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Reproducibility Summary

Scope of Reproducibility — In this work, we present our reproducibility study of Label-Free
Explainability for Unsupervised Models [1], a paper that introduces two post‐hoc explana‐
tion techniques for neural networks: (1) label‐free feature importance and (2) label‐free
example importance. Our study focuses on the reproducibility of the authors’ most im‐
portant claims: (i) perturbing featureswith the highest importance scores causes higher
latent shift than perturbing random pixels, (ii) label‐free example importance scores
help to identify training examples that are highly related to a given test example, (iii)
unsupervised models trained on different tasks show moderate correlation among the
highest scored features and (iv) low correlation in example scores measured on a fixed
set of data points, and (v) increasing the disentanglement with β in a β‐VAE [2] does not
imply that latent units will focus on more different features.

Methodology — The authors uploaded their code when they published the paper. We re‐
viewed the authors’ code, checked if the implementation of experiments matched with
the paper, and also ran all experiments. Moreover, we extended the codebase in order
to run the experiments on more datasets, and to test the claims with other experiments.
Our code is available at https://anonymous.4open.science/r/5974660645.

Results —We found that all of the main claims of the paper were reproducible. However,
when we repeated the same experiments on two new datasets, we found that there was
a much higher correlation in example scores across different tasks (point iv above).

What was easy — The published code was high quality, well‐documented and ran the ex‐
periments end to end. The paper introduced the relevant theory well.

What was difficult — The code contained a few minor bugs we needed to fix first. Some
parts of the code were written specifically for MNIST and therefore we could not extend
the experiments easily with new datasets.

Communication with original authors —We contacted the authors to clarify our understand‐
ing of somedetails in themethods. They responded quickly and answered all questions.
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[Re] Reproducibility study of ”Label-Free Explainability for Unsupervised Models”

1 Introduction

An enduring problem inmachine learning is explaining why a trained ’black box’ model
behaves as it does. Knowing this is important because it gives insight into themodelling
process, and allows users to trust the model outputs as being fair and sensible. As a
result, several techniques have been devised to explain the outputs of supervised mod‐
els. However, these techniques are only usable when there is a target function to be
explained, and therefore cannot be used in unsupervised settings. Crabbé and Schaar[1]
introduced methods for extending existing techniques from the supervised setting to
the unsupervised one.

This paper attempts to replicate and extend the findings of Crabbé and Schaar[1]. Specif‐
ically, we:

• Reproduce the findings of the paper using their provided codebase, and identify
which factors (e.g. code quality, clarity of description) hampered or helped this
reproduction effort.

• Testwhether their proposedmethods behave consistently onmore complexdatasets.

• Extend their investigation by looking at whether the methods they devised for the
unsupervised case are consistent with results obtained when supervision signals
are available.

1.1 Label-Free Explainability for Unsupervised Models

Crabbé and Schaar[1] introduce three broad classes of methods for explaining unsuper‐
vised models.

• Feature importance: feature importancemethods aim to describe how each input
feature contributes to a given prediction. Mathematically, such a method can be
described as a scalar function ai(fj , x) which assigns a scalar value to the impor‐
tance of the ith feature of the jth output of a model f for a specific input vector
x. There are many existing methods (i.e. possible choices of function ai) for the
supervised case (e.g. Lime [3], Shap [4], Salience [5], Integrated Gradients [6]), but
they cannot be used for unsupervisedmodels because there is no obvious choice of
output function fj . Crabbé and Schaar[1] argue that any linear feature importance
method can be extended to the unsupervised case by substituting the inner prod‐
uct on the latent space for the output function. That is, the score assigned to the
ith feature for the output of amodel f and sample x is defined as bi(f, x) = ai(gx, x)
where gx(x̃) := ⟨f(x), f(x̃)⟩.
Intuitively speaking, this method ascribes high importance to features which in‐
duce a large change in position in the latent space.

Example importance methods describe which elements of the training data were most
influential to a particular prediction. These can be further divided into two categories.

