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Reproducibility Summary

Scope of Reproducibility — The original authors present CrossWalk, an edge‐reweighting
algorithm which can be used in conjunction with random walk based node representa‐
tion learning methods. We validate their claims of CrossWalk being characterized by a
fairness‐enhancing property, meaning it significantly reduces disparity, a measure of
group fairness, and performance‐conserving property, meaning it has an insignificant
effect on task performance.

Methodology — To perform a robust validation of the original authors’ claims, we develop
an independent, highly‐modular code‐basewith complete re‐implementationof the orig‐
inal experiments. Our design enables its use by other researchers in the future to easily
run ablation experiments with different datasets, experiments, or even algorithms that
can be employed in conjunction with CrossWalk. Furthermore, we create an accessible
implementation of CrossWalk itself under the MIT license.

Results — Our results provide solid evidence in favor of the performance‐conservingprop‐
erty of CrossWalk. However, we find inconclusive evidence of the fairness‐enhancing
property of CrossWalk, mostly due to large variation in the reproduced disparity values.
On the other hand, we find additional evidence in its favor by performing an experiment
portraying the influence of the hyperparameters of CrossWalk.

What was easy — The original authors provide a code‐base implementing their methodol‐
ogy, which greatly helped us in understanding thematerial. Furthermore, theirmethod‐
ology is very modular, meaning we could test most parts of the pipeline independently.

What was difficult — The original work contains discrepancies between specification of
CrossWalk in the formulas, the pseudo‐code, and the code‐base. Also, we were unable
to reproduce results for one of the datasets because of missing data. Finally, the origi‐
nal implementation is inadequately documented and its execution required numerous
manual steps which were non‐trivial and time consuming.

Communication with original authors — To clarify some details regarding the original imple‐
mentation and its structure, we reached out to the authors when beginning to reproduce
their work. The authors were quick to respond and answered all of our questions.

Copyright © 2023 E. Zila et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Kieron Kretschmar (kieron.kretschmar@outlook.com)
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[Re] On the reproducibility of ”CrossWalk: Fairness-Enhanced Node Representation Learning”

1 Introduction

Recently, graph neural networks (GNNs) became a pivotal topic in AI research [1]. While
the domain itself develops rapidly, the notion of fairness in the context of graph learning
lags behind [2]. When graph‐based systems neglecting fairness are deployed in the real
world, protected groups may become unjustly mistreated.
FairWalk [3] falls among the earliest attempts at mitigating such issues. In particular, it
provides probabilities for which edge to select when generating random walks through
the graph, an essential part of many current graph learning methods. Khajehnejad et
al.[2] followed up on its ideas by designing CrossWalk, a more complex strategy which
considers the context of nodes when weighting edges leading towards them.
In this paper, we verify the authors’ claims by re‐implementing CrossWalk and repro‐
ducing their results. We provide three main contributions:

1. Full re‐implementation. We re‐implement the full pipeline from scratch. The mo‐
tivation is twofold: (1) arrival to the same conclusions using two independent im‐
plementations strengthens the claims; (2) it makes building on top of the origi‐
nal work more easy and viable. In support of the last point, we develop an MIT‐
licensed package allowing the application of CrossWalk to Deep Graph Library
(DGL) graphs with a single line of code.

2. Robustness check. In the original paper, every experiment is run 5 times and no
variation measure is provided. We statistically validate the original results by run‐
ning the experiments over 50 independent runs and reporting on their variability.

3. Theoretical extension. While implementing the package, we found problematic
edge cases that were not treated in the original CrossWalk algorithm. Therefore,
we dived into the theory and came up with an extended formulation with useful
probabilistic properties.

2 Scope of reproducibility

The paper CrossWalk: Fairness-Enhanced Node Representation Learning by Khajehnejad
et al.[2] contributed to the field by proposing CrossWalk, a general graph‐processing
method designed to enhance group fairness of algorithms based on stochastic traver‐
sal of a graph. In their paper, the authors study the application of CrossWalk to random
walk based node embedding methods, namely DeepWalk [4] and Node2Vec [5]. Cross‐
Walk is discussed in more detail in Section 3. In their abstract, the authors summarize
their main claims as follows:
”Extensive experiments show the effectiveness of our algorithm to enhance fairness in various
graph algorithms, including influence maximization, link prediction and node classification in
synthetic and real networks, with only a very small decrease in performance.” [2].

More details about these experiments can be found in Section 4. We separate these
claims into two sub‐claims, which we wish to verify:

• Claim 1: Fairness‐enhancing property. The authors claim that the application of
CrossWalk in all the experiments referenced above leads to enhanced fairness as
measured by disparity, compared to both FairWalk and no reweighting‐strategy as
baselines.

