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Reproducibility Summary
”CrossWalk: Fairness‐Enhanced Node Representation Learning” is set to be reproduced
and reviewed. It presents an extension to existing graph algorithms that incorporate the
idea of biased random walks for obtaining node embeddings. CrossWalk incorporates
fairness by up‐weighting edges of nodes located near group boundaries. The authors
claim that their approach outperforms baseline algorithms, such as DeepWalk and Fair‐
Walk, in terms of reducing the disparity between different classes within a graph net‐
work.

The authors accompanied their paper with the publication of an open GitHub page,
which includes the source code and relevant data sets. The limited size of the data sets
in combination with the efficient algorithms enables the experiments to be conducted
without significant difficulties and is computable on standard CPUs without the need
for additional resources.

In this reproducibility report, the outcomes of the experiments are in agreement with
the results presented in the original paper. However, the inherent randomness of the
random walks makes it difficult to quantify the extent of similarity between the repro‐
duced results and the results as stated in the original paper. However, it can be con‐
cluded that CrossWalk results in a decreased disparity between groups in graph net‐
works.

The authors effectively conveyed the underlying concept of their proposedmethod, ren‐
dering it both intriguing and straightforward to comprehend the key ideas. Further‐
more, the authors successfully incorporated a range ofmethods andbaseline algorithms
into the paper.

In contrast, the source codemay not have been optimally constructedwith reproducibil‐
ity in mind. Certain sections of the code appear to be unfinished or inadequately exe‐
cuted. Additionally, the authors neglected to specify key hyperparameters, resulting in
the unidentifiability of certain results. This presents challenges in drawing conclusions
based on the available sources.

The authors were unable to respond in time for elaborating on certain implementation
details. However, we did receive additional data which was crucial to obtaining certain
results.

Copyright © 2023 G.J. Moens et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Meggie van den Oever (megv.d.oever@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/Bentgm17/Fact2022_27.git. – SWH swh:1:dir:1cb55b0f026b758df313fea777575fcab71222f5.
Open peer review is available at https://openreview.net/forum?id=KNp7Zq3KkT0&noteId=xqiAvezWIN.
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[Re] CrossWalk Fairness-enhanced Node Representation Learning

1 Introduction

The usage of machine learning has increased significantly in recent years. However,
fairness in machine learning is only a recent research topic and has not much extended
to advanced concepts, such as graphs. Graphs are widely applicable and have great
potential in many fields. Hence, it is crucial that fairness is implemented in such al‐
gorithms. The paper ‘CrossWalk: Fairness‐Enhanced Node Representation Learning’
that will be reproduced and reviewed introduces an extension upon existing graph algo‐
rithms that use the concept of random walks to obtain node embeddings [1].
Graph representation learning algorithms map a graph to a vector space while preserv‐
ing its structural information. Some frequently used approaches are based on Deep‐
Walk, a random‐walk approach to graph representation learning. Fairness in these
graphs can be enhanced by motivating the random walks to take steps that cross group
boundaries. The Fairwalk method (Rahman et al.) [2] introduced this concept by in‐
creasing the weights of edges between nodes of distinct groups. Khajehnejad et al. take
it a step further by additionally increasing the weights of edges that are close to group
boundaries, thereby blurring group boundaries and improving fairness while preserv‐
ing the structure. Originally, CrossWalk is tested only on graphs including no more
than three groups. However, in many practical scenarios, graphs with a larger number
of distinct groups may be encountered. In order to test CrossWalk’s ability to generalize,
we will test the performance of its embeddings on influence maximization on synthetic
graphs containing more groups. Additionally, to improve CrossWalk’s generalization
to graphs containing more groups, a new measure of proximity is proposed. The core
idea of this proposed measure is that for graphs with a larger number of groups, nodes
that lie around several boundaries influence several groups and their edges should be
weighted more heavily.

