
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2022

[Re] Reproducibility Study of ”Focus On The Common
Good: Group Distributional Robustness Follows”

Walter Simoncini1, ID , Ioanna Gogou1, ID , Marta Freixo Lopes1, ID , and Ron Kremer1, ID
1University of Amsterdam, Amsterdam, The Netherlands

Edited by
Koustuv Sinha,
Maurits Bleeker,

Samarth Bhargav

Received
04 February 2023

Published
20 July 2023

DOI
10.5281/zenodo.8173707

Reproducibility Summary

Scope of Reproducibility — This paper attempts to reproduce the main claims of “Focus On
The Common Good: Group Distributional Robustness Follows” by Piratla et al., which
introduces Common Gradient Descent (CGD), a novel optimization algorithm for han‐
dling spurious correlations and sub‐population shifts. We have identified three central
claims: (I) CGD is more robust than Group-DRO and leads to the largest average loss
decrease across all groups (II) CGD generalizes better across all groups in comparison to
ERM, and (III) CGDmonotonically decreases the group‐average loss.

Methodology — The experiments of this paper are based on the open source implementa‐
tion of CGD released by the authors, which required some modifications to work with
the latest version of the WILDS framework.

Results — The results from our experiments were overall in line with the paper. We show
that CGD outperforms Group-DRO on synthetic datasets with induced spurious correla‐
tions, but the benefits of CGD are not clear in a real‐world setting. Beyond the results
of the original paper, our attempt to empirically verify the mathematical proof of the
authors that CGDmonotonically decreases the loss was not conclusive.

What was easy — The implementation from the original paper was available on GitHub
with detailed instructions provided in the documentation. It was also relatively easy to
introduce additional datasets and algorithms to the WILDS codebase.

What was difficult — The CGD implementation and several experiments could not be run
out‐of‐the‐box and requiredmajormodifications to runwith the latest version ofWILDS.
The majority of the hyperparameter values for the experiments were not clearly stated.
Lastly, the experiments were computationally expensive and required 440 GPU hours.

Communication with original authors —We reached out to the original authors to request ad‐
ditional information about the hyperparameter values and the implementation of some
experiments. The authors promptly responded with sources for the hyperparameters,
useful information about WILDS and provided some missing parts of the code. Overall,
the communications were timely and effective.

Copyright © 2023 W. Simoncini et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Walter Simoncini (walter.simoncini@student.uva.nl)
The authors have declared that no competing interests exist.
Code is available at https://github.com/WalterSimoncini/CGD-Reproduction – DOI 10.5281/zenodo.7998663. – SWH
swh:1:dir:4a89288fc050158c419caee05af572cad7b71a12.
Open peer review is available at https://openreview.net/forum?id=ye8PftiQLQ.

ReScience C 9.2 (#23) – Simoncini et al. 2023 1

https://orcid.org/0009-0006-3086-7141
https://orcid.org/0000-0002-9223-9726
https://orcid.org/0009-0007-9039-1349
https://orcid.org/0009-0005-8973-7133
mailto:walter.simoncini@student.uva.nl
https://github.com/WalterSimoncini/CGD-Reproduction
http://oadoi.org/10.5281/zenodo.7998663
https://archive.softwareheritage.org/swh:1:dir:4a89288fc050158c419caee05af572cad7b71a12/
https://openreview.net/forum?id=ye8PftiQLQ
https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

1 Introduction

In recent years, deep neural networks have become state‐of‐the‐art solutions for many
tasks. However, for some, they tend to achieve high overall prediction accuracy at the
cost of mispredicting samples from minority groups. This is dangerous for automatic
decision systems that make critical decisions. For instance, models trained with Empir‐
ical Risk Minimization (ERM) are particularly susceptible to this issue. One of the key
reasons for this behavior, identified by both Sagawa et al.[1] and Koh et al.[2], is the ex‐
istence of spurious correlations between the features and labels of the majority group,
which may not exist or correlate negatively for minority groups. To overcome this, sev‐
eral new algorithms have been proposed, such as Group Distributionally Robust Opti‐
mization (Group‐DRO or G-DRO) [1], and Common Gradient Descent (CGD) [3]. The first
tackles the problemby training on the groupwith the largest training loss. Nevertheless,
Piratla, Netrapalli, and Sarawagi[3] observed that this might lead to imbalanced training
due to increased loss in the other groups. In contrast, CGD trains on the group which
minimizes the loss across all groups. The authors claim that such an approach models
inter‐group interactions and addresses spurious correlations. This report aims to ver‐
ify the claims of the authors by reproducing their findings and performing additional
experiments. Our contribution can be summarized as follows:

