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Reproducibility Summary

Scope of Reproducibility — The Masked Autoencoder (MAE) was recently proposed as a
framework for efficient self‐supervised pre‐training in Computer Vision [1]. In this pa‐
per, we attempt a replication of the MAE under significant computational constraints.
Specifically, we target the claim that masking out a large part of the input image yields
a nontrivial and meaningful self‐supervisory task, which allows training models that
generalize well. We also present the Semantic Masked Autoencoder (SMAE), a novel yet
simple extension of MAE which uses perceptual loss to improve encoder embeddings.

Methodology — Thedatasets andbackboneswe rely on are significantly smaller than those
used by [1]. Our main experiments are performed on Tiny ImageNet (TIN) [2] and trans‐
fer learning is performed on a low‐resolution version of CUB‐200‐2011 [3]. We use a
ViT‐Lite [4] as backbone. We also compare the MAE to DINO, an alternative frame‐
work for self‐supervised learning [5]. The ViT, MAE, as well as perceptual loss were
implemented from scratch, without consulting the original authors’ code. Our code is
available at https://github.com/MLReproHub/SMAE. The computational budget for our
reproduction and extension was approximately 150 GPU hours.

Results — This paper successfully reproduces the claim that the MAE poses a nontrivial
and meaningful self‐supervisory task. We show that models trained with this frame‐
work generalize well to new datasets and conclude that the MAE is reproducible with
exception for some hyperparameter choices. We also demonstrate that MAE performs
well with smaller backbones and datasets. Finally, our results suggest that the SMAE
extension improves the downstream classification accuracy of the MAE on CUB (+5 pp)
when coupled with an appropriate masking strategy.

Whatwas easy — Givenprior experiencewith adeep learning framework, re‐implementing
the paper was relatively straightforward, with sufficient details given in the paper.

What was difficult —We faced challenges implementing efficient patch shuffling and tun‐
ing hyperparameters. The hyperparameter choices from [1] did not translate well to a
smaller dataset and backbone.

Communication with original authors —We have not had contact with the original authors.
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1 Introduction

As computational capabilities increase, deep learning models for computer vision (CV)
are growing to the point where access to labeled data becomes the performance bottle‐
neck. The introduction of BERT in 2018 enabled effective and scalable self-supervised pre‐
training in Natural Language Processing (NLP) through masked autoencoding with trans‐
formers [6]. Adapting themasked autoencoding scheme to the image domain posed two
main problems: 1) architectural differences between convolutional neural networks
and transformers, and 2) much lower information density in images than in written
language. Dosovitskiy et al. addressed the former in 2020 with the introduction of the
Vision Transformer (ViT) [7]. The difference in information density would remain a chal‐
lenge until He et al. proposed the Masked Autoencoder (MAE) in 2022 [1]. By masking
out a large part of the input and only encoding the visible parts, the MAE managed to
perform efficient and effective self‐supervised pre‐training with images while keeping
its design exceptionally simple [1].

The MAE uses pixel‐wise mean squared error (MSE) as the loss function during pre‐
training [1]. However, it has been shown that loss functions that promote accurate
reconstructions do not necessarily lead to useful representations when transferring to
downstream tasks, suggesting that pixel‐wise reconstruction error might be a flawed
metric for measuring the quality of latent representations [8, 9]. Perceptual loss has
been proposed as an alternative to pixel reconstruction loss for autoencoders and has
shown improved performance in downstream tasks such as image classification and ob‐
ject localization [8].

In this paper, we attempt a reproduction of [1] under significant computational con‐
straints. We also present the SemanticMasked Autoencoder (SMAE), a novel and simple
extension of the MAE which uses perceptual loss to improve the autoencoder embed‐
dings. The datasets and backbone we rely on are significantly smaller than those used
by [1]. Our main experiments are performed on Tiny ImageNet (TIN) [2] and transfer
learning is performed on a low‐resolution version of CUB‐200‐2011 [3]. As backbone, we
use a ViT‐Lite [4] with 3.72M parameters, thus being two orders of magnitude smaller
than ViT‐Large (307M parameters) which was used as baseline in [1]. We also compare
the MAE and SMAE to DINO, an alternative framework for self‐supervised learning [5].