• Claim 2: Performance‐conserving property. The authors claim that the applica‐
tion of CrossWalk in all the experiments referenced above only leads to very small
decreases in performance. We interpret this as the performance of every experi‐
ment is reduced by at most 10% when applying crosswalk, compared to both Fair‐
Walk and no reweighting‐strategy as baselines.
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3 CrossWalk

Original motivation — As their main contribution, Khajehnejad et al.[2] introduced Cross‐
Walk, an edge reweighting algorithm designed to enhance group fairness in tasks based
on node embeddings generated by random walks through graphs.

The CrossWalk algorithm — Random walks are part of techniques to obtain node embed‐
dings like Node2Vec and Deepwalk. In this context, an edge weight wuv corresponds
to the probability of choosing v as the node following u during random walks. Given
groups defined by some protected characteristic of choice, such as gender or race, the
method amplifies edge weights leading towards nodes that are in different groups than
the source node, and towards nodes in the proximity of different groups. Consequently,
randomwalks traverse group boundariesmore often. The author’s intention of applying
CrossWalk in this setting is to obtain node embeddings that are more fair when evalu‐
ated in the context of a downstream task. The effect the application of CrossWalk has
on node embeddings is visualized in Figure 5 in the appendix.

Motivation for extension —When reproducing the paper, we encountered disparities be‐
tween theCrossWalk reweighting formula found in [2, Equation 4], theCrossWalkpseudo‐
algorithm found in [2, Algorithm 1], and the CrossWalk implementation available on
GitHub [6]. In particular, the pseudo‐code covers an additional case that is neglected in
the formula. Moreover, the public implementation addresses an additional case which
is not mentioned throughout the original paper. Further, implementing CrossWalk ac‐
cording to the original formula and pseudocode leaves room for edge cases in which a
division by zero may occur.
The main motivation for proposing adaptations to the CrossWalk algorithm lie in resolv‐
ing these issues and ambiguities. We hope that this helps future researchers to decide
whether CrossWalk is suited for their application.

Design goals for extension — Our proposed algorithm is designed such that a) the algorithm
handles edge cases gracefully and b) yields nice probabilistic properties, while c) mak‐
ing onlyminimal changes to the authors’ original approach, prioritizing their algorithm
as originally implemented in [6] over their pseudocode and formulas. In practice, the
two versions barely differ, as the extensions are mainly about handling of edge cases.
The results of our experiments confirming the similarity are in Figure 4 in the Appendix.
With the introduction our changes, we increase the number of cases in which the graph
obtained from CrossWalk is guaranteed to be probabilistic, which makes it more feasible
to be applied in more areas. This guarantee removes the necessity to normalize the
weights before treating them as transition probabilities when doing e.g. random walks,
enabling more efficient implementations of CrossWalk based applications.
Further, the probabilistic property of a graph may be useful in applications outside of
randomwalks discussedhere. For example, future researchmay investigate reweighting
transition probabilities inMarkov chainswith the CrossWalk strategy, in caseswhere the
nodes (states) are assigned to different groups, and an increase of transitions between
states of different groups is desired.

Extension scope — In the following section, we present an extended formulation of the
CrossWalk algorithm to address the issues described above. For this, we extend the
equations and pseudo‐code and make slight notational adjustmends. Finally, we show
a valuable property of the reweighting strategy.

Extension proposal — In this section we assume weighted and directed graphs. However,
the definitions and results can easily be extended to undirected graphs (by assuming
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each edge to have an anti‐parallel counterpart), and unweighted graphs (by assuming
all initial edge weights to be equal).
Let G = (V,E,w) be a weighted graph, where V is the graph’s node set, E is the set of
edges between the nodes, and wvu > 0 are positive edge weights for all edges (v, u) ∈ E.
We define N (v) as the set of neighbors of node v ∈ V for which an edge from v to u
exists. We define c(z) as a function returning the color of node z ∈ V . In the context of
fairness, color refers to the group defined by the protected characteristic that z belongs
to. LetN c

v ⊆ N (v) be the set of neighbors of node v of color c. Then, we can also define
Rv = {c(u) | u ∈ N (v)}\c(v), as the set of colors appearing in the neighborhood of node
v that are different from the color of v.

Definition 1 (colorfulness). We define colorfulness of node v, a measure of proximity of
v to nodes belonging to other groups, as a function m(v) : V → ⟨0, 1⟩. Colorfulness
is estimated by taking r random walks of length d from node v using the original edge
weights w. It is calculated as

m(v) =

∑r
j=1

∑
u∈Wj

v
I[c(v) ̸= c(u)]

rd
, (1)

whereWj
v is a set of nodes in the j‐th randomwalk from v and I is an indicator function.

