
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2022

[Re] If you like Shapley, then you’ll love the core

Anes Benmerzoug1, ID and Miguel de Benito Delgado2, ID
1appliedAI Initiative GmbH, Munich, Germany – 2appliedAI Institute gGmbH, Munich, Germany

Edited by
Koustuv Sinha,
Maurits Bleeker,

Samarth Bhargav

Received
04 February 2023

Published
20 July 2023

DOI
10.5281/zenodo.8173733

Reproducibility Summary

We investigate the results of [1] in the field of data valuation. We repeat their experiments and
conclude that the (Monte Carlo) Least Core is sensitive to important characteristics of the ML
problem of interest, making it difficult to apply.

Scope of Reproducibility —We test all experimental claims about Monte Carlo approxima‐
tions to the Least Core and their application to standard data valuation tasks.

Methodology —We use the open source library [2] for all valuation algorithms. We docu‐
ment all details on dataset choice and generation in this paper, and release all code as
open source in [3].

Results —We were able to reproduce the results on Least Core approximation. For the
task of low‐value point identification we observed similar performance for least core
and (Truncated Monte Carlo) Shapley values, whereas for high‐value identification, the
least core outperformed other methods. In two experiments, we must depart from the
original paper and arrive at different conclusions. Overall, we find that the Least Core
offers similar results to other game‐theoretic approaches to data valuation, but it does
not overcome the main drawbacks of computational complexity and sensitivity to ran‐
domness that such techniques have.

What was easy — Open source libraries like DVC and ray enabled efficiently designing and
running the experiments.

What was difficult — Data generation was difficult for dog‐vs‐fish because no code was
available. Computing the Monte Carlo Least Core was very sensitive to the choice of
utility function. Reproducing some experiments was difficult due to lack of details.

Communication with original authors —We asked the authors for details on the experimen‐
tal setup and they kindly and promptly sent us the code used for the paper. This was
very useful in understanding all steps taken and in uncovering some weaknesses in the
experiments.

Copyright © 2023 A. Benmerzoug and M.D.B. Delgado, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Miguel de Benito Delgado (m.debenito@appliedai-institute.de)
The authors have declared that no competing interests exist.
Code is available at https://github.com/aai-institute/mlrc22-like-shapley-love-the-core. – SWH
swh:1:dir:294da04ace110a1e2944203314f968a0bbf3c0a1.
Open peer review is available at https://openreview.net/forum?id=vWzZQAahuW.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 1

https://orcid.org/0000-0002-0270-8446
https://orcid.org/0000-0002-3045-3786
mailto:m.debenito@appliedai-institute.de
https://github.com/aai-institute/mlrc22-like-shapley-love-the-core
https://archive.softwareheritage.org/swh:1:dir:294da04ace110a1e2944203314f968a0bbf3c0a1/
https://openreview.net/forum?id=vWzZQAahuW
https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

1 Introduction

Data Valuation inMachine Learning (ML) is commonly understood as the task of assign‐
ing a scalar value to samples in a training set Dtrain which reflects their usefulness for a
ML algorithm. Being a form of credit (or payoff) assignment, a game‐theoretic concept
called Shapley value (SV), which is unique in fulfilling several reasonable axioms, has es‐
tablished itself as a popularmeans of computing such a valuation function ϕ : Dtrain → R.
Valuationmethods are interesting for applications ofmodel debugging, data acquisition,
outlier detection and active learning. We refer to [4] for a recent survey.
TheOriginal Paper [1] (OP in the sequel) proposes an alternative game‐theoretic solution
concept, the Least Core (LC) for the task of valuation. The LC dispenses with some of the
properties that SV fulfils and whose relevance inML is contentious,1 but has instead the
property of Coalitional Rationality (see the discussion in Section 5.3).
The main obstacle with combinatorial methods stemming from game theory is the cost
of exact computation, which is exponential in the number of training samples. For this
reason, much work revolves around Monte Carlo approximations, as is the case of the
OP.

