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Reproducibility Summary

Scope of Reproducibility — The main claim of the paper being reproduced is that the pro‐
posed Variational Neural Cellular Automata (VNCA) architecture, composed of a convo‐
lutional encoder and a Neural Cellular Automata (NCA)‐based decoder, is able to gen‐
erate high‐quality samples. The paper presents two variants of this VNCA decoder:
the doubling VNCA variant that is claimed to have a simple latent space, and the non‐
doubling VNCA variant that is claimed to be optimized for damage recovery and stability
over many steps.

Methodology — To reproduce the results, we re‐implemented all of the VNCAmodels and
a fully‐convolutional baseline in JAX, by using the descriptions given in the paper. We
then followed the same experimental setup and hyperparameter choices as in the origi‐
nal paper. All of the models were trained on a TPU v3‐8 provided by Kaggle, with a total
budget of around 4 TPU hours, not counting unreported experiments.

Results — All but one of the figures and results from the original study were possible
to reproduce. The obtained Evidence Lower Bound (ELBO) of the doubling VNCA was
within 0.3%of the stated and for the non‐doubling VNCA the ELBOwas within 1.8%and
the observed damage recovery was similar. We were however not able to reproduce the
t‐SNE reduction experiment for the baseline and were therefore not able to show the
VNCA decoder having a cleaner t‐SNE separation than the baseline.

What was easy — The implementation of the convolutional baseline and most parts of
the NCA‐based decoder were straightforward to re‐implement based on the description
provided in the paper.

What was difficult — One of the difficulties faced in the reproduction study was obtain‐
ing the labels of the binarized MNIST dataset used in the original paper since it offi‐
cially is provided without labels. This made it unclear how the original paper got the
labels for the latent space visualization. Additionally, implementing the pool for the
non‐doubling version of the VNCA model with a distributed training setup was chal‐
lenging as it required operations between TPU cores.

Communication with original authors —No communication was made with the original au‐
thors.

Copyright © 2023 A. Aillet and S. Sondén, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Albert Aillet (albesa@kth.se)
The authors have declared that no competing interests exist.
Code is available at https://github.com/albertaillet/vnca – DOI 10.5281/zenodo.7927205. – SWH
swh:1:dir:3de126d09281c3dab4749dc8ac9330e53a22c558.
Open peer review is available at https://openreview.net/forum?id=d7-ns6SZqp.
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[Re] Variational Neural Cellular Automata

1 Introduction

This report presents a reproduction of a part of the results from the paper ”Variational
Neural Cellular Automata” [1] published in ICLR 2022. The authors of the original paper
build upon previous research around fully‐differentiable cellular automata called Neu‐
ral Cellular Automata (NCA) and Variational Auto‐Encoders (VAE). They propose a novel
generative model, a VAE whose decoder is implemented using a NCA, which they name
Variational Neural Cellular Automata (VNCA).

2 Scope of reproducibility

In this study, we focus on the results in the original paper which treat the binarized
MNIST dataset [2]. This includes all the proposed models which are: a baseline consist‐
ing of a convolutional VAE, a doubling version of the VNCA, and a non‐doubling version
of the VNCA that is trained to be resilient to damage during generation.
We identified the following claims in the original paper:

Claim 1 The doubling VNCA architecture, using a self‐organizing process, has similar
generative performance as a convolutional baseline.

Claim 2 The latent space of the Doubling VNCA architecture has a simpler t‐SNE struc‐
ture than that of the convolutional baseline.

Claim 3 The non‐doubling VNCA architecture performs well on damage recovery tasks.

3 Methodology

To reproduce the results, all models and methods are re‐implemented from the indica‐
tions present in the original paper. The original implementation was developed using
PyTorch and is available on GitHub [3]. Our re‐implementation uses JAX [4] and Equinox
[5], and we adhere to the same experimental setup and hyperparameters as the original
authors. The training and evaluation data was the binarized MNIST dataset [2], as used
in the original paper. A TPU v4‐8 from Kaggle was used with a 4 TPU hour budget.

3.1 Model descriptions
The VNCA architecture is composed of a convolutional encoder and a NCA‐based de‐
coder. The encoder qϕ(z|x) is the same for all theVNCAmodels and the fully‐convolutional
baseline. The decoder pθ(x|z) is NCA‐based, meaning that the only parameters con‐
tained in the decoder are those of an iterative update rule that does local‐only communi‐
cation between neighboring cells. The cells of the NCA are vectors of size |Z|. It should
also be noted that the aggregate of all NCA steps can be efficiently implemented as a
sequence of CNN layers using 3× 3 or 1× 1 kernels that for a single cell represent local
communication and linear layers respectively.