• We reproduce both the qualitative and quantitative experiments to identify which
claims can be verified. We also quantify the computational and development cost
needed.

• We update the CGD code tomake it compatible with the latest version of theWILDS
framework [2] and document the steps taken to reproduce the paper, making fu‐
ture reproductions easier and more accessible.

• We implemented the code required to run experiments on theMultiNLI [4] dataset.

2 Scope of reproducibility

The paper “Focus On The Common Good: Group Distributional Robustness Follows” [3]
attempts to tackle the problems of spurious correlations and sub‐population shift with
a new optimization algorithm: Common Gradient Descent (CGD). CGD optimizes the
model using the group “whose gradients lead to the largest decrease in average train‐
ing loss over all groups” [3]. In this reproducibility study, we attempt to validate the
following claims made by the authors:

• CGD is more robust than Group-DRO in the presence of spurious features: by fo‐
cusing on the group that leads to the largest loss decrease across all groups, CGD
is robust against spurious features.

• CGD generalizes better across all groups in comparison to ERM: a model trained
with CGD should perform better onminority groups while achieving a comparable
average accuracy.

• CGD monotonically decreases the macro/group‐average loss: the authors prove
this claim mathematically, showing that CGD finds first‐order stationary points.
We attempt to validate this claim empirically over three datasets used by the pa‐
per.

In this reproducibility study, due to resource and time constraints, we decided to com‐
pare the performance of CGD only against ERM and Group-DRO. This decision is also
motivated by the fact that the other robustness algorithmsmentioned in the paper were
not discussed as thoroughly. We consider this subset of algorithms sufficient to validate

ReScience C 9.2 (#23) – Simoncini et al. 2023 2

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

the claims stated above. Moreover, for the real‐world datasets from the WILDS bench‐
mark [2], we only trained with CGD, given that the documented results with the other
algorithms were highly correlated with the values reported in the official WILDS paper
[2] and the WILDS benchmark. Therefore, we felt these two were reliable sources for
validating these results.

3 Methodology

To conduct our experiments we utilized the code for CGD which was released by the
authors on their GitHub repository 1. The available implementation was designed to
be run using version 1.2.2 of the WILDS framework [2]. In the months following the
code release, WILDS underwent a major update [5] to version 2.0. In order to make CGD
compatible with the new framework version, we had to implement some minor tweaks,
especially for datasets with disjoint groups for the training, validation, and test sets. The
authors also provided the initialization code for the datasets used in the qualitative eval‐
uation of the algorithm. The code for the datasets used in the quantitative evaluation
was included in the WILDS repository, except for MultiNLI, which we implemented us‐
ing the code in the Group-DRO repository [1] as indicated by the authors.

3.1 Algorithm descriptions
This section describes the algorithms used to validate the claims made by the authors,
namely ERM, Group-DRO, and CGD. We closely follow the notation used in the paper,
which defines X , Y as the feature and label spaces, and G as a set of non‐overlapping k
groups, each composed of ni observations distributed as Pi(X ,Y). For each group i, we
define ℓi(θ) = E(x,y)∼Pi(X ,Y)L(x, y; fθ) as group loss, where fθ is a classifier, θ are the
model parameters and L is an appropriate loss. The baseline algorithm is ERM, which
minimizes the expected training loss.