1.1 Notation and definitions
We follow thenotation of theOP and setN = Dtrain, n = |N | andx : N → R the valuation
function, which we identify with a vector x ∈ Rn. The utility function v : 2N → R is the
score of a ML model trained on some S ⊆ N , evaluated on unseen data Dval. For some
tasks, an additional held‐out set Dtest is used. The least core (LC) is the set of solutions
x ∈ Rn to the following minimisation problem:

min e s.t.∑
i∈N xi = v(N)∑

i∈S xi + e ⩾ v(S) ∀S ⊆ N.
(1)

Each of these is a complete valuation function, or payoff. The scalar e > 0 is known
as subsidy and the set of all solutions as e-core. The 0‐core is known simply as the core.
Because (1) has 1+2n constraints, the authors propose to solve a reduced problem with
onlym ≪ 2n:

min
e>0

e s.t.∑
i∈N xi = v(N)∑

i∈Sj
xi + e ⩾ v(S) Sj ∼ D, j ∈ {1, . . . ,m},

(2)

where D is any distribution over the power set of N .2 After obtaining an optimal ê in
(2), the so‐called egalitarian least core is selected from the ê‐core by minimizing the ℓ2
norm:

min ∥x∥2∑
i∈N xi = v(N)∑

i∈S xi + ê ⩾ v(S) ∀S ⊆ N.
(3)

We will denote the algorithm solving (2), then (3), Monte Carlo Least Core (MCLC). In
order to connect the solution of (3) with that of (1), the authors define the following
relaxation: Let e⋆ be the optimum in (1), a payoff x is in the δ‐approximate least core iff

PS∼D

(∑
i∈S

xi + e⋆ ⩾ v(S)

)
⩾ 1− δ. (4)

1In particular the axiom of linearity.
2BecauseN might not be among the Sj , one must enforce non‐negativity of the subsidy e.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 2

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

2 Scope of reproducibility

The first theoretical result (OP Theorem 1) is a sample bound for the reduced problem
(2) which is polynomial in n: usingm = O

((
n+ log 1

∆

)
δ−2
)
samples, there is a (1−∆)‐

probable guarantee of obtaining a δ‐approximate least core. The experimental claim
(OP Section 5.1 and Claim 1 below) is that this bound translates to an effective algorithm
for computing the LC. It is substantiated by an experiment in feature valuation using
three public datasets.3
The second theoretical result is a further relaxation adding a slack variable (subsidy)
to the approximate constraint (4), which becomes PS∼D

(∑
i∈S xi + e⋆ + ε ⩾ v(S)

)
⩾

1− δ. The set of payoffs for which this holds is called (ε, δ)‐probably approximate least
core. For this condition a new sample bound which is logarithmic in n is obtained in
OP, Theorem 2. There is however no corresponding experimental claim related to this
result. We discuss this in Section 5.2.
The second set of experiments attempts to verify that MCLC payoffs outperform SV for
data valuation tasks. These are Claims 2 and 4 below. An additional experiment checks
how MCLC handles noisy data, cf. Claim 3.
The third and final theorem of the paper is a minimal sample complexity of a similar
relaxation for a further solution concept, the nucleolus. Given the negative character of
the result, which states the impracticality of the nucleolus, we did not verify it experi‐
mentally.
Finally, the authors comment on the relevance of the LC forML applications. Wediscuss
it in Section 5.3
To summarise, the main claims which we set to verify or refute are:

Claim 1 Sub-sampling of constraints for (1) leads to a stable solution converging to the LCwith
high probability. See Section 4.1.1.

Claim 2 Under a limited computational budget, MCLC outperforms SV in best and worst sam-
ple removal. See Section 4.1.2.

Claim 3 MCLC assigns lower value to noisy data than to “clean” one, and the fraction of utility
assigned to clean data increases as the noise level does. See Section 4.1.3.

Claim 4 Under a limited computational budget, MCLC outperforms SV in flipped label detec-
tion. See Section 4.1.4.

3 Methodology

We verified all our implementation choices with the source code that the authors pro‐
vided via email, to the extent that it matched the paper and to the best of our under‐
standing. In what follows, we detail the OP’s setup, and any departure will be explicitly
mentioned. In particular, we remark that the OP’s code for the solution of (2) includes
an additional non‐negativity constraint on the payoffs which we did not implement.
All experiments are repeated 10 times and 95% Normal confidence intervals estimated.
Each experiment repetition uses either a new split for “natural” data or generates it anew
in the case of synthetic data.

3.1 Model descriptions
Webenchmark TruncatedMonte Carlo Shapley (TMCS, [5]), Group Testing Shapley (GTS,
[6]), Monte Carlo Least Core (MCLC), Leave One Out (LOO) and random values.