• Loss‐based example importance: Thesemethods assess the importance of a given
training example to the prediction made for a test example by estimating how the
loss function would change if the training example were removed, the model re‐
trained, and new parameters obtained. The authors extend existing methods to
measuring the importance of the encoder in an encoder/decoder architecture by
only considering loss changes due to the encoder’s parameters.
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• Representation‐based example importance:
For a given test point x, these methods assign an importance score to a training
example x′ based on how similar the images f(x) and f(x′) are. The authors argue
that these methods do not need any modification to be used in the unsupervised
case, since the same procedure can be applied if f maps to a latent space.

2 Scope of reproducibility

Crabbé and Schaar[1] broadly make three types of claims in their paper. Below we de‐
scribe each category as well as which hypotheses are specifically tested in each one.

Area 1: Consistency — They aimed to show that their suggested feature‐ and example‐importance
methods identify features and examples that are consistent with a ’sensible’ definition
of importance. They make two concrete claims in this area.

• Claim 1.1: Masking features (i.e. replacing them with a baseline value) identified
as themost important by their feature importancemethodwill induce a larger rep‐
resentational shift (change in position in the latent space) than masking features
selected at random.

• Claim 1.2: For a given test datapoint, ordering a random set of training datapoints
by their unsupervised example importance will place training points of the same
class first.

Their other claims relate to the use of their new techniques to study the behaviour of
latent representations.

Area 2: Correlation — They train separate latent representations for different tasks, and
compare the behaviour of feature‐ and example‐ importance methods across the latent
representations.

• Claim 2.1: The label‐free importance scores assigned to features on the MNIST
dataset are moderately correlated across tasks, and there is no evidence that this
correlation is lower when comparing supervised and unsupervised models.

• Claim 2.2: Label‐free example importance scores have low correlation across dif‐
ferent tasks and this correlation is slightly lower when comparing supervised and
unsupervised models.

Area 3: Disentanglement — They use their method to study whether disentangled β‐VAE’s
(which have a regularisation parameter that penalises correlation between their latent
dimensions) see reduced correlations between the importance of a feature to each latent
dimension as the regularisation is increased.

• Claim 3: Increasing β does not imply a decrease in correlation between the feature
importance scores of separate latent units.

3 Methodology

To replicate the study, we relied on the public repository provided by the authors. This
included scripts to run each of the experiments, which we adapted for our use with
minor modifications to fix small errors. We also modified the code for improved paral‐
lelisation. The scope and impact of these modifications is described in Appendix B. We
also conducted some analyses that went beyond their paper. Both the adapted code and
our experiments can be found at https://anonymous.4open.science/r/5974660645/README.md.
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3.1 Model descriptions
Different models are used depending on the dataset and experiment. The first model is
a denoising autoencoder CNN, which is used on MNIST, CIFAR‐10 and CIFAR‐100. The
second model is an LSTM reconstruction autoencoder, which is used on ECG5000. The
third model is a SimCLR neural network with a ResNet18 backbone, this model is used
for experiments on the CIFAR‐10 and CIFAR‐100 datasets. The last model is a disentan‐
gled β‐VAE, this is used for experiments on MNIST dSprites, CIFAR‐10 and CIFAR‐100.