The first variant of the VNCAmodel is the doubling VNCA variant. This model is loosely
inspired by the process of cellular growth. Presented in figure 1 is a corrected version
of figure 2 from the original paper [1], that is slightly misleading as it appears as if the
NCA decoder ends with a doubling operation, severely limiting the decoders expressive
power. The model would then in practice be constrained to generate images of reso‐
lution 16 × 16 which would be doubled to 32 × 32 without any additional NCA steps.
However, as this was not the case in the figures showing the growing process, the mis‐
take could be detected without inspecting the code.
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Figure 1. Overview of the doubling VNCAmodel, (inspired by figure 2 from [1]). Left: Whole recon‐
struction process, input image x is encoded using the convolutional encoder and z0 is sampled
from the distribution N (µ, σ) and then fed into the NCA decoder. Middle left: The decoder con‐
sists of K doubling steps, each followed by a number of NCA steps, the shape of the multidimen‐
sional array between each step is shown on the arrows. Topmiddle right: The doubling operation
repeats the grid as depicted, each cell is repeated four times. Bottommiddle right: The NCA steps
consist as the name indicates of multiple steps using the NCA. It is to be noted that the NCA in all
the steps contains the same parameters θ. Right: The NCA step is defined by a local‐only commu‐
nication function uθ that is added to the input.

The second variant of the VNCA model is the non‐doubling model. The decoder of this
model repeats the initial sample from the latent distribution over the entire grid and
then runs T NCA steps. As the non‐doubling VNCA variant does not change the reso‐
lution, it can be run for any number of steps T and can be optimized for damage re‐
covery and stability over many steps. To optimize for these properties, a pool of previ‐
ous samples zT is stored and updated after each training batch. Half of every training
batch is sampled from this pool, half of which are subjected to damage by setting a
|Z| × H/2 × W/2 slice to zero. The number of NCA steps T for each batch is sampled
between Tmin and Tmax. This training procedure will make a variable number of NCA
steps T and apply damage to some of the samples, which will encourage stability and
damage recovery. Due to this training procedure, this model does not exactly maximize
the ELBO but as shown by our results, it still produces good samples.

In summary, these models were trained from scratch:

• Convolutional Variational Autoencoder baseline with 10, 282, 497 parameters.

• Doubling Variational Neural Cellular Automata with 6, 585, 088 parameters.

• Non‐Doubling Variational Neural Cellular Automata with 5, 042, 432 parameters.

3.2 Datasets
The dataset used by the original authors [1] is the publicly available statically binarized
version of theMNIST dataset [2], which contains binary images of size 28×28. However,
to account for the fact that the doubling VNCA only can produce outputs of size with
powers of 2, the dataset is paddedwith zeros to become 32×32. Similarly, as the original
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MNIST dataset [6], the binarized MNIST dataset contains 60, 000 training samples and
10, 000 testing samples. As this version of the dataset is usually used for generative tasks,
labels are not provided.

3.3 Hyperparameters
The hyperparameters are described in section 3 of [1] where it was stated that unless oth‐
erwise specified, all models are trained using a batch size of 32, the Adam optimizer [7]
was used, a learning rate of 10−4 was applied, gradient clipping was used with a norm of
10 [8], a latent vector of size |Z| = 256 was used and the models were trained for a total
of 100, 000 gradient updates. These parameters were therefore used for training the con‐
volutional baseline and the doubling VNCA. For the non‐doubling VNCA, it is indicated
that a larger batch size of 128 and a smaller latent vector size of |Z| = 128was used. For
the non‐doubling VNCA Tmin = 32 and Tmax = 64 were set. When calculating the test
ELBO, T was not sampled but instead T = 36was used. Since all hyperparameters were
provided no searching was needed.

3.4 Experimental setup and code
The first experiment consisted of training each model with the stated hyperparameters
and then evaluating the ELBO with 128 importance weights on the test set.

In the second experiment, multiple samples were created from eachmodel by sampling
from a standard normal distribution of size |Z| and then passing it through the doubling
VNCA decoder and sampling from the output Bernoulli distribution. Test reconstruc‐
tion was done in a similar way by passing test images into themodel and sampling from
the output Bernoulli distribution. The growth process was visualized by recording the
first channel of each latent vector of decoder after each NCA step. The parameters of
the final Bernoulli distribution is shown (meaning that the average of the samples).

In the third experiment, linear interpolation was conducted by sampling two random
points from a standard normal distribution of size |Z| and then creating 8 uniformly
distant points linearly between them. All of these points were then fed through the dou‐
bling VNCA decoder and the results were plotted. A t‐SNE reduction [9] is also done on
5, 000 randomly chosen images from the test set, encoded into the latent space of the
doubling VNCA and convolutional baseline using their respective encoders.