The contributions of this paper can be summarized as follows:

• We reproduce the results of [1] at a much lower scale. Through ablation studies,
we settle on the same masking ratio and masking strategy as in [1]. We demon‐
strate favorable performance with MAE compared to supervised learning and a
comparable SSL method (DINO). Models pre‐trained with MAE are also shown to
generalize well when transferred to another dataset.

• We demonstrate that the proposed SMAE extension improves the transfer perfor‐
mance of the MAE on CUB, when paired with an appropriate masking strategy.

1.1 Scope of reproducibility
This paper aims to reproduce a subset of the main claimsmade by He et al. in the paper
”Masked Autoencoders Are Scalable Vision Learners” [1]. The main claims made by He
et al. are:

1. Masking out a large part of the input image uniformly at randomyields a nontrivial
and meaningful self‐supervisory task.

2. Masked autoencoding allows for learning models that generalize well.
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3. The MAE is a scalable and efficient method in the sense that pre‐training larger
models is tractable and improves performance without overfitting to training data.

With respect to our restricted computational budget, we set out to investigate claims 1
and 2. We aim to investigate claim 1 by 1) ablating the masking ratio, 2) ablating the
masking method, and 3) pre‐training with MAE and fine‐tuning on TIN. We aim to in‐
vestigate claim 2 by pre‐trainingwithMAE on TIN and transferring the encoder to image
classification on CUB. By further developing the idea of masked autoencoding through
the use of perceptual loss in our proposed SMAE, we aim to provide additional evidence
in support of claim 2.

2 Background

This section presents the relevant background for the SMAE, our extension of the MAE
which uses perceptual similarity to improve the autoencoder embeddings.

2.1 Perceptual Similarity
Perceptual Similarity is a way ofmeasuring the distance between two images. Originally
proposed by Zhang et al. [10], this method relies on convolutional neural networks’ abil‐
ity to extract semantic representations of images. This leads to a metric that is more
consistent with the human visual system, as it promotes closeness of high‐level struc‐
tures. When used as a loss function to train autoencodingmodels, perceptual loss enables
learning robust representations of the input images, as opposed to pixel‐space loss func‐
tions that encourage color reproduction [8]. Employing perceptual loss has also been
observed to significantly improve the usefulness of embeddings when training autoen‐
coders in an adversarial setting [9].

2.2 Semantic Masked Image Modelling
Masked Image Modelling (MIM) is a method for self‐supervised learning in CV, which
involves masking parts of the input images and training models on this partial infor‐
mation. BEiT [11] is a recent method that reconstructs discretized tokens from masked
images; taking inspiration from BERT pre‐training in NLP [6]. Semantic Masked Image
Modelling (SMIM) brings perceptual loss toMIM. SMIM is an approach to improving the
usefulness of embeddings when performing MIM, which has become a trend as of the
last year. PeCo, a concurrent work to ours, is one such technique; extending the BEiT
method by using perceptual similarity as loss function when learning the visual words
used as MIM targets. PeCo demonstrates state‐of‐the‐art performance on ImageNet‐1K
image classification [12]. BootMAE is another SMIM method. It is an extension of the
MAEwhich uses a temporal ensemble of anMAEmodel as a perceptual critic during pre‐
training [13]. Compared to BootMAE, our SMAE has the advantage of being exceedingly
simple in its design.

3 Methodology

We re‐implemented the MAE from the description provided in the paper without con‐
sulting the author’s published code. We implemented the ViT model and perceptual
loss from scratch. For DINO, we used the officially published code [5]. Our perceptual
critic implements the SqueezeNet model from Torchvision [14]. The following sections
outline our methodology; detailing the models, datasets, and hyperparameters as well
as the experimental setup and computational resources used.
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3.1 Masked Autoencoder

encoder

....

