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Reproducibility Summary

Scope of Reproducibility — Exponential family variational autoencoders struggle with re‐
construction when encoders output limited information.
We reproduce two experiments in which we first train the decoder and encoder sepa‐
rately. Then, we train both modules jointly using ELBO and observe the degradation of
reconstruction.
We verify how the theoretical insight into the design of the approximate posterior and
decoder distributions for a discrete VAE in a semantic hashing application influences
the choice of input features to improve overall performance.

Methodology —We implement and train a synthetic experiment from scratch on a laptop.
We use a mix of authors’ code and publicly available code to reproduce a GAN reinter‐
preted as a VAE. We consult authors’ code to reproduce semantic hashing experiment
and make our own implementation. We train models the USI HPC cluster on machines
with GTX 1080 Ti or A100 GPUs and 128 GiB of RAM. We spend under 100 GPU hours for
all experiments.

Results —We observe expected qualitative behavior predicted by the theory on all exper‐
iments. We improve the best semantic hashing model’s test performance by 5 nats by
using a modern method for gradient estimation of discrete random variables.

What was easy — Following experiment recipes was easy once we worked out the theory.

What was difficult — The paper enables verification of exponential family distributions
VAE designs of arbitrary complexity, which require probabilistic modeling skills. We
contribute elaboration on the implementation details of the synthetic experiment and
provide code.

Communicationwith original authors —Weare extremely grateful to the authors for discussing
the paper, encouraging us to implement experiments on our own, and suggesting direc‐
tions for improving results over e‐mail.
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[Re] VAE Approximation Error: ELBO and Exponential Families

1 Introduction

VAE [1] is a generative model of pθ(x, z) where x is observed and z is a latent variable
designed to generate novel samples of x given z ∼ p(z) using a decoder pθ(x|z), jointly
learnedwith an encoder qϕ(z|x) using an Evidence Lower Bound (ELBO) objectiveL. The
objective consists of the latent prior loss and reconstruction loss.
The gap between the true data likelihood and ELBO is the divergence between the ap‐
proximate encoder and the true posterior:

log pθ(x)− L(θ, ϕ) = Epd
[DKL(qϕ(z|x)||pθ(z|x))] (1)

Impressive reconstruction results with VAEs involve employing autoregression [2], nor‐
malizing flows [3], hierarchies of latent spaces [4] or explicitly balancing rate‐distortion
tradeoff [5] to make this gap low.

[6] focuses on studying qϕ and pθ from the exponential family that includes continuous
Gaussian and discrete Bernoulli distributions. The so‐called consistent set of VAEs that
can model the posterior exactly under this assumption is shown to be quite restricted:
these models need to be linear mappings of sufficient statistics of observations and latents,
regardless of how deep or complex encoder and decoder neural networks are.

When an encoder is factorized and cannot fully model the posterior, joint optimiza‐
tion using ELBO forces the decoder to adapt to the posterior at the expense of recon‐
struction quality. [6] enables better understanding of VAE designs.

2 Scope of reproducibility

We support the following claims with our experiments:

• setting up the encoder with conditionally independent bit outputs causes approx‐
imation errors in a perfect decoder, as shown in Section 3 with a synthetic experi‐
ment;

• same behavior is observed on image data: conditionally independent Gaussian
encoder causes approximation errors in a decoder initialized by GAN pretraining,
as shown in Section 4;

• word counts are better than word frequencies in a Bernoulli VAE in a semantic
hashing task, as shown in Section 5.

3 Gaussian mixtures with factorized encoder

3.1 Methodology
We study the choice of encoder output distribution on a toy problem. [6] predicts achiev‐
ing zero approximation error when the approximate posterior can exactly represent the
true posterior. We induce a factorization in the posterior and expect approximation
errors to arise. We implement this experiment from scratch using PyTorch.

Model description — Following [6], wedefine a ground truthdecoder p∗(x, z) = p∗(z)p∗(x|z)
to be a mixture of four 2D Gaussians, where x ∈ R2, z ∈ {1, 2, 3, 4}, p∗(z) = 0.25, and
p∗(x|z) = N (x|µθ(z), σ

2I).
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Figure 1. Cluster assignments according to the posterior distributions:
(a) ground truth p(z|x) computed using Bayes rule
(b) approximate qϕ trained using ELBO with frozen pθ
(c) approximate qϕ trained using ELBO jointly with pθ

Our decoder parameters are a single linear layer θ : R4 → R2. Given a latent z repre‐
sented using one hot encoding θ computes a mean parameter: µθ(z) = θz. Columns of
θ are set to (−1, 0), (0, 0), (1, 1), (1,−1). We guess these values by looking at cluster cen‐
ters of Figure 2 in [6]. Computed mean and fixed identity covariance scaled by σ = 0.01
determine the normal distribution that is used to evaluate log probability of x.