Below are our proposed equations for computing each edge’s newweight with the Cross‐
Walk algorithm. A pseudocode‐based on these equations is provided in Algorithm 1 in
the Appendix. Note that our extensions to the formulas proposed originally in [2, Equa‐
tion 4] are marked in pink color, and are briefly commented on below.

nvu =


wvum(u)p∑

z∈N
c(u)
v

wvzm(z)p
, if ∃z ∈ N

c(u)
v : m(z) > 0, (2a)

wvu∑
z∈N

c(u)
v

wvz
otherwise. (2b)

w′
vu =



(1− α)nvu, if c(v) = c(u) ∧ N (v) ̸= N
c(v)
v , (3a)

α

|Rv|
nvu, if c(v) ̸= c(u) ∧ N (v) ̸=

(∪
c∈Rv

N c
v

)
, (3b)

nvu, if c(v) = c(u) ∧ N (v) = N
c(v)
v , (3c)

1

|Rv|
nvu, if c(v) ̸= c(u) ∧ N (v) =

(∪
c∈Rv

N c
v

)
. (3d)

In the code provided with the original paper, the authors added 0.001when estimating a
node’s colorfulness with Equation 1. This prevented the possibility of dividing by zero in
Equation 2a, but was not mentioned in the formulas or pseudocode. Instead of adding
that term, we propose imposing a condition to Equation 2a and adding Equation 2b to
handle these cases.
Further, we impose additional conditions to Equations 3a and 3b (marked in green) and
propose Equations 3c and 3d to handle these additional cases, respectively. Equation 3c
is an entirely new proposal of ours to make Theorem 1 hold, while Equation 3d was al‐
ready included in the authors’ original implementation and pseudocode, but was miss‐
ing in the mathematical notation.

Definition 2 (probabilistic graph). Aweighted graphG = (V,E,w) is called a probabilistic
graph if each node’s outgoing edge weights sum up to 1, i.e.

∑
u∈N (v) wvu = 1, ∀v ∈ V .

Theorem 1. Let G = (V,E,w) be a weighted graph with positive edge weights wvu > 0 for
all edges (v, u) ∈ E and at least one outgoing edge per node. Let G′ = (V,E,w′) be the
graph obtained fromG by updating its edge weights using the CrossWalk algorithm specified in
Algorithm 1. ThenG′ is a probabilistic graph.

The proof can be found in Appendix B.
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4 Methodology

Given the need to extend the theoretical basis of CrossWalk (see Section 3) and to ad‐
dress the shortcomings of the original implementation (see Section 6), we chose to re‐
implement the full pipeline consisting of (1) loading a graph, (2) reweighting its edges
to promote fairness, (3) learning node embeddings, and (4) performing a downstream
task. A schematic overview of the pipeline is given in Figure 1. In the following, we give
a brief overview over each of the steps in the pipeline, with more detailed information
being available in Appendix C.

Figure 1. Schematic overview of the experimental pipeline.

4.1 Datasets
Like the original authors, we conduct experiments on two subgraphs of real social net‐
works, and two types of synthetic graphs, which we generate anew for each experimen‐
tal run to obtain more robust results. The real‐world datasets are part of our publicly
available codebase, as well as methods to generate synthetic ones. More information
on datasets can be found in Subsection C.1.

4.2 Fairness-enhancing edge reweighting strategies
The authors propose CrossWalk as an edge reweighting strategy that can be applied to
any graph with positive weights to make the embeddings generated by random walks
more fair. This step of reweighting the edge weights is not strictly necessary, as uni‐
form probabilities can also be used to generate random walks. In line with the authors,
we also implement FairWalk in order to compare CrossWalk to an alternative fairness‐
enhancing reweighting strategy. More details about FairWalk and its differences to
CrossWalk are presented in Subsection C.2.

4.3 Node embeddings
To apply machine learning algorithms on the (reweighted) graphs, one route is to learn
low‐dimensional node representations first and afterwards perform the downstream
task on those representations. Khajehnejad et al.[2] tested CrossWalk on two random
walk‐based node embedding methods, namely DeepWalk and Node2Vec. These are ex‐
plained in more detail in Subsection C.3

4.4 Downstream tasks and fairness evaluation

Khajehnejad et al.[2] tested CrossWalk on three common applications for learning on
graphs, namely influence maximization, link prediction and node classification. These
are described in more detail in Subsection C.4.
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The results of each of the three tasks can be described by a global performance metric
0 ≤ q ≤ 1, e.g. accuracy, and a collection of performances Q = {qi} evaluated on
subsets of the data set defined by sensitive attributes. To obtain a notion of fairness, for
each task the disparity d = var(Q) is computed as the (maximum likelihood) estimate of
the variance between performances on the different subsets. Finding embeddings that
minimize the disparity captures the notion of fairness that these embeddings should
lead to similar performances for samples of each group.

4.5 Hyperparameters
We recovered most of the original authors’ hyperparameters not found in the paper by
searching their codebase. Hyperparameters for the experiments on the Twitter dataset
were missing (see Subsection 6.3). All of the hyperparameters we used are specified in
Table 3 and Table 4, and in the configuration files in our code‐base.

4.6 Experimental setup and code
The code implementing the entire pipeline as described in Section 4 is structured as
Python package.1 Each of the stages is implemeted as a submodule of the package.
This simplifies the conduct of ablation studies with e.g. different datasets by future re‐
searchers. The main file of the package takes in one or more configuration files describ‐
ing the experiments, calls the submodules to perform the total experiment pipeline, and
writes the results to .csv files. Runs can be repeated and averaged over multiple trials.
Default hyperparameters are defined in a general defaults.py file and can be overwritten
by configuration files. We provide the configuration files for all experiments referenced
in this paper.