2 Scope of reproducibility

2.1 Original paper
To evaluate the effectiveness of CrossWalk, we compare its node embeddings with for‐
merly introduced approaches DeepWalk and FairWalk. We test the following claim: fair‐
ness is enhanced while performance is preserved using node embeddings obtained by
CrossWalk as opposed to benchmark methods DeepWalk and FairWalk considering the
following metrics:Influence maximization(1), Node classification(2) and Link prediction (3)

2.2 Extension
To extend the existing research we explore the application of CrossWalk on graphs that
are made up of more groups and consider a tuned version of the measure of proximity.
To do so we introduce the following hypotheses:

• The superiority of CrossWalk, compared to FairWalk and DeepWalk, is
maintained on graphs containing a larger number of groups. (4)

• We propose a novel approach for fairness‐enhanced node learning
MoonWalk improving upon the existing CrossWalk method. (5)
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3 Methodology

3.1 Embedding Methods

Node2Vec —Node2Vec [3] is an algorithm that creates latent embeddings for a given graph.
It will return an embedding v ∈ Rd for every node, with the objective of maintaining
the internal structure of the original graph.
First, Node2Vec initiates random walks, by stepping stochastically through the graph.
When considering a weighted graph, this happens according to the edge weights. An‐
other way of guiding the random walk is by introducing a search bias α. Suppose the
random walk just stepped from node t to node v, then the transition probability from v
to x, becomes πvx = α(t, x)wvx, with α defined as follows:

α(t, x) =


1
q if dtx = 0

1 if dtx = 1
1
q if dtx = 2

(1)

Here, dtx represents the shortest path distance between node t and node x. Intuitively, p
gives a measure for how likely the randomwalk will return to the previous node (Breadt
First Search, BFS), whereas q represents to what extent the random walk will explore
nodes far away from the root node (Depth First Search, DFS)[3].
With the sequences of nodes, produced by the random walks, a Skip‐Gram [4] model
is trained. Here, the nodes are interpreted as words and the walks are interpreted as
sentences. The Skip‐Gram model will output the embeddings for each node.

DeepWalk — Deepwalk is a special case of the Node2Vec algorithm. More specifically, pa‐
rameters p, q are set to 1, such that α = 1. In this case, the chances of a transition in the
random walk are purely decided on the edge weights.
For simplicity, we (and the original paper) mainly use DeepWalk for creating embed‐
dings in the experiments shown.

3.2 Re-weigthing algorithms
The fairness of graph embeddings can be enhanced by modifying the existing weights.
Thiswill guide the randomwalks differently through the graph, andwill therefore create
different embeddings. The key idea is that edges that are closer to the group boundary
are up‐weighted, such that the random walks will cross groups more often. In this sec‐
tion, we will cover three re‐weighting algorithms that attempt to enhance the fairness
of the node representations.

FairWalk — FairWalk [5] was first introduced by Rahman et al. The FairWalk algorithm
only re‐weights inter‐group connections. And does so, such that from a boundary node,
each group is equally likely to be visited. Thismethod is viewed as a benchmarkmethod
for re‐weighing graph edges.

CrossWalk — CrossWalk [1] is claimed to be an improvement uponFairWalk by the authors
of the original paper. CrossWalk not only reweighs edges in between different groups
but changes weights based on the distance to a group boundary.
This distance to the boundary of node v, m(v), is measured by the fraction of times r
truncated random walks of length d, starting from root node v, visit a node u for which
lv ̸= lu. Where we define lw to be the group that node w belongs to. Written more
precisely as:
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m(v) =

∑r
j

∑
u∈W j

v ,lu ̸=lv
1

rd
(2)

Here we used W j
v to be the set of nodes visited by the jth random walk from node v.

When m(v) is obtained for every node v in the graph, CrossWalk adjusts edge weights
wuv to w̃uv as follows:

w̃uv =


wvu(1− α) m(u)p∑

z∈Nv
wvzm(z)p if lu = lv

wvuα
m(u)p

|Rv|
∑

z∈Nc
v
wvzm(z)p if lv ̸= lu = c

(3)

Where we define Nv = {u ∈ N (v) : lu = lv} and N c
v = {u ∈ N (v) : lv ̸= lu =

c}, with N (v) being the set of neighbouring nodes of v. Rv is the set of nodes in the
neighbourhood of v, that belong to a different class: Rv = {u ∈ N (v) : lv ̸= lu}. Here
parameterαwill influence the chance of crossing a group boundary in the randomwalk,
while p parametrizes the importance of the distance to the boundary.

MoonWalk — In this paper, we propose MoonWalk, an extended version of CrossWalk.
The difference with respect to CrossWalk is embedded in the calculation of the distance
to the group boundary m(v). Originally, this is measured by counting the number of
times a random walk visits a node in another group (See (2)). However, we propose an
alternative measure µP (v), that also captures the number of different groups a random
walk falls upon.