Our encoder is defined as qϕ(z|x) ∝ exp⟨gϕ(x), zb⟩, where ⟨·, ·⟩ is a dot product. We
implement gϕ as a network with three randomly initialized linear layers with input di‐
mension 2, hidden dimensions of 64, and output dimension of 2. Every layer except the
output uses ReLU activation functions. We rely on default PyTorch initialization.

zb ∈ {0, 1}2 is a random variable that can be viewed as a string of two bits. To com‐
pute qϕ(z|x), we evaluate gϕ(x) once and compute inner products of its output with
each possible value of zb = [0, 0], [0, 1], [1, 0], [1, 1] and apply the softmax function com‐
putes exp and normalizes, making the output a proper probability distribution. In this
computation each bit of zb is considered independently, making the approximate poste‐
rior distribution factorized. The factorization is chosen to demonstrate how preventing
the encoder from exactly modeling the posterior causes approximation errors in the
decoder.

Dataset —We make our training set x by sampling 2000 points from the ground truth
decoder gϕ after setting the random seed to 0. To sample we choose a value of z and
then choose a point from a univariate normal distribution given z.

Experimental setup —We train the encoder by minimizing negative ELBO keeping the de‐
coder frozen for 10000 steps. We use Adam with a learning rate of 1e‐3. Finally, we
unfreeze the decoder and train both modules jointly for 10000 steps. We perform full
batch training.

To calculate the reconstruction loss part of ELBO, we evaluate expectation

Eqϕ log pθ(x|z) =
∑
i

qϕ(zi|x) log pθ(x|z = zi)

exactly, running the decoder forward once for every possible z.

It takes under 10 minutes to run all experiments on a laptop CPU.
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3.2 Results
After training the encoder alone, we achieve ELBO of−3.37. After training encoder and
decoder jointly we observed a large improvement of ELBO to −3.31, however the clus‐
ters’ geometric structure as shown in Figure 1 (c) is completely destroyed. In the orig‐
inal paper the ELBO value after first frozen decoder training is −3.74 and improves to
−3.70. The relative behavior of the values is the same, however the overall likelihood is
impacted by different choice of ground truth cluster center locations: perturbing their
relative positions causes small changes in likelihoods. Changing σ significantly impacts
the scale of the values.

The factorization assumption in the encoder prevents our VAE from being consistent.

Restoring consistency of this VAE — A consistent VAE [6] for exponential family distributions
allows the encoder to model the posterior exactly. We get rid of the factorization to out‐
put all four sufficient statistics of z. We simplify the encoder network to have a single
linear layer with input dimension 2 and output dimension 4 and use the softmax activa‐
tion function in the output.

4 DCGAN turned Gaussian VAE on CelebA

4.1 Methodology
In this experiment, we train a ground truth decoder as a GAN [7]. Then, we pretrain
the encoder using conditional likelihood. Next, we reinterpret GAN generator as the
decoder and then train both components jointly using ELBO. We compare FID score [8]
before and after joint training to detect approximation errors.
We use the code of [9] to implement DCGAN [10]. We use the authors’ code for condi‐
tional likelihood training of the encoder and joint fine‐tuning.

Model description —We designate a trained DCGAN gθ : R100 → R64×64×3 to be ground
truthdecoder,making it probabilistic by addingGaussiannoise: z ∼ N (0 ∈ R100, I), x ∼
N (gθ(z), σ

2I), σ = 0.05. We use an architecture similar to DCGAN as the encoder: trans‐
posed convolutions are replaced with convolutions, and ReLU activation is replaced
with leaky ReLU with slope 0.2.

Dataset —We use an aligned and cropped version of the CelebA dataset. It contains
202,599 face images of 10,177 celebrity identities [11].

Experimental setup — To train a ground truth decoder as a DCGAN, we follow hyperparam‐
eters from [9], training with an epoch limit of 100 epochs. We select a checkpoint from
one epoch before mode collapse, inspired by [12].

Next, we train the encoder: we sample z, generate x given z, use the encoder to pre‐
dict parameters µ and σ given x and maximize N (z|µ, σ) using Adam optimizer with a
learning rate of 2e‐4 for 1e6 iterations. After training we compute FID between 2e5 im‐
ages generated from the ground truth decoder and re‐decoded images after encoding
them.

Next, we jointly update both modules with ELBO using Adam with a learning rate
of 2e‐4 for another 1e6 iterations. After joint training we compute FID between same
ground truth and re‐decoded images from new models.
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Computational requirements — Pretraining of the decoder as a GAN takes about 5 hours.
Training the encoder takes about 1 hour. Joint training takes about 3 hours. All ex‐
periments are performed on A100 40GiB GPUs.

4.2 Results
We report results in Table 1: we see ELBO improve after joint training. However this
happens at the cost of introducing approximation errors: we observe significant degra‐
dation of FID.

Why does ELBO go up, but FID goes down? Optimization of ELBO harms a good im‐
age decoder to accommodate the parameters of approximate posterior. [6] argue that a
Gaussian latent variable model is not expressive enough to generate realistic images.
[6] additionally performs experiments where σ is a learned parameter which we choose
to leave out for simplicity.