4.7 Computational requirements
All experiments were ran on the CPU of a desktop with an i5‐9600K @ 3.70GHz CPU and
32GB of RAM (13GB utilized). The mean runtime per experiment trial was ∼30 seconds
for the Rice‐Facebook and ∼13 seconds for 2‐ and 3‐group synthetic datasets. The total
runtime for reproducing all the experiments with 50 trials was ∼11 hours.

5 Results

To confirm the main claims of Khajehnejad et al.[2] presented in Section 2, we turn to
the two synthetic graphs and the Rice‐Facebook dataset. Overall, we find that the results
reported by the original authors are statistically plausible. However, we also find that
many of them are plagued by high variation of the disparity metric. In an extension of
the original paper, we take notice of the importance of hyperparameter tuning when
applying CrossWalk.

5.1 Results reproducing original paper
The results of the full range of experiments performed as part of the reproduction study
are reported next to their counterparts from the original paper in Table 1. Additionally,
we provide visualizations of our results in Figure 3 in the appendix. We successfully
reproduced almost all of the experiments presented in the original paper. However, we
were unable to reach comparable results for the Twitter dataset for reasons noted in
Subsection 6.3. We relegate these results to Appendix F.

1https://github.com/jonathan-gerb/crosswalk-reproduction
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Task Dataset Embeddings Influence/accuracy Disparity
Original Reproduced Original Reproduced

IM 2‐group synthetic DW ∼12.00 10.93 (1.08) ∼48.00 44.61 (14.44)
FW+DW ∼12.00 11.07 (0.99) ∼37.00 43.35 (14.24)
CW+DW ∼11.00 10.27 (0.73) ∼1.00 3.04 (3.70)

3‐group synthetic DW ∼10.00 10.56 (0.74) ∼46.00 37.59 (12.91)
FW+DW ∼10.50 10.40 (0.77) ∼30.00 26.32 (10.20)
CW+DW ∼10.00 10.16 (0.81) ∼16.00 9.87 (8.24)

Rice‐Facebook DW 18.13 17.90 (2.20) 46.70 51.07 (24.64)
FW+DW 18.20 18.47 (1.91) 20.25 25.55 (12.73)
CW+DW 17.89 18.62 (2.22) 1.36 22.55 (18.74)

N2V 18.28 18.48 (1.79) 51.88 65.54 (26.46)
FW+N2V 18.03 18.49 (2.01) 18.29 25.93 (18.21)
CW+N2V 18.01 17.67 (2.19) 16.87 11.33 (10.45)

NC Rice‐Facebook DW 84.95 83.69 (3.05) 171.01 168.82 (87.15)
FW+DW 81.94 83.12 (2.38) 71.37 72.03 (44.72)
CW+DW 80.72 83.35 (2.72) 58.69 71.60 (54.71)

LP Rice‐Facebook DW 76.79 85.92 (0.53) 38.91 25.97 (9.83)
FW+DW 74.66 84.31 (0.52) 13.77 11.17 (3.51)
CW+DW 73.26 83.63 (0.48) 3.75 11.07 (4.06)

Table 1. Reproduction results. Comparison of original results and their reproduced counterparts.
The table contains results for influence maximization (IM), node classification (NC), and link pre‐
diction (LP).We use DeepWalk (DW) andNode2Vec (N2V) embeddings either without reweighting,
with FairWalk (FW), or with CrossWalk (CW). Original results over 5 runs were gathered from the
original code‐base. Unavailable values (preceded by ’∼’) were estimated from plots in the paper.
Reproduced results over 50 runs are presented with standard deviations in parentheses. For orig‐
inal results deviating by more than one standard deviation, the reproduced results are in bold.