....

decoder

input target

Figure 1. TheMAE architecture. A large portion of the input image ismasked and only non‐masked
patches are encoded. Mask tokens are injected into the encoded sequence before decoding, re‐
sulting in a computationally efficient MIM scheme with a non‐trivial reconstruction task. Figure
from [1].

The MAE is an autoencoder‐type framework for MIM. A large portion of the image is
masked before being fed to an encoder, consisting of a ViT, which creates a latent repre‐
sentation of the unmasked input. The decoder, which is a lightweight ViT, reconstructs
the entire image from the latent representation created by the encoder (see Figure 1).
After pre‐training on unlabeled data, the decoder is discarded, as the main interest lies
in transferring the encoder to downstream tasks. Regarding the reconstruction target,
[1] found that downstream performance was improved by: 1) only computing the loss
for masked patches, and 2) patch‐wise normalizing the target pixel values.

3.2 Masking
The MAE stands out in that it masks a large portion of the input image. He et al. ar‐
gue that this rules out solving the task by simply extrapolating from nearby unmasked
patches and motivates the encoder to learn meaningful representations of the input [1].
In order to validate this claim, we ablate the ratio ofmasked patches in our experiments.

The findings of [1] suggest that uniform random masking of patches is the most effec‐
tive masking strategy. However, [13] found that masking large random blocks was more
effective when using perceptual loss; suggesting that reconstructing large blocks is a dif‐
ficult task for pixel regression while being helpful for a perceptual model in reasoning
about the semantic structure. We decided to ablate the masking strategy for all of our
models, to investigate its effect on the learned representations.

3.3 Semantic Masked Autoencoder
We propose the SMAE, which extends the MAE by incorporating perceptual loss [10].
Instead of only reconstructing pixels, the SMAE objective is to minimize a combination
of pixel‐wise loss Lpixel and perceptual loss Lpercep:

LSMAE = (1− α)Lpixel + αLpercep (1)

Using α = 0 reduces to the MAE objective and α = 1 implies using only perceptual loss.
Our implementation of perceptual loss largely follows that of [8]. To avoid using a critic
pre‐trained on larger datasets, we train a SqueezeNet v1.1 [15, 14] from scratch on TIN
and use it as a critic in the perceptual loss. The original image and the reconstruction
are fed to the critic, from which the learned representations are extracted. In order to
preserve spatial information, the representations are extracted at an early stage in the
critic network, as was argued for in [8]. Finally, the perceptual loss is computed as the
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MSE between the representation of the original image and the reconstruction. Formally,
let f denote theMAEand g denote the SqueezeNet v1.1 upuntil and including the second
Fire module. The perceptual loss between a sample x and its reconstruction f(x) can
then be formulated as:

Lpercep =
c

d

d∑
i

(g(x)− g(f(x)))
2 (2)

where d is the dimensionality of the extracted representations and c is a scaling factor
used to ensure Lpercep and Lpixel are of similar scale. In practice, we set c before opti‐
mization, to the ratio between the initial pixel‐wise and perceptual loss values. We tried
using an uncertainty‐based weighting of the losses [16], but found that using a mixing
coefficient and scaling by a constant factor performed the best.

3.4 Datasets

Tiny ImageNet — In [1] the pre‐training was done on IN1K [17]. In order to use the same
data distributionwhile honoring our computational constraints, we pre‐train on TIN [2];
a smaller dataset containing 100 000 labeled training images from IN1K scaled down to a
size of 64×64. There are 200 distinct classes, each containing 500 examples. Additionally,
there is a validation set containing 10 000 examples. We use a crowd‐sourced version
of Tiny ImageNet from Hugging Face available at https://huggingface.co/datasets/Maysee/
tiny-imagenet. Literature where training is performed on TIN is quite sparse. The current
SOTA classification performance on TIN among methods trained only on TIN data is
72.39%, achieved with a ResNeXt backbone trained with decoupled scenario‐agnostic
mixup loss [18].