3.2 Datasets
The experiments in the original paper were conducted using four datasets: MNIST,
dSprites, ECG5000 and CIFAR‐10. For additional experiments CIFAR‐100 was used.
MNIST[7] consists of 60000 training and 10000 testing images. These images are 28x28
and in greyscale with pixel values ranging from 0 to 255. Each image represents a hand‐
written digit ranging from 0 to 9, which is also labelled correspondingly.
dSprites[8] is a dataset of procedurally generated 2D shapes. These shapes are based on 6
ground truth independent latent factors. The dataset contains 737280 64x64 imageswith
6 dimensional float64 values of the latent factors. The dataset was split into a training
set and a test set, with a ratio of 0.9 for training and 0.1 for the test set.
ECG5000[9] consists of 5000 univariate time series describing the heartbeat of a patient.
This is equivalent to around 20 hours of real‐time heartbeats. Each time series describes
a single heartbeat in 140 time steps. Each heartbeat is also labelled with a 0 or a 1,
indicating if the heartbeat is normal(0) or abnormal(1). 4500 time series are used for
testing and 400 for training, 100 are used for validation.
CIFAR‐10[10] consists of 60000 32x32 colour images with 10 classes, with 6000 images
per class. The dataset is split in 5 training batches and one testing batch, with each
batch consisting of 10000 images. Each image contains a label in the form of an integer
ranging from 0 to 9.
CIFAR‐100[10] is similar to CIFAR‐10, the difference is that it contains 100 classes with
600 images for each class. These 100 classes can be grouped together in 20 superclasses.
Each superclass is a group of 5 classes, for example: maple, oak, palm, pine, willow
form the superclass trees.

3.3 Hyperparameters
The reproduction experiments are conducted using the same model hyperparameters
as in the original paper. Table 5 in the Appendix D specifies the hyperparameters for
each used model.

3.4 Experimental setup and code

Methodology - Claim 1.1 — This experiment measured the impact of replacing the values
of the top‐ranked most important features with random baselines. For each of three
attributionmethods (Saliency, Integrated Gradients, and Gradient SHAP), we calculated
unsupervised feature importance values for all features. Then, for various values of
M ∈ N, we replaced (or ’masked’) the top M features with a fixed baseline value, and
measured the change in position in the latent space. This distance is referred to as the
representation shift, and is calculated as ||fe(x)− fe(m(x))||where fe is our encoder, and
m is our masking function.

The authors hypothesised that if an unsupervised feature attribution method was ’sen‐
sible’, then masking the top M highest ranked features should always induce a larger
representation shift than when the masked features were chosen at random.
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Methodology - Claim 1.2 — This experiment measured whether, for a given test example
x∗, the top‐rankedmost similar training examples were more likely to share class labels
with x∗. For a given value of M ∈ N, we computed what proportion of the top M most
similar training examples shared the same class label as x∗ ‐ this proportion is referred
to as the similarity rate. We repeated this process for 1000 separate test examples, and
averaged the resulting proportions. The authors hypothesised that a ’sensible’ example
similarity method should see higher values of this proportion at lower values ofM .
This process was repeated for each of three datasets (CIFAR‐10, MNIST, ECG5000) and
five example importance methods (DKNN [1], SimplEx [11], TracIn [12], Influence Func‐
tions [13], CosineNN). The ’CosineNN’ method was created by us as a drop‐in replace‐
ment for DKNN. It uses cosine similarity, rather than inverse distance, to define simi‐
larity between train and test points.

Methodology - Claim 2.1 — This experiment compared feature importance for latent rep‐
resentations trained for different tasks on the MNIST dataset. A model was trained on
each of the three unsupervised tasks of reconstruction, denoising, and inpainting, and
the supervised task of classification. Label‐free gradient Shap was used to score the im‐
portance of each feature to each latent representation. Then, we calculated the Pearson
correlation coefficient of the importance scores of matching features between pairs of
latent representations. That is, if f and g were two encoders corresponding to different
latent representations, and bi the label free gradient Shap of the ith feature, we calcu‐
lated the correlation between bi(f, x) and bi(g, x) across all choices of i.

Methodology - Claim 2.2 — This experiment had the same structure as 2.1, but measured
correlations in example importance (measured using the label‐free DKNN method) in‐
stead. That is, if cn(f, xm) refers to the example importance of the nth training point
to the mth test point, and f, g referred to encoders learned for different tasks, then we
measured the correlation of cn(f, xm) and cn(g, xm) pooled across all n andm.