Looking at Table 1, one can see that the reproduced values generally validate those re‐
ported in the original paper. For the influence maximization and node classification
tasks, all but one of the original results fall within one standard deviation of our repro‐
duced results carried out over 50 independent runs. For the link prediction task, the
differences are much starker: in terms of accuracy, we find significant improvement
over the original results; in terms of disparity, we find significantly lower values when
not applying any reweighting strategy and higher values when using CrossWalk.
Focusing on the performance metrics, we see no statistically significant differences be‐
tween the results obtained with and without CrossWalk. This observation is in line with
the one made by the original authors. In particular, these results provide evidence in
support of the performance‐conserving property (Claim 2) of CrossWalk. However, we
see one exception in the case of link prediction performed on the Rice‐Facebook dataset,
where a significant drop in total accuracy can be observed when a fairness‐enhancing
reweighting strategy is applied.
Disparity is the original authors’ fairness metric of choice. In general, the results pre‐
sented in Table 1 show thatmean disparity lowers significantly when a reweighting strat‐
egy, either FairWalk or CrossWalk, is employed. When performing influence maximiza‐
tion on the two synthetic datasets, we also see a significant improvement of CrossWalk
over FairWalk. However, performing downstream tasks on the Rice‐Facebook dataset
results in statistically insignificant differences between the two, with the only large im‐
provement margin appearing for Node2Vec embeddings. Thus, we find inconclusive
evidence of the fairness‐enhancing property (Claim 1). In particular, because of large
variability of disparity results, the claim of the original authors that CrossWalk consis‐
tently provides significant improvement over FairWalk is not supported by the repro‐
duced results.
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5.2 Results beyond original paper
While we find insufficient evidence of CrossWalk outperforming FairWalk when dealing
with the Rice‐Facebook dataset, we argue that CrossWalk may simply require additional
hyperparameter tuning. We perform a manual search for the influence maximization
task on the dataset for both α and p (see Section 3). From the results in Figure 2, we
observe that increasing α can greatly decrease disparity at an insignificant cost in per‐
formance. An opposite pattern emerges when we lower p from the suggested value of 4
to 1, with a lower p resulting in an increase in disparity. Clearly, it is necessary to tune
both hyperparameters per experiment in order to find the desired balance between per‐
formance and disparity. Importantly, the results are in favor of the fairness‐enhancing
property (Claim 1) as with a correct choice of hyperparameters, we achieve a significant
improvement over FairWalk.

(a) Hyperparameter α (b) Hyperparameter p

Figure 2. Impact of hyperparameters α and p (beyond the original paper). Influence and disparity
for influence maximization on the Rice‐Facebook dataset for different p and α values on the influ‐
ence maximization task. One can observe that the trade off between accuracy and disparity can
be tuned using these hyperparameters.

6 Discussion

Putting our findings presented in Section 5 into context, we believe that themain claims
of the authors presented in Section 2 are supported and strengthened by our reproduc‐
tion study. We find strong evidence in support of the performance‐conversion property
(Claim 2) of CrossWalk. And while we find only limited evidence in support of Cross‐
Walk providing significant improvement in disparity over FairWalk when performing
tasks on the Rice‐Facebook dataset, we confirm that with additional hyperparameter
tuning, the fairness‐enhancing property (Claim 1) holds even in this case.
Moreover, we believe in our results providing strong support for CrossWalk due to our
choices to (1) re‐implement CrossWalk from scratch using trusted packages, such as
PyTorch, DGL, and scikit‐learn, thus minimizing the chances of common mistakes, (2)
perform all experiments over 50 runs (rather than the original authors’ 5 runs) and take
into consideration the variability of the disparity measure, and (3) extend CrossWalk
in order to provide better guarantees and graceful handling of more edge cases while
having no big impact on the results, as can be seen in Figure 4 in the appendix.

6.1 Further work
We believe that the largest of our contributions is the highly‐modular implementation.
We hope that researchers will employ it for future research to easily evaluate the impact
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of CrossWalk on different datasets, tasks, and fairness metrics. In the same sense, varia‐
tions of CrossWalk, obtained, for example, changing the definition of colorfulness, can
be implemented and extensively tested by changing just a few lines.

6.2 What was easy
The original paper is accompanied by a code‐base to run all experiments. The imple‐
mentation, and especially some of its unit tests, were ofmuch help in understanding the
methods in more detail. The pseudocode in the original paper was helpful, too. In con‐
trast to FairWalk, the authors proposed CrossWalk as a reweighting method. Thereby,
they decoupled it from the generation of random walks. This subtle but important
change of perspective allowed for amodular implementation with higher flexibility and
testability.

6.3 What was difficult
Difficulties regarding the paper — As detailed in Section 3, the CrossWalk formula, pseudo‐
code, and actual implementation were not aligned, which made reproduction difficult.
This was amplified by some notational inconsistencies. Lastly, the presentation of the
results in the paper lacked exact numbers and standard deviations.

Difficulties regarding the data — The Rice‐Facebook dataset in the code‐base did not include
all attributes needed to perform thenode classification task. Toperform the task, wehad
to track were the data came from and supply it ourselves. We could not reproduce the
experiments on the Twitter dataset, because the version that was available differed from
the description in the paper (see Subsection C.1 in the appendix) and because the origi‐
nal hyperparameters were missing. Instead, we ran the experiments on the dataset that
was provided in the code‐base with the hyperparameters for the Rice‐Facebook dataset.
The results, presented in Appendix F, did not live up to expectation. However, this may
be alleviated with hyperparameter tuning.

Difficulties regarding the code — The provided code‐base came without a license, hindering
accessibility. Further issues include: lack of documentation, inconsistent variable nam‐
ing, hard‐coded hyperparameters, missing environment specifications and no seeding
methods being used for reproducibility. Lastly, to re‐run one experiment end‐to‐end
with the original code‐base, we had to guess the necessary yet undocumented process
of identifying files containing partial results, moving them to different folders twice and
copying the printed results into a notebook.