Table 1. CelebA results

Experiment ELBO↑ FID↓
trained encoder, frozen decoder ‐19072.746 1.311
joint training 5137.171 71.852

5 Semantic hashing on 20 Newsgroups

5.1 Methodology
We investigate a Bernoulli VAE for the semantic hashing task. In this task, we aim to
learn an encoder that maps our document to binary codes comparable using Hamming
distance. We compare the performance of term frequencies as features in [13] to term
counts suggested in [6].
We first become acquainted with the experiment by running the code provided by the
author. One experiment for one set of hyperparameters runs for about 30 minutes on
oneGPU. Thewhole set of experiments takes about 16 GPUhours in total. Next, we study
the author’s code by reimplementing it and improving results as described in Section
5.1.3.

Dataset —Weuse a preprocessed 20Newsgroups dataset [14]. The vocabulary is restricted
to 10000 most common words. Each document is represented as a vector of smoothed
word counts. The training set contains 11269 documents, and a test set contains 7505
documents. We do not use text categories.

Model description — The encoder takes a vector of 10000 word counts as input and passes
them throughone linear layerwith output dimension b, representing logits of bBernoulli
variables. The decoder takes b binary digits as input and passes them through d hidden
layers with hidden dimension 512 and output dimensionmatching vocabulary size. The
final activation of the decoder is log of softmax.

Gradient estimation for Bernoulli variables — Evaluation of ELBO involves estimating the de‐
coder likelihood over the approximate posterior distribution. In discrete settings, im‐
plementations resort to Monte Carlo sampling. A commonly used method for gradient
estimation of discrete variables is the REINFORCE algorithm [15]. This estimator is un‐
biased and has high variance. Reducing variance involves takingmany samples, trading
variance for bias [16], and sample augmentation.
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Table 2. Train Negative ELBO (lower is better)

d=0 d=1 d=2
b e1 e2 e3 e1 e2 e3 e1 e2 e3
8 406 419 432 325 382 407 325 363 415
16 372 383 418 191 298 397 169 287 406
32 332 343 409 153 181 391 118 170 405
64 288 304 405 151 174 391 122 165 401

Table 3. Test Negative ELBO (lower is better). All tests use DisARM gradient estimator. For the best
overall configuration (no hidden decoder layers, word counts as features, no hidden encoder lay‐
ers, 64 latent outputs) we repeat the column from the original paper for comparison. The column
is labeled “ARM” for the used gradient estimator.

d=0 d=1 d=2
b e1 ARM e2 e3 e1 e2 e3 e1 e2 e3
8 423 423 444 439 413 453 427 419 431 431
16 409 409 451 430 403 466 431 408 448 441
32 397 396 439 433 396 454 455 402 466 473
64 387 392 460 467 393 486 481 401 484 478

ARM [17] re‐parametrizes Bernoulli variables using a continuous Logistic distribution
and evaluates them in antithetic pairs (ϵ,−ϵ), benefiting fromaugmentation. DisARM [18]
improves upon ARM by observing that Logistic reparametrization comes at the cost of
increasing variance on its own and integrates continuous variables out using a condi‐
tioning technique. We implement DisARMmethod in our experiments.

Experimental Setup —Weuse a seed of 1, Adamwith a learning rate of 1e‐3 and a batch size
of 256. We train the model for 1000 epochs estimating ELBO using an antithetic gradi‐
ent estimator. We’re additionally computing ELBO without augmentations to estimate
training and test losses. Next, we train the model for 500 more epochs, averaging the
loss over 10 backward passes for further gradient variance reduction.

We sweep over the following hyperparameters: varying latent dimension b = 8, 16,
32, 64, varying decoder hidden layer count d = 0, 1, 2. We use three following encoder
designs. We refer to models with word counts as features as configuration e1. We con‐
vert word counts to word frequencies and add an extra hidden layer of dimension 512 to
the encoder in configuration e2. We use word frequencies without extra hidden layers
in configuration e3.

5.2 Results
Configurations with word counts as features consistently achieve lower negative ELBO,
as shown in Tables 2 and 3.

We also note that best test results are achieved very early in training and low negative
ELBO values in Table 2 correspond to final epochs: there is a significant gap in ELBO
values between test and train sets. In accordance with the experiment protocol of [6],
we keep track of all test ELBOs over time and choose theminimum to report, so it would
be fair to consider this test set as development.

In our implementation, we use DisARM to estimate gradients and see that its variance
reduction additionally improves the best configuration performance by 5 nats over re‐
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sults reported in [6], as shown in Table 3. We report only one column for brevity and
refer readers to the original paper for side‐by‐side comparison.

6 Conclusion

We focused on the most fundamental examples of the exponential family models: con‐
tinuous Gaussian and a discrete Bernoulli and observed the importance . The original
paper provides a general framework to analyzemore complex distributions that fall into
exponential family, like Markov Random Fields, which we would like to explore in the
future.
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