LetM c(Wv)be thenumber of times a randomwalkWv visits a node in group c, excluding
the class of node v. More formally this becomes:

M c(Wv) = |{u ∈ Wv : lv ̸= lu = c}| (4)

Now, for every iterated random walk we measure the following quantity:

ξP (Wv) =
(
∑

c M
c(Wv))

2

P
√∑

c M
c(Wv)P

(5)

Where P , a parameter that occurs in the denominator, as the P‐norm ofM(Wv).
The expression for µP (v) will then be written as:

µP (v) =
1

rd

r∑
j

ξP (W
j
v ) (6)

With again r, the number of random walks, and d, length of each walk. The weights
would then be updated according to (3), with m(v) replaced by µP (v). Note that for
p = 1 MoonWalk reduces to Crosswalk: µ1(v) = m(v). Also, if the graph consists of 2
groups only, MoonWalk will be equivalent to CrossWalk:µP (v) = m(v) ∀P .

When considering 3 groups or more, MoonWalk will up‐weight edges to nodes that are
closer to multiple boundaries. CrossWalk, on the other hand, will not distinguish be‐
tween one boundary or multiple boundaries.

Notice that, as opposed tom(u), µP (u) is not necessarily bounded from above by 1. One
might expect that this is problematic since we raise this value to a power p. We argue
however, that the result will be equivalent with the use of a µ

′

P (u) =
1
CµP (u) ≤ 1 ∀u,

since any normalization factor 1
C would be factored out by the denominator of equation

(3). This argument also shows the redundancy of the denominator rd in equation (2).
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Figure 1. In this figure a graph with 3
groups (red, green, blue) is shown. W1

and W2 depict two different random
walks of length 4. BothW1 andW2 visit
4 nodes that belong to other groups.
However, for p > 1: ξP (W1) ̸= ξp(W1).
For example: ξ2(W2) = 42√

42
= 4 and

ξ2(W1) = 42√
12+32

= 16√
10

> 4. Cross‐

Walk, would weigh these walks equally
well.

3.3 Metrics
The node representations, created by the methods described above, are evaluated on
three different metrics. The fairness is measured by the disparity between the given
groups and is defined below.

Influence Maximization — Starting at a certain node in the graph, the influence of that node
could be measured as the infected individuals through an Independent Cascade model
[6]. In order to get a measure that represents the influence of the whole graph well, the
most influential nodes, are used as starting node(s). The algorithm used for for finding
these points is k‐medoids which randomly initiates k medoids and iteratively assigns
nodes to clusters and updates the medoids accordingly. These most influential nodes
serve as seeds for the IC model to obtain the number of infected individuals. In this
setting, influence is measured as the percentage of foreign nodes reached [7].

Link Prediction —Node embeddings can be used to predict edges in a graph. This can be
implemented as a logistic regression model on the edges where the feature vector of a
certain edge between nodes v and u, with their node embeddings v⃗ and u⃗, is formulated
as (v⃗−u⃗)◦2, denoting theHadamard power with ◦. Performance of this task ismeasured
as the accuracy of the model where it is evaluated on positive samples that have been
excluded while training, and on an equal amount of generated negative samples.

Node Classification —Node embeddings can be used to identify their corresponding node
through node classification where a model maps from the embedding space to the origi‐
nal space. This can be done semi‐supervisedwith themachine learning algorithmLabel
Propagation, whose performance is measured by its accuracy.

Disparity — The fairness of a task can be measured with the metric disparity. Intuitively,
an algorithm is said to be fair when its performance on the different groups of the graph
is consistent. Let A be an algorithm and Q ∈ R and Qi ∈ R be its overall performance
and performance on group i respectively. Then A is said to be fair whenQi is similar to
Qj for all the groups in the graph. This similarity will be calculated as the variance:

disparity(A)= V ar(Qi : i ∈ [C])

Decreasing the disparity for different metrics will make the model’s decisions less re‐
sponsive to a sensitive attribute, which can be seen as a form of demographic parity.
[8]
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3.4 Datasets
The utilization of the datasets will be briefly outlined below, with further details avail‐
able in the original Crosswalk paper.

Rice-Facebook — The real‐world Rice‐Facebook dataset [9] includes Facebook friendship
connections between students of Rice university. This graph is made up of two groups
separated by age

Twitter — The real‐world Twitter dataset is a subgraph of a large Twitter dataset [10] in
which users are connected through tweets. The graph is made up of three groups based
on the user’s political standpoint.