CUB-200-2011 —Weperformed transfer experiments on a scaled‐down (64×64) version of
CUB‐200‐2011 (CUB) containing 11 788 images of birds belonging to 200 classes [3]. Out
of the 11 788 images, 5 994 are for training and 5 794 are used for testing. The dataset
is available at https://data.caltech.edu/records/65de6-vp158. We chose CUB because it is a
challenging dataset for supervised learning methods due to having very few examples
per class and an uneven class distribution. A common role for CUB is as a benchmark
for few‐shot learning techniques.

3.5 Backbone Architecture
Due to our computational constraints, we chose to replicate the method of [1] using
a smaller backbone. The encoder was a ViT‐Lite, proposed by Hassani et al. [4]. ViT‐
Lite has 3.72M parameters, thus being two orders of magnitude smaller than ViT‐Large
(307M) which was the baseline encoder used in [1]. ViT‐Lite has 7 transformer blocks
with a dimensionality of 256 and an MLP dimensionality of 512. Our decoder was an
even smaller ViT, having only two layers, a dimensionality of 128, and an MLP dimen‐
sionality of 256. Both the encoder and decoder used 4 heads in the multi‐head self‐
attention.

We aimed to maintain the ratio between the patch size and image size from [1]. There‐
fore, we chose to reduce the patch size from 16 to 4, accounting for the smaller im‐
ages of TIN. This would have made it even more computationally expensive to choose
a larger backbone than we did, since the computational complexity of self‐attention
grows quadratically with sequence length.

ReScience C 9.2 (#40) – Charisoudis, Huth and Jansson 2023 5

https://huggingface.co/datasets/Maysee/tiny-imagenet.
https://huggingface.co/datasets/Maysee/tiny-imagenet.
https://data.caltech.edu/records/65de6-vp158
https://rescience.github.io/


[Re] Masked Autoencoders Are Small Scale Vision Learners: A Reproduction Under Resource Constraints

3.6 Hyperparameters
As part of our reproduction efforts, we strived to stick as close as possible to the set‐
tings used for training in [1]. Even so, we had to adjust some parameters due to our
smaller datasets and backbone. We employed a grid search strategy over learning rate
(lr), weight decay (wd) and number of layers in the decoder (dd) (see Appendix D). This
resulted in a pre‐training setup of lr = 5e−4, wd = 0.15 and dd = 2. Differently from
[1], we found that a shallower decoder was beneficial.

We did not use any data augmentation during pre‐training. We tried using random crop‐
ping as used by [1], but observed that pre‐training without augmentations performed
better. As for the reconstruction target, we used raw pixel values; having found this to
perform better than using patch‐wise normalized pixel values, as in [1]. The hyperpa‐
rameters for DINO and SqueezeNet are deferred to Appendix B and C. We remark that
due to our limited computational resources, the hyperparameter search for DINO and
SqueezeNet was not as thorough as for MAE. Finally, for the SMAE mixing coefficient,
we found α = 0.5 to be a good choice. Results for α = 1 (only perceptual loss) are
presented in Appendix E.

3.7 Experimental setup and code
We used a batch size of 128 in all our experiments. During the hyperparameter search,
we pre‐trained for 200 epochs and performed linear probing for 50 epochs. Our final
models were pre‐trained for 400 epochs and fine‐tuned for 100 epochs. Supervised train‐
ing from scratch was done for 400 epochs. While linear‐probing, we froze the back‐
bone and trained an added linear classification head. During fine‐tuning, we jointly
trained the backbone and an added linear classification head. All experiments were
evaluated using the Top‐1 validation set accuracy. The MAE was only trained to re‐
construct masked patches, whereas the SMAE reconstructed all patches; this was done
in order to avoid conflicts of interest between the pixel‐wise loss and the perceptual
loss. If the pixel‐wise loss is minimized for masked patches only, the discontinuity be‐
tween masked and unmasked patches might increase, consequently increasing the per‐
ceptual loss which operates on the entire reconstruction. When using block masking,
we masked 50% of the input image, following that of [1]. Due to our restricted com‐
putational budget, all experiments were performed once. As such, our results should
be seen as indicative rather than conclusive. In order to verify the self‐containment of
the original paper, we chose to implement the MAE from scratch without consulting
the original authors code. Our code is written in PyTorch and is publicly available at
https://github.com/MLReproHub/SMAE.