3Feature valuation refers to using features instead of samples as players in the coalitional game. An eval‐
uation of the utility over a subset of features S corresponds to training the model on the whole Dtrain using
only those features.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 3

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

Experiment 1: δ-approximate least core —Weuse logistic regressionwith the LıBLıNEAR solver
and 100 maximum iterations. We test three scoring functions v for the utility: accuracy,
average precision and F1 score (the last two are not in the OP). We compute the MCLC
with fixed constraint budgets of 1, 2, 5, 7.5, 10 and 15% of all 2n constraints.

Experiment 2: Sample removal —We use a logistic regression model with the LıBLıNEAR
solver and 100 iterations. As scoring function for the utility we used accuracy. For data
values we use MCLC, TMCS, GTS, LOO and random.

Experiment 3: Noisy data detection —We use logistic regression with the LıBLıNEAR solver
and 100 iterations. As scoring function for the utility we used accuracy. For valuation
we use MCLC, random, TMCS, GTS and LOO (the last three are not in the OP).

Experiment 4: Fixing mislabeled data —We use a Gaussian Naive Bayes model and 3 scoring
functions for the utility: accuracy, average precision and F1 score. For valuation we use
MCLC, random, TMCS, GTS and LOO (the last three are not in the OP).

Hyperparameter search —We did not run any.

3.2 Datasets
In all experiments we used the same datasets as in the paper or our best approximation.
The dog‐vs‐fish dataset was unavailable. We release code to generate it as part of the
experiments.

Experiment 1: δ-approximate least core — Train‐test split in all three datasets was 80% / 20%.
The OP’s authors use only 11 features in every dataset, but we used all of them. All
features were standardised.

• House: US Congressional Voting Dataset. 16 features. Additional pre‐processing:
NaN values imputed with most frequent ones, encoded categorical features and
target labels.

• Medical: Breast Cancer Dataset. 9 features. Additional pre‐processing: Dropped
rows with NaNs, dropped ıD column.

• Chemical: Wine Dataset. 13 features. Additional pre‐processing: None.

Experiment 2: Sample removal —

• Synthetic Gaussian data with 2 classes, 200 training samples, 5000 testing samples.
To generate, we sample from a 50‐dimensional spherical Gaussian with parame‐
ters µ = 0, Σ = Id. 50% of the features are selected at random and a sigmoid
is applied to their sum. The 5200 resulting scalars are thresholded with as many
U(0, 1) values to generate the labels. All features were standardised.

• Dog vs Fish dataset with 2 classes, 600 imbalanced training samples, 600 imbal‐
anced testing samples. Pre‐processedwith pre‐trained INCEPTıONV3model to pro‐
duce embeddings in R2000. All features were standardised.

Experiment 3: Noisy data detection —Using the synthetic Gaussian dataset, we select 20%
of the training samples and apply increasing noise to the covariates in multiples 0.5, 1,
2 and 3 of the standard deviation of the original data. This differs from the OP, where
“noise level” is not clearly defined.4

4And from the original code, which appends data with fixed noise while also flipping the labels. We believe
this transformation to confuse the experiment so we followed the procedure above.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 4

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://www.openml.org/search?type=data&status=active&id=56
https://www.openml.org/search?type=data&status=active&id=43611
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

Experiment 4: Fixing mislabeled data —We take 1000 samples from the Enron1 spam dataset
[7] and pre‐processwith ſCıĸıT‐LEARN’s TfIdfVectorizer to convert the emails to amatrix
of token counts. 30% of the data is reserved for Dtest, the remaining is split 70/30 into
Dtrain andDval. We randomly flip 10%, 20%and 30%of the training set labels (as opposed
to just 20% in the OP). We depart from the OPs implementation, which also adds noise
to the covariates.5

3.3 Experimental setup and code
We used the open source library PYDVL [2] for its implementation of valuation methods
and release the code for all our experiments at [3]. Environment setup is done with
POETRY and easy experiment reproduction is ensured with DVC [8] pipelines. Detailed
instructions are given in the repository’s documentation.

3.4 Computational requirements
Single experiments without uncertainty estimates can run on a 2022 consumer laptop
without a GPU in a few hours, but computing confidence intervals considerably in‐
creases cost. Because the problems are embarrasingly parallel, time scales almost lin‐
early with the number of cores, so we used one high‐cpu machine in GCP to repeat the
experiments before submission.