Synthetic — Besides these real‐world datasets, the original paper considers two synthetic
datasets characterised by the number of classes k ∈ {2, 3}

Additional datasets — Furthermore, we test on synthetic datasets with more than three
groups. The motivation for this extension of research is twofold. Firstly, increasing the
number of clusters in the synthetic graphs covers a regime of real‐life graphs that have
not yet been explored in the published research. Real‐life graphs are often subdivided
intomany small clusters rather than a few larger ones. A priori, it is not obviouswhether
the reported superiority of CrossWalk extends to this regime. Nomention of the possible
effects of increasing the number of groups is made in the original paper. Importantly,
bymerely increasing the number of groups we compromise on realism as well since the
number of nodes per group decreases. To counter this effect, we accordingly increase
the number of nodes with respect to the synthetic graphs used in the original paper.
Besides providing a new testing ground for CrossWalk, graphswith three ormore groups
allow us to compare it to our proposed MoonWalk. In general, we expect the effect of
MoonWalkwith respect to CrossWalk to increasewhen increasing the number of groups.
As a minor difference with the original approach, we allow for some randomness by
drawing the intra‐ and intergroup probabilities from uniform probability distributions
piINTRA ∼ U(phom,min, phom,max) and pi,jINTER ∼ U(phet,min, phet,max) for all groups i
and j.

3.5 Hyperparameters

Hyperparameters for Node2Vec/Deepwalk — Throughout this research, we have constricted
ourselves to use an embedding dimension of size d = 128, in correspondence with the
original paper. Furthermore, we set the values of p, q, as defined in equation (1), to
p = 1, q = 1 such that we work solely with DeepWalk unless specifically mentioned. We
fix the random walk length for DeepWalk to a value of 40, and the number of walks to
30. The window size is set to equal 10.

Hyperparamaters for CrossWalk — For CrossWalk we have set the randomwalk length to d =
5, and the number of walks to r = 500. The parameters α and p are varied among our
experiments and are explicitlymentioned. In the comparison toMoonWalk, we increase
the random walk length to d = 8, in order to capture the difference.

Hyperparameters for MoonWalk —MoonWalk has the additional parameter P . In this re‐
search we have used the following values: P ∈ {1, 2, 3, 4}. Where P = 1 gives an equiv‐
alent method to CrossWalk and is therefore useful as a sanity check for interpreting the
results. In the results, MoonWalk with P = 3 is shown.
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Hyperparameters for Influence Maximization — Activation probability is set to 0.03 for syn‐
thetic data experiments and 0.01 for real‐world data (Twitter, Facebook). We take the
number of K‐Medoids to be 40.

3.6 Implementation
Khajehnejad et al. published an open GitHub page along with their paper including
source code and datasets. The GitHub repository can be found at https://github.com/ ah‐
madkhajehnejad/CrossWalk, which includes the followingdirectories: /data, /deepwalk,
/influence_maximization, /link_prediction and /node_classification. Inside the /data
folder, the authors provided implementations for FairWalk and CrossWalk.
On top of that, a notebook is given, that shows figures of hard‐coded data. In this project,
we aim to re‐calculate all embeddings using the code provided. All results given are
based on the average performance on 5 independent runs. The experiments were run
on a CPU, taking 10 minutes at most per setting.

4 Results

4.1 Results reproducing original paper

Result 1 — Figure 2 shows the performance of influence maximization on embeddings
obtained by DeepWalk, FairWalk, and CrossWalk. The same trend is observed as in the
original paper where CrossWalk experiences a larger decrease in disparity while the in‐
fluence stays consistent, and thereby supports statement 1.
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Figure 2. Influence Maximization on datasets used in original paper

Additionally, we apply FairWalk and CrossWalk on Node2Vec, with p = q = 0.5, on
the Rice Facebook data and observe that CrossWalk outperforms FairWalk again as it
experiences a larger decrease in disparity, see results in Figure 4

Result 2 — The results of Khajehnejad et al. onnode classification are reproducible. Showed
in Figure 4, CrossWalk outperforms FairWalk using Node2Vec as a baseline as was the
case in the original paper and confirms statement 2.
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Figure 3. Node classification on the Rice Face‐
book dataset
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Figure 4. Influence maximization on embed‐
dings obtained by Node2Vec