θt+1
ERM = argmin

θ

{E(x,y)∼P̂ [ℓ(θ
t)]} , (1)

where P̂ is the empirical distribution over the training data and ℓ the loss for the whole
training set without considering the groups. The ERM formulation implicitly assigns a
higher weight tomajority groups. It also encourages themodel to exploit spurious corre‐
lations that workwell for predicting the label ofmajority groups, achieving high average
test accuracies at the expense ofminority groups. To overcome this issue, Sagawa et al.[1]
proposed Group-DRO, which, at each step, trains on the group with the worst training
loss j∗:

j∗ = argmax
i∈G

ℓi(θ) ⇒ θt+1
G-DRO = θt − η∇ℓj∗(θ

t) (2)

While Group-DRO has a better performance on minority groups when compared to
ERM, it may overfit on them, jeopardizing the average loss over all groups. To solve
this problem, Piratla, Netrapalli, and Sarawagi[3] proposed Common Gradient Descent
(CGD), which, at each step, picks the group which minimizes the overall loss across all
groups as follows:

j∗ = argmin
j

{
∑
i

ℓi[θ
t − η∇θℓj(θ

t)]} ⇒ θt+1
CGD = θt − η

∑
i

αt+1
i ∇θℓi(θ

t) , (3)

where αi is the weight for group i. A more thorough explanation of this formula and the
CGD algorithm is provided in the original paper. The algorithms above were evaluated
on various model/dataset combinations as shown in Table 9 of Appendix A.

1https://github.com/vihari/CGD

ReScience C 9.2 (#23) – Simoncini et al. 2023 3

https://github.com/vihari/CGD
https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

3.2 Datasets
The paper uses two groups of datasets: one composed of 2 synthetic toy datasets to com‐
pare the qualitative performance of CGD against Group-DRO, and a second one consist‐
ing of 2 synthetic datasets and six real‐world datasets.

Qualitative Evaluation — Thequalitative performance of CGDwas evaluated on two toydatasets:
a 2‐feature dataset sampled from a standard normal distribution, and MNIST. On these
datasets we applied three multi‐group setups:

• Label Noise Setup ‐ where 20% of the first group labels were flipped for Simple and
50% for MNIST.

• Rotation Setup ‐ where labels (or the images forMNIST) were rotated by 30 degrees
per group, such that the distances from the first and third group to the second is
the same.

• Spurious Setup ‐ where each sample has a third feature (the digit color for MNIST),
which has an 80% correlation with the label.

Quantitative Evaluation — For the quantitative evaluation of the algorithm, we used eight
datasets categorized into synthetic or real‐world and based onwhether they include spu‐
rious correlations (non‐WILDS) or sub‐population shift (WILDS). The datasets are sum‐
marized in Table 1.

Dataset (non‐WILDS) Type Classes Spurious Variable

CMNIST [6] S Digits Digit Color
WaterBirds [1] S Water/landbird Background
CelebA [7] R Blond/Non‐Blond Gender
MultiNLI [4] R NLIa Negation Words

Dataset (WILDS) Type Classes Groups

Camelyon17 [8] R Tumor/Non‐Tumor Source Hospital
PovertyMap [9] R Wealth‐Index Country & Rural/Urban
FMoW [10] R Building/Land use Year & Region
CivilComments [11] R Toxic/Non‐Toxic Mentioned Demographics
a Natural Language Inference

Table 1. Summary of the datasets used for the quantitative evaluation. Datasets are catego‐
rized into synthetic (S) or real (R) and based on whether they include spurious correlations
(non‐WILDS) or sub‐population shift (WILDS). The rightmost column shows the spurious
variable for the non‐WILDS dataset and the groups in which samples are partitioned for the
WILDS datasets. MultiNLI and CivilComments are text datasets, while the others are image
datasets.

3.3 Hyperparameters

Qualitative Evaluation — themodels for the qualitative evaluation are trained using SGD for
400 epochs, with a learning rate of 0.1 as indicated in the paper. The batch size and the
weight decay are not specified, andwe used respectively 128 and 0.01, the latter of which
was selected from the set {1, 0.1, 0.01, 0.001, 0} by manually inspecting the CGD training
weights (α) plots and choosing the value which produces a plot resembling Figure 1 of
the original paper.