4 Results

4.1 Results reproducing the original paper

Experiment 1: δ-approximate least core — The goal is to verify Claim 1. As in the OP, we
uniformly samplem1 = 0.01× 2n, . . . ,m6 = 0.15× 2n constraints and solve (2), then (3),
obtaining payoffs x(j) ∈ Rn. The fraction of all 2n constraints which is fulfilled by each
x(j) is calculated. We are able to (almost) exactly reproduce OP, Figure 1, concluding
that this gives credence to the procedure, see Figure 1. See however our discussion in
Section 5.1.
Because we used every feature instead of just 11, we had higher scores across the board,
hence lower utility variance, possibly leading to a smaller fraction of constraint viola‐
tions overall wrt. the OP. In particular the maximal utility v(N) is higher for all three
datasets, leading to higher payoffs.

0.01 0.02 0.05 0.075 0.1 0.15 0.2
Fraction of Samples

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Ac
cu

ra
cy

House Medical Chemical

0.01 0.02 0.05 0.075 0.1 0.15 0.2
Fraction of Samples

100

7 × 10 1

8 × 10 1

9 × 10 1

Av
er

ag
e

Pr
ec

isi
on

House Medical Chemical

0.01 0.02 0.05 0.075 0.1 0.15 0.2
Fraction of Samples

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

F1
 S

co
re

House Medical Chemical

Figure 1. For all 3 utilities, asmj grows, the approximate payoffs fulfil an increasing fraction of the
whole set of constraints. δ in (4) corresponds to the distance from the top of the bars to y = 1. For
a fixed height, ∆ of the main theorem corresponds roughly to the portion of the black bar below
it.

5We believe this to be a bug but are unable to verify it since the complete code for this experiment was
unavailable.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 5

https://www2.aueb.gr/users/ion/data/enron-spam/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://github.com/appliedAI-Initiative/pydvl
https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

Experiment 2: Sample removal — The goal is to verify Claim 2. Fixed budgets of 10K and 50K
subsets S ⊆ N are fixed for the methods TMCS, GTS and MCLC.6 LOO requires only n
evaluations of the utility and random values do not require a budget. Two sets of exper‐
iments are run after computing the payoffs. In the first, training samples are ranked
from highest to lowest value, and in the second from lowest to highest. In each case,
samples are successively removed from Dtrain in the corresponding order, the model is
retrained, and its performance on Dtest recorded.
Surprisingly, we observe that LOO performs comparably to the game‐theoretic methods
with the synthetic data, casting doubt over the adequacy of the choice of distribution.

Worst sample removal, Figure 2: For the synthetic data our results do not allowpicking
a winner, but GTS is clearly useless with so few subsets of N . For the natural data we
observe clearer margins than the OP’s (both for MCLC and TMCS) but note that theirs
and ours are uninformative, representing just a 0.2% change in accuracy.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.990

0.992

0.994

0.996

0.998

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

Figure 2. Worst sample removal. LTR: synthetic data 10K and 50K subsets, natural data 10k subsets.

Best sample removal, Figure 3: For the synthetic data our results qualitatively follow
those of the OP, except for LOO as noted. For the natural data we observe similar trends
to the OP, with MCLCmarginally better than TMCS, but again by an inconclusive 0.5%.7

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.970

0.975

0.980

0.985

0.990

0.995

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

Figure 3. Best sample removal. LTR: synthethic data 10K and 50K subsets, natural data 10k subsets.

Experiment 3: Noisy data detection — The goal is to test Claim 3. We defined our own experi‐
ment:8 For eachnoise levelwe compute: the fraction of noisy samples among thosewith
the lowest 20% assigned payoffs, the percentage of total utility assigned to the clean data,
and the sum of all values assigned to noisy, clean and all data.
MCLC and TMCS perform comparably (Figure 4), but even at 3σ noise both detect less
than 50% of the noisy samples. Furthermore, the percentage of “clean” utility is approx‐
imately constant wrt. noise level, refuting Claim 3. Interestingly, the distribution of

6Time constraints forced us to leave the 50K experimentwith dog‐vs‐fish out, butwewere observing similar
trends before interrupting it.

7However, at a buget of 5K, we observe that TMCS outperforms MCLC, in contrast to Claim 2.
8The OP lacked details, and their code seemed to lack this particular experiment.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 6

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

values is insensitive to the noise (Figure 5), so that the identification of samples is due
to different rankings, and not because of more extreme values.

