparameters. The results can be seen in Figure 6 (left). It
seems like the model falls into an unstable local minimum and then gets kicked out of
it during further optimization steps because of large learning rate. Hence, while such
behaviour is memorization by definition, in fact, it is not what we used to call by that
name. We argue that this configuration is closer to confusion, as we finish iterations
with a model having a random accuracy on both training and validation sets, in spite of
visiting a local minimum during the optimization.
Looking at Figure 5, one might think that every pair of hyperparameters at the com‐
prehension phase is eligible, as they lead to a low difference between validation and
training convergence iterations. However, it is critical to keep in mind the conver‐
gence iteration on the training set alone (i. e. in terms of iterations, it is better to have
Ttrain = 1000, Tval = 5000 rather than Ttrain = 50000, Tval = 50001). It follows from
Figure 6 (right) that the convergence is fast only for a small portion of hyperparameters,
and, surprisingly, this area lies close to the border of confusion.
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Figure 5. Discrete (left) and smooth (right) phase diagrams for theMNIST dataset. We highlight the
range of hyperparameters from the original paper with a red rectangle. The discrete diagram has
105 max iterations of training, while the smooth diagram is extended to 1.5·105 training iterations.

Figure 6. Train and validation accuracy during the optimization process with the learning rate
equal to 50 and the weight decay equal to 10−7 (left). Convergence iterations for different pairs of
weight decay and learning rate on the MNIST training set (right).

5 Discussion

As discussed in prior works [7, 8], poor model generalization (i. e. memorization) is re‐
lated to localization in a sharp local minimum. Then, due to a small shift between train
and validation datasets, the model reaches high accuracy on the training dataset and
nearly random accuracy on the validation dataset. Thus, we argue that for more com‐
plex datasets (compared to the toy examples), which have a negligible distribution shift,
it is almost impossible to fall into such sharp narrow local minima, so memorization is
not observed in practice.

5.1 What was easy
The authors did an excellent job describing all the setups for each experiment. However,
some crucial details were missing, such as the activation function for the toymodel and
the batch size for the MNIST dataset. We contacted the authors and asked for these
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values. After that, it was easy to reproduce the results.

5.2 What was difficult
Reproduction and additional research on the toy model were difficult because the au‐
thors did not specify the activation function for the MLP, and we assumed it to be ReLU,
as for theMNISTmodel. In practice, it turned out to be Tanh, which completely changed
the training phases. The impact of an activation function is described in Appendix B.
Also, the resulting phase diagrams strongly depend on the data generation seed, which
is shown in Appendix A. We spent significant time trying to achieve the authors’ results
before discovering that this was the source of the problem.

5.3 Communication with original authors
Wehave contacted the authors twice: the first time to ask for theMNISTdataset code and
the second time to ask about the toy model, as we thought we misinterpreted the setup.
In both times, the authors responded very quickly and provided all the information we
needed tofill in the blanks, whichhelpedus a lot. We thank the authors for their concern
and involvement.
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Appendix

A. Phase diagrams for different random seeds
In this section, we study the importance of random seeds for reproducing phase dia‐
grams from the paper for the toy model. We sweep over 3 data splitting random seeds
(data seed) and 3 model initialization random seeds (model seed). The results are pre‐
sented in Figures 7, 8. Turns out that the presence and proportion of the 4 phases is
heavily affected by the data seed. For some setups it becomes impossible to observe
grokking for any considered set of hyperparameters (Addition regression, data seed =
43, model seed = 101, 102), while other setups make confusion much less common (Ad‐
dition classification, data seed = 41). The impact of model seed is much smaller but
still considerable. Variation of model initialization changes the shape of phase borders,
while the localization of the phases is mainly preserved.

Figure 7. Addition classification phase diagrams for different pairs of data seed and model seed.
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Figure 8. Addition regression phase diagrams for different pairs of data seed and model seed.

B. Phase diagrams for different activation functions
Initially, we failed to reproduce the toy model because we used an activation function
(ReLU) different from the one used by the authors (Tanh). After all, it is not specified in
the paper. Inspired by this mismatch, we plot the phase diagrams for different MLP ac‐
tivations with fixed data andmodel seeds. We consider ReLU, LeakyReLUwith negative
slope = 0.1 and Tanh. The resulting diagrams are shown in Figures 9, 10. Piecewise lin‐
ear functions (ReLU and LeakyReLU) significantly decrease the area of generalization,
turning large values of weight decay into confusion. ReLU function makes the compre‐
hension phase impossible in the Addition regression setup. At first, we hypothesized
that the problem of ReLU is its non‐injectivity. However, LeakyReLU is injective, but
large areas of confusion are still present in the diagrams. So, we leave the question:
”What is wrong with these activations?” for future studies. But clearly, the use of Tanh
is crucial to reproducing the diagrams from the original paper.
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Figure 9. Addition classification phase diagrams for different MLP activation functions.

Figure 10. Addition regression phase diagrams for different MLP activation functions.

C. Embedding optimization trajectories
Finally, we compare the training phases by optimization trajectories of embeddings.
This experiment is inspired by Figure 4 from the original paper. We plot the embedding
trajectories for different phases of the Addition regression setup. Figure 11 shows the
disentanglement of embeddings for comprehension, grokking, and confusion. Memo‐
rization is the only phase, which does not have embeddings sorted after 2000 iterations.
Interestingly, we do not observe any difference between grokking and confusion. The
discrepancy between these two phases is revealed during further training (Figure 12)
when the magnitude of embeddings starts growing faster for confusion. It happens be‐
cause large values of learning rate and weight decay, which correspond to confusion
(see Figure 1, right), make it impossible for the decoder to fit, even though the embed‐
dings evolved to the correct order. Note also that the magnitude of converged grokking
embeddings is remarkably larger than the one of the comprehension embeddings. Thus,
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the magnitude of embeddings may be a witness to different training phases.

Figure 11. Optimization trajectories of embeddings over first 2000 training iterations.

Figure 12. Optimization trajectories of embeddings over whole training process.
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