Methodology - Claim 3 — This experiment aimed to use label‐free feature importancemeth‐
ods to study the behaviour of disentangled VAEs, a VAE architecture where a regularisa‐
tion parameter (β) penalises correlation between variables in the learned latent space.
The authors initially hypothesised that this implied that as the parameter was increased,
the correlation of label‐free feature importance scores between different units should
decrease. Ultimately, they found no evidence to support their initial hypothesis. To test
this hypothesis, we compute feature importance scores separately for each latent unit,
then computed the Pearson correlation coefficient of corresponding scores between the
latent units.
We also attempted to corroborate the authors’ explanation for their findings by visualis‐
ing the behaviour of each latent unit for multiple values of β using Lucid [14], a method
which determines the input that would maximise the response from each latent unit.

Additional Experiment - Extending consistency and task comparison to CIFAR-10 and CIFAR-100 —
Werepeated the experiments described above on twoextra datasets: CIFAR‐10 (forwhich
1.1 and 1.2were already tested in the original paper) andCIFAR‐100 datasets (which is en‐
tirely new). We had two aims: first, we wanted to check whether the label‐free methods
would still be consistent on these more complex datasets. Second, we wanted to check
whether therewould be a larger difference between the latent representations ofmodels
that were trained with and without access to labels, since the labels may provide amore
important signal for training representations when the data is more complex. Due to
the increased complexity of the task, we also added one extra layer both to the encoder
and decoder and increased the network’s width. The details of the encoder and decoder
networks are described in Appendix C.
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Additional Experiment - Comparison of Unsupervised and Supervised Feature Importance —We ran
an additional experiment to corroborate their claims of consistency for feature impor‐
tance. Their experiments showed that featureswith higher importance induced ahigher
representational shift when masked. However, it’s unclear how this representational
shift can be interpreted: there’s no guarantee that a large shift in the latent space would
correspond to a large shift in a target function if one was learned on the latent space.
To answer this question, we examinedwhether the feature importance scores calculated
for a classifier were similar to those calculated for the layers responsible for the latent
representation. That is, if the full classifier can be described as the composition of a
latent space encoder fe and a projection head fd, we computed for each test point xj

the correlation ρj of bi(fe, xj) and bi(fd ◦ fe, xj) across all features i. Finally, we averaged
ρj to obtain a point estimate of the correlation between importance scores of fe and
fd ◦ fe.
We took the classifier that was trained on the MNIST data, and followed the above pro‐
cedure for three types of feature importancemetrics (Gradient Shap [4], Salience [5] and
Integrated Gradients [6]). We repeated this process across 5 random reseedings of the
model. If the unsupervised and supervised feature importance are consistent with each
other, we would expect a high correlation.

3.5 Computational requirements
In our experiments, we used a single NVIDIA A100 GPU and 8 cores of an AMD EPYC
7643 processor. All together, the experiments took approximately 80 hours to run.

4 Results

Claim 1.1 - Consistency of feature importance — Our results were closely aligned with those
of the original work (Figure 1). We found that for all models, including those trained on
theCIFAR‐100 dataset, the representation shift inducedbymaskinghigh‐importance fea‐
tures was always greater than in the random baseline, although in the case of CIFAR‐10
this was only true for the Integrated Gradients method. In general, integrated gradients
and gradient Shap performed best, while saliency performed worst.

(a) MNIST

0 20 40 60 80 100
% Perturbed Time Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
pr

es
en

ta
tio

n 
Sh

ift

Method
Gradient Shap
Integrated Gradients
Saliency
Random

(b) ECG5000
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(c) CIFAR‐10
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(d) CIFAR‐100

Figure 1. Consistency check for label‐free feature importance. Each curve shows the size of rep‐
resentation shift that is induced as we mask an increasing percentage of the top‐ranked most
important features. Each line shows the average and 95% standard deviation over 5 random re‐
seedings.