In the fourth experiment, a standard normal distribution of size |Z| was sampled 11
times and was then fed through the non‐doubling decoder for 40 steps. Each produced
image was then subjected to damage by setting a random |Z| ×H/2×W/2 slice to zero
and then fed through the non‐doubling decoder for 40 steps again.

Beyond the experiments of the original paper, we also investigated the representations
of the individual cells’ latent space using a linear probe [10]. This was done to learn how
much the model relies on the individual cell latent vector for generating the image, as
the cell latent vector can potentially encode the content of the entire image.
To train the linear probe we encoded the test set using the non‐doubling vnca and got
a dataset of cell latent vectors of shape 10, 240, 000 × |Z| where the width and height
dimensions have been merged (10, 240, 000 = 32 · 32 · 10, 000). We then trained a one
layer linear model on 80%of this dataset to predict the label of the whole original image
fromwhich the individual cell latent vectors came from. The linear probe classification
performance was then evaluated on the rest 20% of the dataset.
The code can be found at github.com/albertaillet/vnca.
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3.5 Computational requirements
The original paper’s code implementation was run on some type of GPU, for which the
exact specifications are not presented in [1]. However, these details are not crucial for
the reproduction of the results. Our re‐implementation was run in a single program,
multiple data (SPMD) configuration over v3‐8 TPU cores provided by Kaggle for a total
of 4h using the stated hyperparameters. For the baseline model, the training time was
10minutes and the inference of a single image was 14.6ms. Calculating the ELBO with
128 importance‐weighted samples took 1.45 seconds in total for the whole test dataset
of 10, 000 images. The training time of the doubling VNCA was 40 minutes, inference
time 18.7ms, and test time 162 seconds. Finally, for the non‐doubling VNCA it took 2.5
hours to train, inference time 12.3ms, and test time 75 seconds.

4 Results

The results was overall very similar to the experimental results in the original paper and
therefore support its claims. For instance, the replicated ELBO was within 1.8% of the
paper’s stated value. This was however not the case for the t‐SNE experiment where our
results differ from the original study.

4.1 Results reproducing original paper

Result 1 — The convolutional baseline achieved log p(x) ≥ −84.64 nats evaluated with
128 importance‐weighted samples on the entire test set, and cannot be compared with
the original experiment since it is not presented in the paper. For the doubling VNCA,
it achieved log p(x) ≥ −84.15 nats compared with the log p(x) ≥ −84.23 from the origi‐
nal paper. The non‐doubling VNCA achieved log p(x) ≥ −89.3 nats compared with the
log p(x) ≥ −90.97. These results are very similar to those from the original paper and
therefore support the first claim.

Result 2 — Figure 2 presents test set reconstructions and unconditional samples from the
prior N (0, I). In figure 3 a visualization of the growing process in the NCA decoder of
the doubling VNCA is presented.

Figure 2. Left: Test set reconstructions. Right: Unconditional samples from the priorN (0, I). Note:
This figure shows samples and not averages.

These results are visually similar to the results of the original paper and therefore sup‐
port its claims.

Result 3 — In Figure 4 an exploration of the latent space of the doubling VNCA is pre‐
sented. This exploration includes linear interpolations between samples from the prior
and the t‐SNE reduction of 5, 000 encoded test set digits.
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Figure 3. Visualization of the states in the NCA decoder. The first channel of zt is shown after each
doubling or NCA step. Doubling is performed on the first column. Both figures show uncondi‐
tional samples from the priorN (0, I). Note: This figure shows averages.

(a) (b) (c)

Figure 4. Latent space exploration of doubling VNCA. Figure 4a shows decoded versions of linear
interpolations between samples from the priorN (0, I). Figure 4b and 4c show the t‐SNE reduction
of 5, 000 encoded images from the test. Figure 4b uses the doubling VNCA encoder and 4c uses
the encoder of the convolutional baseline. Note: This figure shows averages.

The obtained linear interpolation is visually similar to that of the original paper. The
fully convolution baseline t‐SNE structure does however look different. Both models
appear to have a similar t‐SNE structure, none of them appearing fragmented as in the
original paper, meaning that the second identified claim is not supported by our results.

Result 4 — In Figure 5 the damage recovery properties of the non‐doubling VNCA are
presented.
These results are visually similar to the original paper’s results and therefore support
the third identified claim that damage recovery arises from the training process of the
non‐doubling VNCA.