Random Least Core TMC Shapley
Method

0.0

0.2

0.4

0.6

0.8

1.0

No
isy

 D
at

a
Po

in
ts

 A
cc

ur
ac

y
Noise Level

0.0 0.5 1.0 2.0 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.77

0.78

0.79

0.80

0.81

0.82

0.83

Pe
rc

en
ta

ge
 o

f t
he

 To
ta

l S
hi

fte
d

Va
lu

e

Random Least Core TMC Shapley

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e

Clean Data Noisy Data Total Value

Figure 4. LTR: a) Fraction of noisy samples among the lowest 20% values; b) Percentage of value
assigned to noisy data, values were shifted up to be non‐negative; c) Sum of values for each subset
(MCLC).

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Value

0

5

10

15

20

25

30

Co
un

t

Noise level
0.0 0.5 1.0 2.0 3.0

0.004 0.002 0.000 0.002 0.004 0.006 0.008
Value

0

5

10

15

20

25

30

35

Co
un

t

Noise level
0.0 0.5 1.0 2.0 3.0

0.005 0.000 0.005 0.010 0.015 0.020
Value

0

10

20

30

40

Co
un

t

Noise level
0.0 0.5 1.0 2.0 3.0

Figure 5. Histograms of values for increasing noise levels. LTR: Random, MCLC and TMCS.

Experiment 4: Fixing mislabeled data — The goal is to verify Claim 4. For each amount of
flipped data, the payoffs are computed using 5K elements of 2N . Training points are
ranked by increasing value and successively removed from Dtrain, retraining with every
removal and evaluating performance on Dtest.
We could not reproduce the OP using accuracy as score. For average precision and F1,
we did observe the reported behaviour for MCLC, but it was matched and even outper‐
formed by TMCS. The same happened for detection rate, with TMCS around 50% better
than MCLC. Given our experience in Section 4.1.2 we believe that the choice of 5K con‐
straints might be too low for MCLC.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Random
Least Core
TMC Shapley

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e

Pr
ec

isi
on

Random
Least Core
TMC Shapley

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage Removal

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

F1
 S

co
re

Random
Least Core
TMC Shapley

Figure 6. Performance after worst‐sample removal for three scoring functions and 30% flipped
labels.

4.2 Results beyond original paper
As reported above: we tested several scoring functions for the utility besides accuracy;
we repeated the experiments more times and computed confidence intervals for all

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 7

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

quantities; we computed detection rates for noisy covariates and flipped labels in Sec‐
tions 4.1.3 and 4.1.4.

5 Discussion

Themajor conclusion we extract from our experiments is that MCLC performs better in
identifying high value points, as measured by best‐sample removal tasks. In all other
aspects, it performs worse or similarly to TMCS at comparable budgets. It is also more
computationally intensive because of the solution of large linear and quadratic opti‐
mization problems. For this reason we would select (some variation of) SV for outlier
detection, and perhaps MCLC for the selection of interesting points, but we believe that
more benchmarks are required.
One major point left out by the OP and us is the effect that the variance of the utility has
on the values computed. This canbemeasuredby the concept of “rank stability”, defined
in [9]. In our opinion it, or some variation thereof, should be part of all benchmarks in
data valuation. To isolate the effect, one should use deterministic utilities too.
Finally, we note that differences in datasets, data splits and model training have repeat‐
edly led to different (higher in our case) model scores, and hence values. For instance,
despite generating the synthetic data with what we believed to be the exact same proce‐
dure, we have had around 5 percentage points higher accuracy in several experiments.

5.1 Computational cost of the δ-approximate least core
Our main observation about the experiment in Section 4.1.1 is the following: The core
(pun intended) of the OP is Claim 1, namely that it is enough to solve (2) with m =
O(n/δ2) sufficiently large to fulfil to have a set of payoffs which is close to the exact
e⋆‐LC in the sense of (4). We find that their experiment only tackles this in a loose way.
As one usesmore constraints for (2), the fraction of all constraints fulfilled does increase.
But no investigation is done of the constants hidden in the asymptotic bound. As the OP
points out, this can be seen to be of minor relevance since it isO(n), but it is relevantfor
low n, especially if, as we suspect, the constant hides a dependency on the range of the
utility as is typically the case in such bounds, even in OP, Theorem 2.
We also note that this experiment could have been done in data valuation using a small
dataset, e.g. less than 20 samples. Finally, we believe that a deterministic utility would
be better suited for the verification of the (1 − ∆)‐probable solution, because it would
avoid the additional randomness inherent to ML training.