Claim 1.2 - Consistency of example importance — Our experiments replicated the findings of
Crabbé and Schaar[1] (Figure 2). Similarity rates were always higher when calculated
across examples with higher label‐free example importance, including on the CIFAR‐
100 dataset. The one exception to this was the SimplEx method on ECG5000, where
high‐importance examples only achieved marginally higher similarity than the lowest
importance scores. This is directionally in line with the results of Crabbé and Schaar[1],
but it was not remarked on in their paper. Our newly defined ’cosine nearest neighbours’
techniques outperformed all other methods.
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(a) MNIST
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(b) ECG5000
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(c) CIFAR‐10
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Figure 2. Consistency check for label‐free example importance. Each solid line shows how the
similarity rate changes as we calculate it over some percentage of the highest‐ranked training
examples, for each choice of label‐free example importance metric. The dotted lines show what
happens if we start with the bottom‐ranked samples instead.

(a) saliency maps

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.41± 0.02
INPAıNT. 0.34± 0.03 0.31± 0.02
CLAſſıF. 0.44± 0.02 0.39± 0.01 0.32± 0.02

(b) example importance

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.1± 0.02
INPAıNT. 0.06± 0.02 0.1± 0.04
CLAſſıF. 0.06± 0.02 0.07± 0.01 0.06± 0.03

Table 1. Pearson correlation for saliency maps and example importance (avg +/‐ std) between dif‐
ferent pretext tasks on MNIST.

Claim 2.1 - Correlation of feature importance across tasks —Using theMNIST dataset, we found
nearly identical results to Crabbé and Schaar[1] when measuring the correlations of fea‐
ture importance across different tasks. All model pairs showed a modest correlation
and had a small standard error across runs (Table 1a). We found very similar results
when we repeated the experiment on CIFAR‐10 and CIFAR‐100.

Claim 2.2 - Correlation of example importance across tasks —We also found nearly identical
results to Crabbé and Schaar[1] when measuring correlations of example importance
across different tasks using the MNIST data (Table 1b). All model pairs showed a low
correlation in example importance (0.06 to 0.1) and a low standard deviation across runs.

However, we found substantially different trends when we repeated the experiment on
CIFAR‐10 and CIFAR‐100, see Table 2 and 3. On these datasets, latent representations
trained for separate unsupervised tasks had a high correlation (~ 0.9) to each other, but
all had low correlation to the representations trained with the supervised task (~ 0.13).

Claim 3 - disentanglement of VAE — Our results supported their claim that increasing the
strength of the disentanglement regularisation parameter (β) does not decrease correla‐
tion across feature maps in either β− or TC‐VAEs. Although our results did not match
theirs perfectly, we were satisfied that they exhibited the same trends, and the same
rough distribution of the Pearson statistic (Figure3). While our Lucid visualisations
showed some interesting patters, they did not provide any insight into the relationship
between increased β and the Pearson correlations (Figure 4).

(a) MNIST (b) dSprites

Figure 3. Pearson correlation between feature importance scores of pairs of latent units for differ‐
ent values of β.
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Figure 4. Lucid visualization of the 3 latent
unit across the different β‐VAE networks.

Figure 5. Pearson correlation between fea‐
ture importance values of a full classifier
and its constituent latent encoder. Each
value is the mean across 5 runs, shownwith
a 95% confidence interval.

4.1 Results beyond original paper

(a) CIFAR‐10

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.88± 0.07
INPAıNT. 0.92± 0.03 0.9± 0.03
CLAſſıF. 0.16± 0.02 0.15± 0.01 0.15± 0.02

(b) CIFAR‐100

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.91± 0.07
INPAıNT. 0.89± 0.03 0.93± 0.02
CLAſſıF. 0.2± 0.02 0.2± 0.02 0.19± 0.02

Table 2. Pearson correlation of example importance (avg +/‐ std) across different pretext tasks.