ReScience C 9.2 (#23) – Simoncini et al. 2023 4

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

Dataset lr Weight Decay Epochs Batch Size C Step Size

CMNIST 1e‐3 1e‐1 10 32 0 0.05
WaterBirds 1e‐3 1e‐1 300 128 2 0.05
CelebA 1e‐3 1e‐4 10 8 2 0.05
MultiNLI 1e‐3 1e‐4 3 8 2 0.05
CivilComments 1e‐5 1e‐2 5 16 0 0.05
PovertyMap 1e‐3 0 10 64 0 0.05
FMoW 1e‐4 0 5 32 0 0.2
Camelyon17 1e‐3 1e‐2 5 32 0 0.05

Table 2. Hyperparameters used for each dataset and all algorithms in our experiments. C and step
size are only relevant for CGD. If a hyperparameter is not included then the default value inWILDS
should be assumed.

Quantitative Evaluation — following Piratla, Netrapalli, and Sarawagi[3] the models for the
qualitative evaluation are trained using SGD with a momentum of 0.9, except for Pover‐
tyMap, which uses Adam. For theWILDS datasets, we followed the setup in Koh et al.[2],
with some exceptions for the number of epochs and the batch size due to computational
limitations. For CGD, the group‐adjustment parameter C is 0 following Piratla, Netra‐
palli, and Sarawagi[3] and the step size η is selected from the WILDS leaderboard2. As
for the non‐WILDS datasets, the authors ran a grid search over the learning rate, weight
decay, batch size, and C (set to 0 for CMNIST), but only provided the hyperparameter
ranges and not the selected values. Due to computational constraints, we used the val‐
ues provided in theGroup-DROpaper [1], but if the valuewas out of the range defined by
the authors, we selected the closest one in that range. For CGD, C was set to 2 according
to Sagawa et al.[1], and η according to the WILDS leaderboard. The hyperparameter val‐
ues are summarized in Table 2. The sensitivity of CGD with regards to hyperparameters
C and η is explored in Appendix C.

3.4 Experimental setup and code
To make our study reproducible, we provide a guide on setting up a conda environ‐
ment with all the required dependencies in our GitHub repository. The instructions are
for a Google Compute Engine (GCE) virtual machine with preinstalled NVIDIA drivers.
However, they are highly flexible and should work on any machine with minor tweaks
(namely the CUDA version). We also provide a modified version of the WILDS reposi‐
tory which can run the CGD experiments out of the box. The complete instructions on
reproducing our experiments are available in the README.md file of the repository.

3.5 Computational requirements
The experiments were executed on three machines, whose hardware configurations are
listed in Table 3. The estimated runtime of each model/dataset pair on a Google Com‐
pute Engine Virtual Machine (GCE) is listed in Table 4, and each pair was run with three
different seeds. Therefore the total computation time was approximately 440 hours.

4 Results

4.1 Results reproducing original paper

Qualitative Evaluation —We replicated the qualitative comparison in Section 4 of the pa‐
per for both the Simple and MNIST datasets. For the Simple dataset, CGD outperforms

2https://wilds.stanford.edu/leaderboard/

ReScience C 9.2 (#23) – Simoncini et al. 2023 5

https://wilds.stanford.edu/leaderboard/
https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

Machine CPU RAM (GB) Graphics Card VRAM (GB)

GCE VM Intel Xeon 8173M 16 Tesla T4 16
Laptop A AMD Ryzen 7 5800h 16 RTX 3050Ti Mobile 4
Laptop B Intel i5‐9300H 16 GTX 1660Ti Mobile 6

Table 3. Hardware configuration of the machines used to run experiments.

Algorithm CMNIST WaterBirds CelebA MultiNLI

ERM, Group-DRO 1h 7h 8h 4h
CGD 2h 15h 31h 4.5h

Algorithm CivilComments PovertyMap FMoW Camelyon17

ERM, Group-DRO 16h 0.3h 2h 3h
CGD 17h 8h 20h 10h

Table 4. Estimated runtime in hours of eachmodel and dataset combination on a Google Compute
Engine Virtual Machine with a Tesla T4 GPU. The runtimes of ERM and Group-DRO are similar
for all datasets.