6.4 Communication with original authors
Due to the absence of an open‐source license in the original code repository, we initially
reached out to the original paper’s authors to ensure we could use their code. Further‐
more, wewished to gain insight into some of their design choices. We received a prompt
response providing assurance about the code use and the needed explanations.
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A Pseudocode for the extended CrossWalk algorithm

Algorithm 1 CrossWalk algorithm
Require: Graph G = (V,E,w), edge weights wuv > 0 for all (v, u) ∈ E, parameters

α ∈ (0, 1), p > 0.
Ensure: Updated weights w′

vu for all (v, u) ∈ E.
1: for v ∈ V do ▷ Estimate colorfulness of nodes
2: Run r random walksWj

v , j ∈ {1, . . . , r}, rooted at v.
3: m(v) =

(∑r
j=1

∑
u∈Wj

v
I[c(v) ̸= c(u)]

)
/rd ▷ [Equation 1]

4: end for
5: for v ∈ V do ▷ Iterate through all nodes
6: Rv = {c(u) | u ∈ N (v)} \ c(v)
7: for c ∈ {c(u) | u ∈ N (v)} do ▷ Iterate through all colors neighboring v
8: N c

v = {u ∈ N (v) | c(u) = c}
9: for u ∈ N c

v do ▷ Iterate through v’s neighbors of color c
10: if ∃z ∈ N c

v : m(z) > 0 then
11: n = (wvum(u)p) /

(∑
z∈Nc

v
wvzm(z)p

)
▷ [Equation 2a]

12: else
13: n = wvu/

∑
z∈Nc

v
wvz ▷ [Equation 2b]

14: end if
15: if c = c(v) then ▷ Reweight edges towards same group
16: if ∃z ∈ N (v) : c(z) ̸= c(v) then
17: w′

vu = (1− α)n ▷ [Equation 3a]
18: else
19: w′

vu = n ▷ [Equation 3c]
20: end if
21: else ▷ Reweight edges connecting different groups
22: if ∃z ∈ N (v) : c(z) = c(v) then
23: w′

vu = αn/|Rv| ▷ [Equation 3b]
24: else
25: w′

vu = n/|Rv| ▷ [Equation 3d]
26: end if
27: end if
28: end for
29: end for
30: end for
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B Proof of Theorem 1

Proof. For any node v ∈ V , three situations may occur. The node v may have (a) at
least one same‐colored and one differently‐colored neighbor, (b) only neighbors of the
same color, or (c) only neighbors of a different color. The possibility of nodes without
outgoing edges is excluded by requirement. Further, we assume that for every neigh‐
boring group of v, there exists a neighboring node with a non‐zero colorfulness, i.e.
nvu = wvum(u)p∑

z∈N
c(u)
v

wvzm(z)p (Equation 2a). For the other cases handled by (Equation 2b),

the proof follows in the exact same manner.

(a) If node v has at least one same‐colored and one differently‐colored neighbor, i.e.
N (v) ̸= N

c(v)
v ∧ N (v) ̸=

(∪
c∈Rv

N c
v

)
, then w′

vu = (1 − α)nvu for u ∈ N
c(v)
v (Equa‐

tion 3a) and w′
vu = α

|Rv|nvu for u ∈ N c
v , c ∈ Rv (Equation 3b)

⇒
∑

u∈N (v)

w′
vu =

∑
u∈N

c(v)
v

(1− α)
wvum(u)p∑

z∈N
c(v)
v

wvzm(z)p
+

∑
c∈Rv

∑
u∈Nc

v

α

|Rv|
wvum(u)p∑

z∈Nc
v
wvzm(z)p

= (1− α)

∑
u∈N

c(v)
v

wvum(u)p∑
z∈N

c(v)
v

wvzm(z)p
+

∑
c∈Rv

α

|Rv|

∑
u∈Nc

v
wvum(u)p∑

z∈Nc
v
wvzm(z)p

= (1− α) +
α

|Rv|
∑
c∈Rv

1 = (1− α) +
α

|Rv|
|Rv| = 1.

(b) If node v has only neighbors of the same color, i.e. N (v) = N
c(v)
v , then w′

vu = nvu

for u ∈ N
c(v)
v (Equation 3c)

⇒
∑

u∈N (v)

w′
vu =

∑
u∈N

c(v)
v

wvum(u)p∑
z∈N

c(v)
v

wvzm(z)p
=

∑
u∈N

c(v)
v

wvum(u)p∑
z∈N

c(v)
v

wvzm(z)p
= 1.

(c) If node v has only neighbors different colors, i.e. N (v) =
(∪

c∈Rv
N c

v

)
, then w′

vu =
1

|Rv|nvu for u ∈ N c
v , c ∈ Rv (Equation 3d)

⇒
∑

u∈N (v)

w′
vu =

∑
c∈Rv

∑
u∈Nc

v

1

|Rv|
wvum(u)p∑

z∈Nc
v
wvzm(z)p

=
∑
c∈Rv

1

|Rv|

∑
u∈Nc

v
wvum(u)p∑

z∈Nc
v
wvzm(z)p

=
1

|Rv|
∑
c∈Rv

1 =
1

|Rv|
|Rv| = 1.