(a) CIFAR‐10

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.29± 0.11
INPAıNT. 0.3± 0.04 0.28± 0.03
CLAſſıF. 0.19± 0.01 0.21± 0.02 0.18± 0.02

(b) CIFAR‐100

PEARſON RECON. DENOıſ. INPAıNT. CLAſſıF.
RECON.
DENOıſ. 0.35± 0.08
INPAıNT. 0.31± 0.05 0.42± 0.07
CLAſſıF. 0.21± 0.01 0.22± 0.01 0.2± 0.01

Table 3. Pearson correlation of feature importance (mean ± standard deviation) across different
pretext tasks for CIFAR10 and CIFAR100.

Comparison of Unsupervised and Supervised Feature Importance —We found that there was at
best a moderate correlation between feature importance for the latent space encoder
and the full model (see figure 5). The Pearson correlation coefficients weremuch higher
for Integrated gradients (~0.45) and gradient SHAP (~0.35) than for Saliency (~0.2). There
was very little variation in the strength of correlation between different runs.

5 Discussion

5.1 Reproducibility
Overall, our reproducibility study shows that all the claims of Label-Free Explainability
for Unsupervised Models hold. Although we could not match all their results exactly, we
were satisfied that we replicated themajor trends for all claims and datsasets. We found
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that their claims about the consistency of their methods (1.1 and 1.2) generalised well
to the CIFAR‐100 dataset. This indicates that the author’s proposed ‘label‐free’ methods
can be useful on more complex datasets than those that they originally used.
However, we found substantially different results when testing the claim (2.2) about
correlations between example importance scores between latent representations using
CIFAR‐10 and CIFAR‐100. On these more complex datasets, there was a much clearer
divide between latent representations trained with and without label information. We
conjecture that supervision signals have a larger impact on latent representations on
more complex data, although we leave it to future work to test this more rigorously.

5.2 Are unsupervised methods consistent with supervised ones?
We found that there was atmost amoderate correlation between the feature importance
values assigned to a model and its constituent latent space encoder. While their initial
experiments showed that theirmethodswere ‘consistent’, thiswas only defined based on
properties of the latent space, and not in terms of the application of that latent represen‐
tation to a downstream task. Hence, ours is an important finding, because it shows that
the ‘label‐free’ feature importance values do not necessarily align with a semantically
meaningful definition of importance, even when the encoder and decoder were trained
together. Therefore, we recommend that in applications where an accurate representa‐
tion of feature importance is essential, the label‐freemethods should not be substituted
for label‐based ones. An obvious avenue for future work is to see whether this same
problem afflicts label‐free example importance methods.

5.3 What was easy
The authors created a publicly available repository which contained code for training
models, running experiments, and generating thefigures and tables. We found it straight‐
forward to use this code to replicate their experiments. Overall, the authors did an ex‐
cellent job of making their work reproducible.

Additionally, the paper was very precise in describing how their approach extended on
the existing literature. We found there was no ambiguity in the mathematical details of
their proposedmethod, and could have easily implemented it ourselves if that had been
required.

5.4 What was difficult
Although their codebase was easy to use end‐to‐end, it was occasionally difficult to read
and validate that the code was bug free. We believe that the readability could have been
improved by consolidating the experiment code into classes that were shared between
experiments for the different datasets.

5.5 Communication with original authors
Wecontacted the authors of the paper via email, to ask about themotivationbehind their
choice of kernel in DKNN (to which they responded they used it because it is a standard
choice), and why in the computation of the saliency maps the features are multiplied
with their latent values in the code (to which they responded that it was to preserve
consistency with earlier methods, despite not being strictly necessary).
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B Necessary changes to the code

We had to make a number of small modifications to the code to replicate the results of
the experiment. Each one is described below.

B.1 SimCLR
The most substantial differences between our study and the original were found when
reproducing the consistency experiments for CIFAR10. We obtained a substantially dif‐
ferent (though directionally similar graph) for each of these experiments.

Wediscovered that the original plot canbe reproducedwhenusing the sameResNet18[15]
architecture with random weights. We hypothesize the authors accidentally missed the
loading of pretrained weights, because there is a bug in the relevant part of the code
which causes model loading to fail silently. The plot in our paper was obtained with
this bug fixed. Nevertheless, it does not affect their claim.