Result 3 — The performance of embeddings generated byDeepWalk, FairWalk, andCross‐
Walk is evaluated on link prediction. From Figure 5 can be concluded that we were
unable to reproduce the results from Khajehnejad et al. For both datasets, we can’t sub‐
stantiate the claimmade by Khajehnejad et al. that CrossWalk outperforms FairWalk as
it reduces disparity at the expense of only a slight decrease in accuracy. Hence we are
unable to verify statement 3.
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Figure 5. Link prediction on Rice‐Facebook and Twitter datasets

4.2 Results beyond original paper

Additional Result 1 — Figure 6 shows the influencemaximization ona 3‐grouped, 5‐grouped,
and 10‐grouped synthetic graph. Overall, CrossWalk’s superiority is preserved which
verifies CrossWalk’s ability to generalize as stated in statement 4. The results using a
constant group size are shown in sub‐figure 6c whereas sub‐figure 6d shows results
using different group sizes. Notable is that the gap in performance is much higher for
FairWalk than it is for CrossWalk. Presumably, this is due to the fact that when group
sizes become more equal, a larger fraction of nodes lives on the boundary rather than
in the interior of a large group and thus FairWalk is impacted more.

Additional Result 2 — Figure 6 shows the performance of influence maximization on a
3‐grouped, 5‐grouped, and 10‐grouped synthetic graph for the proposed method Moon‐
Walk using p‐norm 3. For all graphs, MoonWalk is able to outperform CrossWalk in
decreasing disparity while preserving the total influence.
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Figure 6. Influence maximization on synthetic graphs containing more groups

5 Discussion

We were pleased to reproduce a significant portion of the original paper. Through a
rigorous examination of the results, we managed to formally question the original find‐
ings. However, the reliability and credibility of these findings remain uncertain, given
the stochastic nature of the random walks and Node2Vec algorithms and the lack of
specification of random seeds and hyperparameters by the authors. In our belief, in‐
vesting time in identifying the appropriate hyperparameters could have facilitated the
reproduction of, for instance, the link prediction results. Although the hyperparame‐
ters were not specified by the authors, a comprehensive grid search could have enabled
their retrieval. Unfortunately, time constraints prevented us from pursuing this aspect
in this project, and will be addressed in future work. The same issue was encountered
in the search for a suitable Twitter dataset. The Twitter dataset as described in the paper
differed significantly from the one found in the provided source code. Given the signifi‐
cant discrepancy in the reproducibility results on the Twitter dataset, it is probable that
the difference in this dataset was responsible for the varying results.

Moreover, the implementation of the MoonWalk algorithm produced noteworthy re‐
sults. As anticipated, MoonWalk demonstrated superior performance when the num‐
ber of groups increased. Figure 7 in the Appendix also presents intriguing results when
different values of the P‐norm are considered. Further investigation is necessary to con‐
firm the superiority of the MoonWalk with regard to disparity without sacrificing per‐
formance. Overall, theoretical concepts were explained comprehensibly which made
understanding easy compared to the technical implementation that was deficiently doc‐
umented. The authors were unable to respond in time for elaborating on certain imple‐
mentation details. However, we did receive additional data which was crucial to obtain‐
ing certain results.
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(a) 3‐grouped graph with a constant group size of
300, 125, 75
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(b) 5‐grouped graph with constant group size of 350
(1x),125 (2x) 75 (2x)
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(c) 10‐grouped graph with a constant group size of
150
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(d) 10‐grouped graphwith group sizes of 400 (1x), 150
(4x) 100 (5x)

Figure 7. Influence maximization on synthetic graphs containing more groups

ReScience C 9.2 (#38) – Moens et al. 2023 11

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Original paper
	Extension

	Methodology
	Embedding Methods
	Node2Vec
	DeepWalk

	Re-weigthing algorithms
	FairWalk
	CrossWalk
	MoonWalk

	Metrics
	Influence Maximization
	Link Prediction
	Node Classification
	Disparity

	Datasets
	Rice-Facebook
	Twitter
	Synthetic
	Additional datasets

	Hyperparameters
	Hyperparameters for Node2Vec/Deepwalk
	Hyperparamaters for CrossWalk
	Hyperparameters for MoonWalk
	Hyperparameters for Influence Maximization

	Implementation

	Results
	Results reproducing original paper
	Result 1
	Result 2
	Result 3

	Results beyond original paper
	Additional Result 1
	Additional Result 2


	Discussion
	Appendix