Therefore, independent of the neighborhood of node v, it holds that
∑

u∈N (v) w
′
vu = 1

for all nodes v ∈ V , which means that G′ is a probabilistic graph.
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C Methodology - Continued

C.1 Datasets - Continued
Wepreprocess each dataset by a) removing nodes without outgoing edges, and b) remov‐
ing all edges connected to a node that is not part of the available dataset. Further, we
assume all edges to be bidirectional.
A brief overview of the datasets after preprocessing can be found in Table 2. More de‐
tailed descriptions can be found in the original CrossWalk paper [2].
Note that we report roughly 5% more nodes and edges in the Twitter dataset than the
original authors. We applied the original authors’ preprocessingmethods on the dataset
we used from their code repository and have gotten the same resulting graph as in our
implementation. This strengthens our belief that a) we use the same preprocessing tech‐
niques as the authors, and b) the authors used a different source dataset than the one
we obtained from their code‐base.

Dataset Group 1 Group 2 Group 3 Inter‐group edges

Rice‐Facebook 342 (7441) 97 (513) ‐ 1706
Twitter† 2755 (3813) 812 (966) 186 (281) 1933
2‐group synthetic 350 (1527) 150 (279) ‐ 53
3‐group synthetic 300 (1121) 125 (194) 60* (61) 60

Table 2. Properties of the datasets after preprocessing. For each group the number of nodes is
followed by the number of inner‐group edges in parentheses. Numbers in italics are estimates, as
the synthetic datasets are randomly generated.
*: This number of nodes is lower than the number reported in the original paper. The difference
is due to a significant number of isolated nodes being removed in preprocessing.
†: We report roughly 5% more nodes and edges in the Twitter dataset than the original authors.

C.2 Fairness-enhancing edge reweighting strategies - Continued

FairWalk — In a similar fashion to the reproduced paper, Rahman et al.[3] proposed Fair‐
Walk to improve fairness in the context of randomwalk based node embeddings. When
selecting a neighboring node to traverse to during random walks, FairWalk distributes
equal probability of selection to all groups defined by the protected characteristic ap‐
pearing in the neighborhood of the current node. Within each group, the probability is
distributed equally among all neighbors, i.e., w′

vu = 1

|{c(z)|z∈N (v)}|·|Nc(u)
v |

.

CrossWalk vs. FairWalk — Compared to FairWalk, the reweighting strategy of CrossWalk en‐
forces more complex rules: In addition to amplifying edges between groups (controlled
by hyperparameter α), which FairWalk also achieves, CrossWalk additionally amplifies
edges from nodes within a group towards the group’s boundaries (controlled by hyper‐
parameter p).

C.3 Node embeddings - Continued

DeepWalk — Perozzi, Al‐Rfou, and Skiena[4] proposed a method to learn node representa‐
tions, similar to how word representations are learned in Word2Vec models from nat‐
ural language processing [7]. Instead of sampling sentences in which the word occurs,
this method samples multiple node sequences which start from the node. These node
sequences are randomly‐generated walks on the graph based on the normalised edge
weights and are than encoded by a number of nodes dimensional vector. This is the
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input to the SkipGram model which learns a set of weights to map the random walks
to a low‐dimensional embedding and another set of weights to map it back to the origi‐
nal random walks. The output is than determined by a softmax approximating module.
Lastly the difference between the input and output is used as a loss to train the weights.
The learned embeddings encode how the node is connected.

Node2Vec — Grover and Leskovec[5] proposed an alteration to the DeepWalk algorithm in
the way the random walks are sampled. The probability of walking to one of the neigh‐
bors is no longer only determined by the normalized edge weights, but also multiplied
by a transition factor. The transition factor is 1

p when the node is the previous node in
the sequence, 1 when the node is connected to the previous node in the sequence and
1
q when the node is not connected to the previous node in the sequence.

C.4 Downstream tasks and fairness evaluation - Continued
Influence maximization — The influence maximization task begins with the application of
the k‐medians algorithmon thenode embeddings to determine knodeswhichwill count
as initially infected in the Independent Cascades (IC) model [8] that follows. In IC, each
node that was infected in the previous timestep has a chance to infect each of its neigh‐
bors that has not been infected yet. IC stops when no new nodes have been infected in
a timestep. The results are q as the fraction of nodes that have been infected at the end
of the experiment, andQ = {qc} for the fraction regarding each group c. The global per‐
formance q is the fraction of nodes that have been infected at the end of the experiment,
and the grouped performancesQ = {qc} contains those fractions regarding each group
c.