Group-DRO, albeit with a smaller gap than the results of the paper, as can be seen in
Table 5. An inspection of the group weights α over epochs as shown in Figure 1 reveals
the CGD effectively behaves as described in the paper:

• Label Noise setup ‐ CGD avoids training only on the noisy majority.

• Rotation Setup ‐ CGD, on average, focuses on the center group, which has the opti‐
mal classifier. However, this selection varies from seed to seed (Appendix B).

• Spurious Setup ‐ CGD correctly identifies the clean majority and assigns it a much
stronger weight than in the paper.

For theMNISTdataset, wewere not able to replicate the paper results. As shown in Table
6, we achieved similar average andworst‐group accuracies betweenCGD andGroup-DRO,
except for the Rotation setup, where Group-DRO failed to achieve reasonable accuracy.
We suspect theremight be an issuewith the experimental setup forGroup-DRO because
the original paper achieved significantly better results.

Figure 1. The comparison of groupweightsα for Group-DRO (top) and CGD (bottom) for the Simple
dataset setups: label noise, rotation and spurious.

ReScience C 9.2 (#23) – Simoncini et al. 2023 6

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

Algorithm Noisy Simple Rotation Simple Spurious Simple

G-DRO 0.26 (0.02) 0.47 (0.04) 0.42 (0.03)
CGD 0.22 (0.01) 0.46 (0.06) 0.32 (0.01)

Table 5. Worst group losses on the test split of the simple dataset, averaged over six seeds. The
standard deviation is shown in parentheses.

Algorithm Metric Noisy MNIST Rotation MNIST Spurious MNIST

G-DRO Avg. Acc. 77.36 (10.02) 30.58 (3.82) 92.47 (2.63)
W.g. Acc. 77.25 (9.95) 28.02 (4.42) 91.75 (2.68)

CGD Avg. Acc. 76.35 (7.8) 92.51 (1.78) 92.51 (1.78)
W.g. Acc. 76.24 (7.81) 91.7 (2.35) 91.7 (2.35)

Table 6. Average and worst group accuracies on the test split of MNIST, averaged over three seeds.
The standard deviation is shown in parentheses.

Quantitative Evaluation —We reproduced the experiments on the non‐WILDS and WILDS
datasets and compared the performance of CGD against ERM and Group-DRO. Table 7
summarizes the results on the four non‐WILDS datasets. CGD outperforms the other
algorithms on the synthetic datasets with spurious correlations (CMNIST and Water‐
Birds), but fails to improve in the real‐world datasets with spurious correlations (CelebA
and MultiNLI) over ERM and Group-DRO. As for the WILDS datasets whose results are
shown in Table 8, CGD is the best algorithm only on Camelyon17 (albeit with a larger
standard deviation than ERM) and on the in‐domain evaluation of PovertyMap, while
ERM has a significant advantage on the out‐of‐domain evaluation against CGD, showing
a larger gap than what claimed by the paper. Overall, the results are in line with the
paper, which shows that CGD is better in some setups and achieves comparable perfor‐
mances in others, but its superiority is not clear.

CMNIST WaterBirds

Algorithm Avg. Acc. W.g. Acc. Avg. Acc. W.g. Acc.

ERM 55.3 (2.23) 10.5 (4.47) 97.1 (0.03) 52.2 (1.18)
G-DRO 97.6 (0.49) 96.8 (0.69) 97.3 (0.06) 71.7 (0.55)
CGD 98.0 (0.34) 97.0 (0.4) 97.3 (0.13) 73.2 (0.39)

CelebA MultiNLI

Algorithm Avg. Acc. W.g. Acc. Avg. Acc. W.g. Acc.

ERM 96.0 (0.12) 36.3 (6.04) 62.2 (11.27) 16.1 (18.59)
G-DRO 94.9 (0.11) 59.1 (1.72) 49.9 (0.76) 27.5 (2.62)
CGD 95.0 (0.13) 59.8 (8.72) 50.2 (1.01) 27.1 (1.36)

Table 7. Average and worst‐group accuracies on the test splits of the non‐WILDS datasets. In paren‐
theses are the standard deviations.