4.2 Results beyond original paper
The final accuracy of the linear probe was 80.37% on the test set when predicting the
whole image label from the latent vector of each cell. In figure 6 the results of classifying
individual cell latent vectors decoded from samples of the prior are shown. For the
digits 4, 5 and 1 almost all the cell vectors are classified correctly, with high certainty.
For the digits 6 and 0, the cell vectors in the part of the image where the digit appears
are correctly classifiedwith high certainty while the parts of the image without any digit
are often incorrectly classified. Finally, the digit 9 and the fifth digit from the right are
given very different classes throughout the image. This could be explained by the fact
that these unconditional samples from the prior seem out of the distribution of those
present in the generated dataset.
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Figure 5. Damage recovery process for non‐doubling VNCA. Left: original: Samples after T = 40
NCA steps. damaged: Damage applied to the samples. recovered: Recovered samples after 40
additional NCA steps. Right: Damage recovery process. Note: This figure shows averages.

Figure 6. Classification using linear probe trained on individual cell latent vectors. Top: First
channel of cell latent vector decoded from an unconditional sample of the prior. Middle: Top‐1
predicted class of each of these cell latent vectors. Bottom: Softmax value of top‐1 predicted class.
Note: This figure shows averages.

5 Discussion

Fromour first two experiments, we find that the paper’s results can successfully be repli‐
cated. It however has to benoted that these results concern the binarizedMNISTdataset,
which is relatively simple and these results might not hold for more complex datasets.
The study also utilized a substantial latent space size, leaving room for further explo‐
ration of the impact on performance when varying the latent space and the number of
parameters in the update model.

It was not possible to replicate the experimental results supporting the claim of the dou‐
bling VNCAmodel having a simpler t‐SNE structure than the convolutional baseline. As
the parameters used for the t‐SNE are not present in the original paper, we tried mul‐
tiple different parameters and random subsets of the test data. We were however not
able to reproduce a t‐SNE structure similar to the one presented in the original paper.
We obtained a very similar t‐SNE structure for all threemodels. The fact that we found a
t‐SNE reduction of the baseline latent space with the same clean separation shows that
the second identified claim of the original paper was not supported.

From the third result, it is apparent the model is capable of recovering from damage
during the generation process. This result is visually similar to the one in the original
paper and supports the identified third claim.
Our additional experiment was conducted to investigate the representational power of
the individual cell latent vectors. From the high accuracy of the linear classifying probe
we can conclude that the cell latent vectors encode a lot of information about the whole
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image which could be an explanation for the good reconstruction.

5.1 What was easy
Re‐implementing the proposed models was easy since the original paper had a detailed
description and the exact model specifications were provided as a PyTorch module in
the appendix of the paper. The paper also had multiple diagrams, explanations and
pseudocode for the used methods to facilitate understanding.

5.2 What was difficult
As mentioned in Section 3.2, the binarized MNIST dataset is provided without labels
and is in a different ordering than the original MNIST dataset. It was therefore unclear
how to get the dataset labels for the t‐SNE latent space visualization in Figure 4 as it is
not mentioned in the paper [1]. It is however known that each image in the binarized
MNIST is derived from the original MNIST by stochastically setting each pixel value to 1
in proportion to its intensity [2]. We could therefore estimate the source image by calcu‐
lating the probability of each binarized image given the probability distribution of each
original image and choose the original image j to maximize p(x

binary
i |xoriginal

j ). As the
original MNIST has labels, each image in the binarized MNIST could then be associated
with the label of the estimated source image.

A challengewhen implementing thenon‐doubling versionwasmaking itworkwith a dis‐
tributed training setup. This was due to the setup using a pool that had to be shared on
each TPU core. In order to facilitate random shuffling of this shared buffer, all the TPU’s
local pools had to be combined at each step (gather‐all operation), shuffled, and then
returned. Using only a local permutation of the pool on each TPU was also attempted
and yielded similar results with faster training time. However, due to this being a repli‐
cation study, the method with global pooling was used as it was equivalent to the one
proposed in the original paper.

5.3 Communication with original authors
There was no communication with the original authors.
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Appendix

(a) (b)

Figure 7. Figure 7a Visualization of the latent vectors of the VNCA. The figure shows slices with
the values of the seven first channels of the latent vectors. The first channel of the latent vector
is trained to be the logits for a Bernoulli distribution. Figure 7b t‐SNE reduction of 5000 encoded
images from the test set using the encoder from the non‐doubling VNCA.
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Figure 8. Overview of the non‐doubling VNCA model. Left: Whole reconstruction process, in‐
put image x is encoded using the convolutional encoder and z0 is sampled from the distribution
N (µ, σ) and then fed into the NCA decoder. Middle: The decoder consists of repeating the initial
sample over the grid followed by T NCA steps.
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