Also, when describing this experiment, the authors noted in their paper that they sam‐
pled 1000 train examples xn ∈ Dtrain and matched latent representation of test images
against these (Section 4.1 in the original paper). Accidentally, however, they sampled
every data point from the test set. While this is technically a mistake, we fixed the issue
before replicating the experiment, and found that it made no difference to the results.

B.2 Distance function
In claim 2.2, the authors measured the Pearson correlation between DKNN‐based exam‐
ple importance scores. However, when determining these scores, they used inverted
squared Euclidean distances as their kernel function k(x, y) = 1/(x − y)2. We thought
that using a kernel that was more linear in distance would reduce noise in correla‐
tion analyses, and so replaced this function with the negative of the distance k(x, y) =
−
√
(x− y)2. However, we found this change made no major difference in the results,

and therefore we chose to keep the original distance function in our final code.

B.3 Data prefetching
Originally, the authors’ code ran the data prefetching synchronously, with one worker.
For this reason, wemade changes in the authors’ code in order to parallelize this process,
which resulted in a significant speed‐up.
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Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Test Image Reconstruction Denoising Inpainting Classification

Figure 6. Label‐free top examples for VAE networks and the classifier.
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C AutoEncoder of CIFAR10 and CIFAR100

For the classification, the same encoder was used but with an extra linear classifier head
attached to the end of the network.

Component Layer Type Hyperparameters

Encoder

Conv2d Input Channels:3 ; Output Channels:32 ; Kernel Size:3 ; Stride:1 ; Padding:1

LayerNorm

ReLU

MaxPool2D Stride:2

Conv2d Input Channels:32 ; Output Channels:64 ; Kernel Size:3 ; Stride:1 ; Padding:1

LayerNorm

ReLU

MaxPool2D Stride:2

Conv2d Input Channels:64 ; Output Channels:128 ; Kernel Size:3 ; Stride:1 ; Padding:1

LayerNorm

ReLU

MaxPool2D Stride:2

Conv2d Input Channels:128 ; Output Channels:128 ; Kernel Size:3 ; Stride:1 ; Padding:1

ReLU

Flatten Output Channels : 2048 (128*4*4)

Linear Input Dimension: 2048 ; Output Dimension: 128

ReLU

Linear Input Dimension: 128 ; Output Dimension: 128

Decoder

Linear Input Dimension: 128 ; Output Dimension: 128

Linear Input Dimension: 128 ; Output Dimension: 2048

Unflatten Dimension:1 ; Unflatten Size:(128, 4, 4)

ConvTranspose2d Input Channels:128 ; Output Channels:64 ; Kernel Size:3 ; Padding:1 ; Stride:2 ; Output Padding:1

LayerNorm

ReLU

ConvTranspose2d Input Channels:64 ; Output Channels:32 ; Kernel Size:3 ; Padding:1 ; Stride:2 ; Output Padding:1

LayerNorm

ReLU

ConvTranspose2d Input Channels:32 ; Output Channels:3 ; Kernel Size:3 ; Padding:1 ; Stride:2 ; Output Padding:1

Sigmoid

Table 4. CIFAR‐10 & CIFAR‐100 AutoEncoder Architecture.

D Hyperparameters

Table 5. Hyperparameters for each model used trained in conducted experiments.

MODEL LEARNıNG RATE β1 β2 ϵ WEıGHT DECAY MOMENTUM EPOCHſ PATıENCE
MNIST AUTOENCODER .001 .9 .999 10^‐8 10^‐5 100 10
ECG5000 AUTOENCODER .001 .9 .999 10^‐8 0 150 10
CIFAR‐10 SıMCLR .6 10^‐6 .9 100 10
MNIST VAE .001 .9 .999 10^‐8 10^‐5 100 10
DSPRıTEſ VAE .001 .9 .999 10^‐8 10^‐5 100 10
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