3.8 Computational requirements
The experiments were performed locally on an NVIDIA GTX 1080 Ti, an NVIDIA RTX
3060, and an NVIDIA RTX 2070, as well as on Google Compute Engine using NVIDIA
V100s. Pre‐training with MAE for 400 epochs on TIN took roughly 9 hours on a V100,
while fine‐tuning ViT‐Lite for 100 epochs on TIN took around 3 hours on the same hard‐
ware. The total computational budget for our reproduction and extension was approxi‐
mately 150 GPU hours. Details on runtimes are provided in Appendix A.

4 Results

All results presented in this section support the main claims of [1]. Our results on mask‐
ing ratio and masking method support claim 1. Our pre‐trained models performed fa‐
vorably to supervised learning as well as DINO on both TIN and CUB, supporting both
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Masked Input (Random) Reconstruction Masked Input (Block) Reconstruction Ground Truth

Figure 2. Reconstructions duringMAE pre‐training. Themasking ratio is 75% for uniform random
masking (left) and 50% for block masking (middle).

claim 1 and 2. The SMAE extension improved the performance of the MAE when trans‐
ferring to CUB, providing further evidence in support of claim 2.

4.1 Results reproducing original paper

Masking —We ablated the effect of masking ratio on the usefulness of the autoencoder
embeddings when using uniform randommasking.

Masking ratio 50% 60% 65% 70% 75% 80% 85% 90%
Linear probing valid. acc. 31.32 32.03 32.32 30.58 32.04 31.66 29.61 28.14

The results somewhat reflect those of [1]; suggesting that masking 65% of the input cre‐
ates the most useful embeddings. Masking 75% of the input resulted in similar linear
probing accuracy, but was 17% faster to train. As such, we used 75%masking for the rest
of our experiments with uniform random masking, the same value that [1] used. Over‐
all, the experiment successfully reproduces that of [1] and the results support claim
1. We also ablated the masking strategy of [1], reproducing its findings that uniform
random masking creates more useful embeddings than block masking; as seen by the
fine‐tuning validation accuracy on both TIN and CUB:

TIN CUB

Masking
Random 55.00 42.54
Block 48.77 33.50

In Figure 2 we present example reconstructions from our pre‐trained MAE under differ‐
ent masking strategies.

Fine-Tuning on TIN —We successfully replicated the fine‐tuning experiment from [1]. Our
results show that fine‐tuning a ViT encoder, which was pre‐trained using MAE, outper‐
formed the same encoder pre‐trained with DINO. Pre‐training with MAE also improved
the performance compared to training from scratch using supervised training (see Ta‐
ble 1). The results from our experiments on fine‐tuning on TIN support claim 1: the
MAE method yields a nontrivial and meaningful self‐supervisory task.

Transferring to CUB —We transferred the pre‐trained MAE by fine‐tuning on unbalanced
image classification on CUB. The results are compared to both a ViT‐Lite pre‐trained
with DINO and a ViT‐Lite trained from scratch (see Table 1). The pre‐trained MAE out‐
performs both methods, reproducing the findings of [1]. Thus, our results on transfer
learning suggest that representations learnt withMAE transfer well to new datasets, pro‐
viding support for claim 2.

4.2 Results beyond original paper
This section includes the results for SMAE, our extension of the MAE which combines
pixel‐wise loss and perceptual loss. Results for using only perceptual loss (SMAE with
α = 1) are deferred to Appendix E.
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Method TIN CUB

Supervised 48.58 19.70
DINO 41.72 24.09
MAE 55.00 42.54
SMAE (α = 0.5) 54.40 47.50

Table 1. Top‐1 validation accuracy on image classification datasets.