ReScience C 9.2 (#23) – Simoncini et al. 2023 7

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

Camelyon17 PovertyMap FMoW CivilComments
Avg. Acc. W.r. Pearson R W.r. Acc. W.g. Acc.

Algorithm OOD ID OOD OOD ID

ERM 70.3 (6.4) 0.57 (0.07) 0.45 (0.06) 32.3 (1.2) 56.0 (3.6)
G-DRO 68.4 (7.3) 0.54 (0.11) 0.39 (0.06) 30.8 (0.8) 70.0 (2.0)
CGD 70.4 (7.56) 0.63 (0.03) 0.38 (0.07) 29.8 (1.46) 69.7 (1.09)

Table 8. Results for different metrics on the test splits of the WILDS datasets. In parentheses are
the standard deviations. w.r. and w.g stand for worst region andworst group accuracy. The values
were taken from the original paper with the exception of CGD which we trained ourselves.

4.2 Results beyond original paper
The paper does not discuss the runtime of the algorithms, which we documented in
Table 4. We find that CGD is often 2 to 26 times slower than the other algorithms de‐
pending on the dataset. As seen in Table 4, the runtime increase varies across datasets:
for WaterBirds, we have an increase of 50%, while for PovertyMap, the increase is over
2000%. The computation of the gradients for each group at each training step (Equation
3) might be one possible reason. This hypothesis is supported by the fact that datasets
withmany groups, such as PovertyMap, FMoW, and Camelyon, with 13, 16, and 5 groups
respectively, had the largest increase in training time (the other datasets do not have
more than four groups). CelebA is an exception, but the runtime increase may be due
to the small batch size (8). In view of the above, we concluded that the small gains in
accuracymay not justify the increased training time. Moreover, the authors mathemati‐
cally proved that CGD is a sound optimization algorithm as it decreases themacro/group‐
average loss monotonically. We test this empirically by plotting the loss curves for the
non‐WILDS datasets (except for MultiNLI, since it only has 3 epochs) in Figure 2 for
Group-DRO and CGD. We observe that the validation loss curve is not monotonic. In‐
stead, it fluctuates and seems to increase for all datasets. This is particularly evident in
WaterBirds. One reason for this behavior may be the use of batches to to approximate
the gradients, whereas the proof assumes that the whole dataset is used at each training
step. Due to these limitations, we cannot confirm or disprove the claim, so we compare
the relativemonotonicity and stability between CGD and Group-DRO. For CMNIST, both
show similar degrees of monotonicity. On WaterBirds, CGD has a more stable training
than Group-DRO, whose validation loss has large fluctuations between epochs. This
may be a side effect of focusing on the group with the largest training loss as identified
by [3]. With regards to CelebA, the validation loss of CGD increases whereas the loss
of Group-DRO appears to be decreasing. In conclusion, we cannot clearly show that
the loss of CGD decreases monotonically, but our findings suggest that it is more stable
than Group-DRO. Future research may further investigate this claim by running exper‐
iments that come closer to the assumptions of the authors, namely a bigger batch size
and more epochs.

Figure 2. Loss curves for CGD and Group-DRO on three non‐WILDS datasets.

ReScience C 9.2 (#23) – Simoncini et al. 2023 8

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

5 Discussion

Overall, the majority of the claims in the paper were reproducible. CGD indeed per‐
formed comparably or better than ERM and Group-DRO depending on the dataset. How‐
ever, the increased runtime of CGDmight outweigh the minor accuracy gain. The claim
of the authors about the monotonicity of CGD could not be reproduced empirically in a
reliable way, and further research is needed. Lastly, CGD appears to have a more stable
training in comparison to Group-DRO.

5.1 What was easy
The methods used in the paper and the results were described clearly and intuitively.
Moreover, the code forCGDwas published by the authors alongside clear instructions on
integrating it into theWILDS framework. Finally, the framework chosen by the authors
is modular, and additional datasets and algorithms could be easily integrated.