Link prediction — To perform link prediction, for every node pair (u, v) ∈ V × V in the
graph with embeddings ru, rv, the edge type t((u, v)) = {c(u), c(v)} is determined as the
set of their groups, and a feature vector x((u, v)) = (ru−rv)◦(ru−rv) is obtained by tak‐
ing theHadamard squared difference between their embeddings. A dataset is created by
taking all node pairs that share an edge in the graph (positive samples), and randomly
adding an equal number of node pairs without an edge between them (negative sam‐
ples). 90% of these are selected as training data, stratified such that training and test set
contain equal numbers of positive and negative samples per edge type. Finally, a logis‐
tic regression model is trained on the training set’s feature vectors to predict whether
the graph contains an edge between them. The global performance q is the accuracy of
the model on the test set, and the grouped performances Q = {qt} are the accuracies
for each edge type t.

Node classification — Thenode classification experiment is carried out on theRice‐Facebook
dataset, with each node’s college‐id as the prediction labels. First, 50% of the nodes are
randomly selected and have their labels masked. Then the Label Propagation (LP) al‐
gorithm [9] with k = 7 is applied on the node embeddings in an attempt to recover
the masked labels. The global performance q is the accuracy with which correct labels
could be recovered, and the grouped performances Q = {qc} contain those accuracies
regarding each group c.
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D Hyperparameter settings

Tuning object Parameter (symbol) Value Source

CrossWalk length of random walks (d) 5 C
number of random walks (r) 1,000 C

Node embeddings embedding space dimensionality 32 C
(DeepWalk + Node2Vec) length of random walks 40 C

number of random walks per node 80 C
context size 10 C
negative sampling ratio 5 C
learning rate 0.025 C
number of epochs 5 C

Node2Vec visited node factor denominator (p) 0.5 P
unseen node factor denominator (q) 0.5 P

Influence maximization number of infected nodes (k) 40 P
infection probability

— synthetic graphs 0.03 P
— real graphs 0.01 P

Node classification test split size 0.5 P

Link prediction test split size 0.1 P

Table 3. General hyperparameter settings. Full specification of general hyperparameter settings.
These values were gathered from the original paper (P) and its public code base (C).

Downstream task Dataset α p

Influence maximization 2‐group synthetic 0.7 4
3‐group synthetic 0.7 4
Rice‐Facebook 0.5 4
Twitter 0.5 2

Node classification Rice‐Facebook 0.5 2
Twitter 0.5 2

Link prediction Rice‐Facebook 0.5 1

Table 4. CrossWalk hyperparameter settings. Full specification of CrossWalk hyperparameter set‐
tings. All of the values were gathered from the original paper.
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E Reproduction results visualized

(a) IM – 2‐group synthetic – DeepWalk (b) IM – 3‐group synthetic – DeepWalk

(c) IM – Rice‐Facebook – DeepWalk (d) IM – Rice‐Facebook – Node2Vec

(e) NC – Rice‐Facebook – DeepWalk (f) LP – Rice‐Facebook – DeepWalk

Figure 3. Visualization of reproduction results.
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F Results for Twitter dataset

Task Embeddings Influence/accuracy Disparity
Original Reproduced Original Reproduced

Influence maximization DW ∼1.37 1.30 (0.10) ∼0.09 0.58 (0.45)
FW+DW ∼1.40 1.33 (0.09) ∼0.15 0.54 (0.64)
CW+DW ∼1.43 1.33 (0.10) ∼0.08 1.22 (0.77)

Link prediction DW 69.45 92.66 (0.47) 83.65 3.47 (3.41)
FW+DW 69.17 94.65 (0.35) 63.82 5.24 (5.02)
CW+DW 68.02 94.66 (0.4) 42.79 3.93 (3.53)

Table 5. Reproduction results for Twitter dataset. Comparison of original results and their repro‐
duced counterparts. We use DeepWalk (DW) and Node2Vec (N2V) embeddings either without
reweighting, with FairWalk (FW), or with CrossWalk (CW). Original results over 5 runs were gath‐
ered from the original code‐base. Unavailable values (preceded by ’∼’) were estimated from plots
in the paper. Reproduced results over 50 runs are presented with standard deviations in parenthe‐
ses. For original results deviating by more than one standard deviation, the reproduced results
are in bold.
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G Other visualizations

(a) Performance on Rice‐Facebook dataset (b) Disparity on Rice‐Facebook dataset

Figure 4. Comparison of CrossWalk implementations in original formulation and proposed ex‐
tended formulation (20 trials). The mean of the disparity seems higher for our extended imple‐
mentation, but this very likely due to the limited amount of trials and the very large standard
deviations.

(a) without reweighting (b) with CrossWalk

Figure 5. T‐SNE visualization of DeepWalk embeddings of Rice‐Facebook dataset without fairness‐
enhancing reweighting strategy and with CrossWalk. Color of the nodes represents their affilia‐
tion with groups defined by the protected characteristic. In line with the authors intentions, one
can observe that embeddings of nodes from different groups appear closer together after Cross‐
Walk has been applied.
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