5.2 Applicability of the (ε, δ)-approximate least core
The logarithmic sample bound is a result of relaxing (4), not of a change in the problem
formulation. Values of ε > 0 increase the fraction of sets for which the weaker con‐
straints are satisfied, effectively decreasing δ. This is potentially analogous to increasing
δ while fixing ε = 0. It would be interesting to know how both are related.
But crucially, it is unclear how to use this bound in practice. What is a reasonable value
for the slack ε and what is the corresponding sample size? How does this affect the
ranking of payoffs and consequently sample removal, outlier detection, etc.? We believe
that these questions should be addressed if the concept of (ε, δ)‐least core is to have any
practical application.

5.3 The least core in ML
In OP, Section 4, the authors discuss the relevance of the LC in machine learning and
how it compares to SVs. Their arguments in favour of the LC are:

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 8

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

1. The LC fulfils the same axioms as SVs except for linearity. However this defficiency
is inconsequential if one evaluates the model on the whole test set instead of sam‐
ple by sample.

2. The stability property (Coalitional Rationality) aligns with human expectations of
fairness better than SVs, and enables using the LC for actual economic compensa‐
tion of data providers because it produces payoffs which are plausible, in the sense
that “every coalition is compensated for at least its market value”.

3. SVs suffer fromcomplexity results: exact computation is known tobeNP‐complete,
and there are hardness results for confidence intervals. This makes Monte Carlo
approximations necessary.

We agree with the first point made and do not elaborate on it.
As to the second point, one can ask whether Coalitional Rationality really matters in ML
applications. This property ensures that every coalition is credited at least as much as it
is worth in terms of the given utility. This is allegedly of interest when paying multiple
data vendors: as a buyer one would like a credit assignment scheme that encourages
providing data. However, we see a major technical dificulty in the application of data
values to payments: they tend to concentrate around 0, with only the extremes signifi‐
cantly different. This is enough for worst/best data identification, but assigns very unin‐
formative values to most points. Even more so, taking into account rank instability due
to the stochasticity of ML training procedures (i.e. running the valuation a second time
can permute many samples).
Regarding the third item, Monte Carlo estimates of SVs are known to require O(n) sub‐
sets, but this is indeed not the case for the well‐known TMCS, which employs heuristic
stopping criteria. Nevertheless, we find that in practice this is not somuch of an issue as
are the stochasticity of the utility and its sensitivity to the size of the subset used. Gener‐
alizations of SV to semi-values, and in particular the Banzhaf index [9], exhibit provably
robust behaviour wrt. these issues. In addition, the (ε, δ)‐approximate algorithm of [9]
includes an O(log(n/δ)/ε2) sample bound for ℓ∞‐good approximations.

5.4 What was easy
Using open source libraries simplified and accelerated implementation.

5.5 What was difficult
With regards to the reproduction of the OP, we found several experiments difficult to in‐
terpret, even finding the need to design new ones instead. Our suggestion to the authors
would be to always release code in a public repository clearly separating experiment con‐
figuration from execution, allowing reproduction, but also changes to the experiments
just by modifying configuration files. There are multiple ways to achieve this, one of
them being DVC [8], but there exist many others.
But perhaps the most difficult aspect of data valuation is the inherent stochasticity and
lack of convexity ofmostML training procedures. This yields a very noisy signal,making
applications brittle. In particular, the choice of the scoring function is crucial, a fact
reflected in most sample bounds in the literature, where its range typically appears as
an additional quadratic factor.

5.6 Communication with original authors
The authors kindly replied to our first questions and request for code. Alas, a nearing
deadline made any further communication impossible and we could not ask for feed‐
back on our analysis.

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 9

https://rescience.github.io/

[Re] If you like Shapley, then you’ll love the core

References

1. T. Yan and A. D. Procaccia. “If You Like Shapley Then You’ll Love the Core.” In: Proceedings of the 35th AAAI
Conference on Artificial Intelligence, 2021. Vol. 6. Virtual conference: Association for the Advancement of
Artificial Intelligence, May 2021, pp. 5751–5759. DOI: 10.1609/aaai.v35i6.16721. URL: https : / /ojs .aaai .org/
index.php/AAAI/article/view/16721 (visited on 04/23/2021).

2. TransferLab Team. pyDVL: The Python Data Valuation Library. appliedAI Institute gGmbH. Version 0.4.0. 2022.
URL: https://pypi.org/project/pyDVL/.