SMAE — The results from our proposed SMAE are presented in Table 1. The SMAE per‐
formed similarly to the MAE when fine‐tuned on TIN. When transferred to CUB, our
extension performs well, improving the performance of the MAE by a large margin (+5
pp). The respectable performance of the SMAE provides further evidence in support of
claim 2. Regarding themaskingmethod for SMAE, the choice between randommasking
and block masking did not have a significant impact on performance when fine‐tuning
on TIN. When transferred to CUB, SMAE displayed significantly greater performance
with block masking than randommasking (+6.0 pp) in terms of validation set accuracy.

TIN CUB

Masking
Random 54.40 41.50
Block 53.90 47.50

5 Discussion

Our experimental results support the main claims of [1] that we set out to reproduce, i.e.
claim 1 and 2. Due to our significant computational constraints, we have not attempted
to reproduce experiments supporting claim 3. We conclude that the MAE framework is
reproducible in general, and that it also performs well with smaller datasets and back‐
bones. Aweakness of our reproducibility approach is the comparison betweenMAE and
DINO. Due to our limited resources and the high computational demand of DINO, we
could not perform a proper grid search for it. Provided this, our comparison between
MAE and DINO is not entirely fair.

We have also presented the SMAE, an extension to the MAE that incorporates recent
ideas about using perceptual loss to improve the usefulness of embeddings. Our results
suggest that the SMAE learns semantically meaningful representations that are more
useful than those of the MAE when transferring to another dataset. It should be noted
that our results on transfer learning only concern one dataset. Extending the experi‐
ments to more datasets would be necessary to corroborate our findings regarding the
improved performance of SMAE. Future research could further investigate loss weight‐
ing and choice of perceptual network for the SMAE; something that was out‐of‐scope
for this study.

The authors of BootMAE [13] observed that training with perceptual loss benefits from
masking out larger connected blocks. Our findings for transferring SMAE to CUB align
with this, as we see a big performance increase when going from random masking to
block masking. In contrast, fine‐tuning SMAE on TIN did not express any meaningful
performance difference with respect to the masking method. This result suggests that
the choice ofmaskingmethodmight bemore important when transferring to a different
data distribution.
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5.1 What was easy
Given prior experiencewith a deep learning framework, re‐implementing the paperwas
relatively straight‐forward, with exception for the random shuffling and un‐shuffling
(see Section 5.2). The paper provided sufficient details on the MAE method, including
training configurations and implementational details.

5.2 What was difficult
It was not trivial to apply the approach in the paper on a different choice of dataset and
backbone, as the paper’s choices of hyperparameters turned out to require significant
recalibration. Therefore, we had to spend quite some time tuning hyperparameters.
We temporarily struggled with the details of implementing random shuffling and un‐
shuffling of patches correctly and efficiently. Our final implementation for the shuffling
and un‐shuffling operations used the scatter and gather functions in PyTorch, which are
fairly involved operations.

5.3 Communication with original authors
We have not had contact with the original authors.
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A Runtimes

Table 2 reports the runtimes for our models on the TIN validation set without gradient
computations. The SMAE does not increases the runtime significantly over the MAE.

Model Task Time (s)

ViT‐Lite Classification 11
MAE Reconstruction 5
SMAE Reconstruction 5

Table 2. The runtime of various models for the TIN validation set of 10 000 images. The runtimes
are reported for a batch size of 128 on a NVIDIA GTX 1080 Ti with no gradient computations.

B Hyperparameters for DINO

A non‐exhaustive manual search was performed for learning rate (1e−4, 5e−4) and last
layer normalization. We alsomanually searched themomentum (0.9995, 0.9998, 0.9960),
warm‐up epochs (0, 30) and temperature (0.02, 0.04) for the teacher. Due to computa‐
tional constraints, we had to disable multi‐crop. The final hyperparameters for DINO
are presented in Table 3.