5.2 What was difficult
• Resources: Model training required a massive amount of GPU time due to the
dataset size and the sheer number of experiments.

• Code: The C parameter for the WILDS implementation of Group-DRO could not
be located in the code, so we could not select a value for it. We suspect that there
might be an inconsistency between the theory and the code.Even though the code
forCGD andWILDSwas available, we couldnot run experiments out of the box: the
CDG code had to be updated to work with the latest version ofWILDS and required
some modifications. Moreover, the dataset code for MultiNLI was missing, so we
implemented it following [1] and the advice of the authors.

• Hyperparameters: Collecting the correct hyperparameter values was challenging
because thepaper only provided a range, and thereweremultiple conflicting sources:
the paper, the repository, and the WILDS leaderboard (the latter suggested by the
authors in our correspondence). Moreover, some values did not lead to the ex‐
pected accuracy according to the paper, so we had to experiment with additional
values, e.g., the weight decay for CMNIST and Waterbirds. Finally, The best val‐
ues for the CGD step size η in theWILDS leaderboard (0.05 and 0.2) were not in the
range described in the paper.

5.3 Communication with original authors
We reached out to the original authors to obtain more information about the chosen
hyperparameter values. They promptly replied, specifying that for the WILDS datasets,
the hyperparameters are as configured by default in WILDS 1.2.2. For their algorithm,
CGD, they informed us that its hyperparameters could be found in the WILDS leader‐
board. In addition, they gave us helpful information about some parts of their code that
were missing, such as the MultiNLI dataset.

ReScience C 9.2 (#23) – Simoncini et al. 2023 9

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

References

1. S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. “Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case generalization.” In: Proceedings of the International Con-
ference on Learning Representations (2020).

2. P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips,
I. Gao, et al. “Wilds: A benchmark of in-the-wild distribution shifts.” In: Proceedings of the International Con-
ference on Machine Learning (2021).

3. V. Piratla, P. Netrapalli, and S. Sarawagi. “Focus on the Common Good: Group Distributional Robustness Fol-
lows.” In: Proceedings of the International Conference on Learning Representations (2022).

4. A. Williams, N. Nangia, and S. R. Bowman. “A broad-coverage challenge corpus for sentence understanding
through inference.” In: Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2018).

5. S. Sagawa, P. W. Koh, T. Lee, I. Gao, S. M. Xie, K. Shen, A. Kumar, W. Hu, M. Yasunaga, H. Marklund, et al.
“Extending the wilds benchmark for unsupervised adaptation.” In: arXiv preprint arXiv:2112.05090 (2021).

6. I. Gulrajani and D. Lopez-Paz. “In search of lost domain generalization.” In: Proceedings of the International
Conference on Learning Representations (2021).

7. Z. Liu, P. Luo, X. Wang, and X. Tang. “Deep learning face attributes in the wild.” In: Proceedings of the IEEE
international conference on computer vision (2015).

8. P. Bandi, O. Geessink, Q. Manson, M. Van Dijk, M. Balkenhol, M. Hermsen, B. E. Bejnordi, B. Lee, K. Paeng, A.
Zhong, et al. “From detection of individual metastases to classification of lymph node status at the patient
level: the camelyon17 challenge.” In: IEEE Transactions on Medical Imaging (2019).

9. C. Yeh, A. Perez, A. Driscoll, G. Azzari, Z. Tang, D. Lobell, S. Ermon, and M. Burke. “Using publicly available
satellite imagery and deep learning to understand economic well-being in Africa.” In: Nature communications
11.1 (2020), p. 2583.

10. G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. “Functional map of the world.” In: (2018).
11. D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. “Nuancedmetrics for measuring unintended bias

with real data for text classification.” In: Companion proceedings of the 2019 world wide web conference.
2019, pp. 491–500.

A Model Specifications

The optimization algorithms evaluated in this study were applied on several models/‐
dataset combinations, as shown in Table 9. A different model was used for each dataset,
depending on the task.