3. A. Benmerzoug.Mlrc22 - If You like Shapley Then You’ll Love the Core. appliedAI Institute gGmbH. 2022. URL:
https://github.com/aai-institute/mlrc22-like-shapley-love-the-core.

4. R. H. L. Sim, X. Xu, and B. K. H. Low. “Data Valuation in Machine Learning: ”Ingredients”, Strategies, and
Open Challenges.” In: Thirty-First International Joint Conference on Artificial Intelligence. Vol. 6. July 2022,
pp. 5607–5614. DOI: 10.24963/ijcai.2022/782. URL: https://www.ijcai.org/proceedings/2022/782 (visited on
01/29/2023).

5. A. Ghorbani and J. Zou. “Data Shapley: Equitable Valuation of Data for Machine Learning.” In: Proceed-
ings of the 36th International Conference on Machine Learning, PMLR. PMLR, May 2019, pp. 2242–2251.
arXiv:1904.02868. URL: http://proceedings.mlr.press/v97/ghorbani19c.html (visited on 11/01/2020).

6. R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, D. Song, and C. J. Spanos. “Towards
Efficient Data Valuation Based on the Shapley Value.” In: Proceedings of the 22nd International Conference
on Artificial Intelligence and Statistics. PMLR, Apr. 2019, pp. 1167–1176. URL: http://proceedings.mlr.press/
v89/jia19a.html (visited on 02/12/2021).

7. V. Metsis, I. Androutsopoulos, and G. Paliouras. “Spam Filtering with Naive Bayes-Which Naive Bayes?” In: 3rd
Conference on Email and Anti-Spam. Mountain View, California USA, July 2006. URL: https://cir.nii.ac.jp/crid/
1571135650462485632 (visited on 01/29/2023).

8. R. Kuprieiev et al. DVC: Data Version Control - Git for Data & Models. Zenodo. Jan. 2023. DOI: 10.5281/zen-
odo.7559368. URL: https://zenodo.org/record/7559368 (visited on 01/29/2023).

9. J. T.Wang andR. Jia.Data Banzhaf: A Robust Data Valuation Framework forMachine Learning. Oct. 2022. DOI:
10.48550/arXiv.2205.15466. arXiv:2205.15466. URL: http://arxiv.org/abs/2205.15466 (visited on 10/28/2022).

ReScience C 9.2 (#32) – Benmerzoug and Delgado 2023 10

https://oadoi.org/10.1609/aaai.v35i6.16721
https://ojs.aaai.org/index.php/AAAI/article/view/16721
https://ojs.aaai.org/index.php/AAAI/article/view/16721
https://pypi.org/project/pyDVL/
https://github.com/aai-institute/mlrc22-like-shapley-love-the-core
https://oadoi.org/10.24963/ijcai.2022/782
https://www.ijcai.org/proceedings/2022/782
http://arxiv.org/abs/1904.02868
http://proceedings.mlr.press/v97/ghorbani19c.html
http://proceedings.mlr.press/v89/jia19a.html
http://proceedings.mlr.press/v89/jia19a.html
https://cir.nii.ac.jp/crid/1571135650462485632
https://cir.nii.ac.jp/crid/1571135650462485632
https://oadoi.org/10.5281/zenodo.7559368
https://oadoi.org/10.5281/zenodo.7559368
https://zenodo.org/record/7559368
https://oadoi.org/10.48550/arXiv.2205.15466
http://arxiv.org/abs/2205.15466
http://arxiv.org/abs/2205.15466
https://rescience.github.io/

	Introduction
	Notation and definitions

	Scope of reproducibility
	Methodology
	Model descriptions
	Experiment 1: -approximate least core
	Experiment 2: Sample removal
	Experiment 3: Noisy data detection
	Experiment 4: Fixing mislabeled data
	Hyperparameter search

	Datasets
	Experiment 1: -approximate least core
	Experiment 2: Sample removal
	Experiment 3: Noisy data detection
	Experiment 4: Fixing mislabeled data

	Experimental setup and code
	Computational requirements

	Results
	Results reproducing the original paper
	Experiment 1: -approximate least core
	Experiment 2: Sample removal
	Experiment 3: Noisy data detection
	Experiment 4: Fixing mislabeled data

	Results beyond original paper

	Discussion
	Computational cost of the -approximate least core
	Applicability of the (,)-approximate least core
	The least core in ML
	What was easy
	What was difficult
	Communication with original authors