C Hyperparameters for SqueezeNet

We performed a manual search for learning rate (5e−4, 1e−3, 4e−3) and weight decay
(0.05, 0.15, 0.1). The final parameters are presented in Table 4.
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config value
base learning rate 1e−4
min learning rate 1e−6
weight decay 0.04
max weight decay 0.4
teacher momentum 0.9995
batch size 128
warmup epochs [19] 10
training epochs 100
out dim 1024
hidden dim 512
bottleneck dim 128
local crops number 0
teacher warmup temperature 0.02
teacher temperature 0.04
teacher warmup episodes 30
normalize last layer ✓
gradient clipping 3
global crops scale (0.6, 1)

Table 3. Hyperparameters for DINO.

config value
optimizer AdamW [20]
base learning rate 1e−3
weight decay 0.15
optimizer momentum (β1, β2) 0.9, 0.999 [21]
batch size 128
learning rate schedule cosine decay [22]
warmup epochs [19] 10
training epochs 200
augmentation RandAug (2, 9) [23]
dropout rate 0.5

Table 4. Hyperparameters for SqueezeNet.

D Hyperparameter Grid Search for MAE

In order to find appropriate values forMAE hyperparameters we employed a grid search
approach. As explained in subsection 3.6, the MAE encoder architecture follows that of
ViT‐Lite‐7/4 [4]. We employ sinusoidal position encoding [24]. The MAE decoder archi‐
tecture follows the encoder but is lighter, according to [1]. We fix the decoder width
to 128 and the number of nodes in its attention layers to 256 throughout all our experi‐
ments.

During the grid search, we pre‐trained the ViT‐Lite backbone for 200 epochs and then
linearly‐probed it for 50, both onTIN. Theweight decay (wd) and learning rate (lr) for the
AdamW optimizer were grid searched in the set {0.05, 0.15} and {1e−3, 1.5e−4, 5e−4}
respectively. In addition, we repeated this grid search for two different decoder depths
(i.e. number of layers in the decoder): {2, 3}. In Table 5 we present the validation set
accuracy for different hyperparameter settings.

wd=0.05 wd=0.15

lr=1e−3 28.07 ‐
lr=1.5e−4 13.75 27.15
lr=5e−4 11.89 32.04

wd=0.05 wd=0.15

lr=1.5e−4 13.75 27.15
lr=5e−4 11.89 32.04

dd = 2 dd = 3

Table 5. Grid search results. Each sub‐table contains the values for a single decoder depth; 2 (left)
and 3 (right). Each cell contains the top‐1 validation accuracy for linear probing of a model pre‐
trained under the corresponding optimizer settings.

The hyperparameters used for pre‐training, fine‐tuning, and linear probing on TIN are
presented in Table 6. When fine‐tuning on CUB we use the same hyperparameters as
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for TIN, but halve the learning rate to account for the difference in dataset sizes.

config value
Pre‐Training Fine‐Tuning Linear‐Probing

optimizer AdamW [20] AdamW Adam [25]
base learning rate 5e−4 1e−3 1e−3
weight decay 0.15 0.05 ‐
optimizer momentum (β1, β2) 0.9, 0.95 [21] 0.9, 0.999 0.9, 0.95
batch size 128 128 128
learning rate schedule cosine decay [22] cosine decay cosine decay
warmup epochs [19] 20 5 2
training epochs 400 100 50
augmentation ‐ RandAug (2, 9) [23] ‐

Table 6. Training settings for the different training tasks on TIN.

E Perceptual loss (SMAE with α = 1)

We observe that when applying uniform random masking using only perceptual loss
(SMAEwithα = 1), the downstreamclassificationperformancenotably decreases. When
instead using block masking, we observe a notable performance improvement, espe‐
cially when transferring to CUB. The results of the corresponding runs are given in
Table 7. We remark that pre‐training with only perceptual loss appears to be a viable
self‐supervised training scheme.

TIN CUB

random 52.70 39.67
block 51.05 42.90

Table 7. Top‐1 validation accuracy for image classification on TIN and CUB with SMAE(α = 1), i.e
only using perceptual loss.
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