Dataset Model Pretrained Parameters

Simple Linear Binary Classifier False 6
MNIST ResNet18 False 11M
CMNIST ResNet18 True 11M
WaterBirds ResNet50 True 25M
CelebA ResNet50 True 25M
MultiNLI DistilBERT‐uncased True 66M
CivilComments DistilBERT‐uncased True 66M
PovertyMap Resnet18MS True 11M
FMoW DenseNet121 True 76M
Camelyon17 DenseNet121 True 76M

Table 9. The datasets, alongside the model selection, if they use or not pretrained weights and the
number parameters. Resnet18MS refers to Resnet18 Multi‐Spectral.

ReScience C 9.2 (#23) – Simoncini et al. 2023 10

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

B Training Group Selection

Even though CGD is generally consistent with the group choice, in the Simple‐Rotation
setup, the group the algorithm focuses on varies, as shown in Figure 3 plots. While for
seed 3 CGD correctly identifies the center group for seeds 13 and 42, it focuses on the
left group. In comparison, Group‐DRO shows a more consistent group choice.

Figure 3. Group-DRO and CGD group weights α for seeds 3, 13, and 42 over epochs for the Simple
dataset and the Rotation setup. WhileGroup-DRO shows a consistent behaviorCGD either focuses
on the center group as expected (seed 3) or on a mix of the center and left groups

C Hyperparameter Sensitivity

We evaluated the hyperparameter sensitivity for CGD with respect to the group adjust‐
ment parameter C and the step size η, using the values in Table 2 for the other hyperpa‐
rameters. While a more throughout evaluation on real‐world datasets is recommended,
the evaluation was conducted using CMNIST, which allowed us to test multiple values
and average the results over three seeds with limited compute.

Figure 4. The average and worst group accuracies obtained by CGD on CMNIST with respect to the
group adjustment parameter C. The results are averaged over three seeds.

ReScience C 9.2 (#23) – Simoncini et al. 2023 11

https://rescience.github.io/


[Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows”

To evaluate the effect of C we fixed the step size η to 0.05 and trained the model us‐
ing C ∈ {0, 1, 2, 5, 10, 20}. By observing the plots in Figure 4 we can notice that large
increases of C lead to a degradation of training performance for the average and worst
group accuracy but, interestingly, this effect is not replicated in the validation set, which
instead reveals that both small and large values ofC cause instabilities in the validation
metrics. This is confirmed by the test set results in Table 10, for which C ∈ {5, 10}
perform best with regards to the average and worst group accuracies.

Step Size η Avg. Acc. W.g. Acc.

0.001 0.973 0.968
0.01 0.978 0.973
0.05 0.976 0.963
0.1 0.980 0.972
1 0.978 0.971

C Avg. Acc. W.g. Acc.

0 0.974 0.964
1 0.974 0.962
2 0.976 0.963
5 0.975 0.972
10 0.976 0.972
20 0.974 0.966

Table 10. The average and worst group accuracies for the test set of CMNIST obtained by CGDwith
respect to the group adjustment parameter C and the step size η

As for the step size hyperparameter η we fixed C = 2 and evaluted the performance
of CGD over the set {1, 0.1, 0.05, 0.01, 0.001}. With regards to the training performance
the different values performed similarly, but as can be seen in figure 5 the validation set
accuracy shows that smaller values result in amore unstable training, and, as confirmed
by the test set metrics in Table 10, η ∈ {0.1, 1} work best for this dataset.

Figure 5. The average and worst group accuracies obtained by CGD on CMNIST with respect to the
step size parameter η. The results are averaged over three seeds.

ReScience C 9.2 (#23) – Simoncini et al. 2023 12

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Algorithm descriptions
	Datasets
	Qualitative Evaluation
	Quantitative Evaluation

	Hyperparameters
	Qualitative Evaluation
	Quantitative Evaluation

	Experimental setup and code
	Computational requirements

	Results
	Results reproducing original paper
	Qualitative Evaluation
	Quantitative Evaluation

	Results beyond original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors

	Model Specifications
	Training Group Selection
	Hyperparameter Sensitivity

