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Reproducibility summary

Scope of Reproducibility — This paper analyses the reproducibility of the study Proto2Proto:
Can you recognize the car, theway I do? [1]. Themain contributions and claims of the study
are: 1) Using Proto2Proto, a shallower student model is more faithful to the teacher in
terms of interpretability than a baseline student model while also showing the same
or better accuracy; 2) Global Explanation loss forces student prototypes to be close to
teacher prototypes; 3) Patch‐Prototype Correspondence loss enforces the local represen‐
tations of the student to be similar to those of the teacher; 4) The proposed evaluation
metrics determine the faithfulness of the student to the teacher in terms of interpretabil‐
ity.

Methodology — A public code repository was available for the paper, which provided a
working but incomplete and minimally documented codebase. With some modifica‐
tions we were able to carry out the experiments that were best supported by the code‐
base. We spent a total of 60 computational GPU hours on reproduction.

Results — The results we were able to produce support claim 1, albeit weakly. Further
results are in line with the paper, but we found them to go against claim 3. In addition,
we carried out a theoretical analysis which provides support for claim 4. Finally, we
were unable to carry out our intended experiment to verify claim 2.

What was easy — The original paper was clearly structured and understandable. The ex‐
periments for which configurations were provided were simple to conduct.

What was difficult — The public codebase contained minimal documentation. Moreover,
the use of variable names did not correspond between the code and the paper. Further‐
more, the codebase lacked elements vital to reproducing some experiments. Another
significant constraint were the computational requirements needed to reproduce the
original experiments. Finally, the code required to reproduce one of the visualizations
was not provided.

Copyright © 2023 D. Bikker et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Gerson de Kleuver (gersondekleuver@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/gersondekleuver/Fact – DOI 10.5281/zenodo.8079872. – SWH
swh:1:dir:07b0f527f206c44a96373df590b251c5c3bf669d;.
Open peer review is available at https://openreview.net/forum?id=a_9YF58u61.
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Communication with original authors —We contacted the authors to ask for trained model
weights and missing hyperparameters for several experiments. We did not receive a
response.

1 Introduction

Within the field of computer vision, deep models have achieved high accuracy in a vari‐
ety of tasks. However, it remains generally difficult to understand their predictions be‐
cause of their black‐box nature. This interpretability issue is problematic when consid‐
ering applications involving high‐stakes decisions [2]. Prototypical deep learning meth‐
ods have relatively high levels of interpretability, by comparing parts of the input image
to prototypes learned during training. For example, a bird image classification decision
could be explained as ‘an image seems to contain a green kingfisher, because this part
of the image looks like this prototypical feature of a green kingfisher’ [3]. Prototypical
methods introduced in recent years include ProtoPNet [4] and ProtoTree [5].
Knowledge distillation, a concept that has recently received increased attention, uses
deep teacher models to train shallower student networks that aim to imitate the teacher
and obtain competitive performance [6]. Although there has been a lot of focus on re‐
taining or increasing accuracy between student and teacher models (for example [7],
[8], [9]), interpretability is often disregarded. Keswani et al.[1] propose the Proto2Proto
technique, which applies knowledge distillation to prototypical methods to transfer in‐
terpretability from teacher to student models without significantly compromising per‐
formance. This method assumes an interpretable teacher model and transfers both per‐
formance and interpretability to the student.
This paper aims to reproduce the experiments of the Proto2Proto study and verify the au‐
thors’ main claims. We try to reinforce the claims with both qualitative analysis (show‐
ing images with their respective prototypes) and quantitative analysis (using various
metrics).
The rest of this paper is structured in the following way. We first list the main claims of
the Proto2Proto paper that we attempt to verify. In section 2, we summarize the neces‐
sary theoretical background to understand Proto2Proto. Section 3 describes the original
experiments and explains how we attempted to reproduce the study. In section 4, we
present the results of our reproduction and investigations. These results and the overall
reproducibility of the experiments and claims are discussed in section 5.

1.1 Scope of reproducibility
The main claims of the Proto2Proto paper are:

1. Using Proto2Proto, a shallower student model is more faithful to the teacher in
terms of interpretability than a baseline student model, while also showing the
same or better accuracy.

2. Global Explanation Loss forces student prototypes to be close to teacher proto‐
types.

3. Patch‐PrototypeCorrespondenceLoss enforces the local representations of the stu‐
dent to be similar to those of the teacher.

4. The proposed evaluation metrics determine the faithfulness of the student to the
teacher in terms of interpretability.

The fourth claim requires a theoretical discussion of the concept of interpretability and
an analysis of the paper’smethod. To verify the other claims, it is necessary to reproduce
the experiments and analyze the results.
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2 Background

2.1 ProtoPNet
ProtoPNet is a prototypical model. These models use prototypes that provide a way
of adding interpretability to image classification models. During training, the model
learns a set of prototypes that represent the most relevant regions of the dataset. When
an input image is fed into the network, it is first put through a backbone CNN, which
results in a set of features. These features are used to extract a set of patches (parts
of the image) that can be compared to the prototypes. These features are compared to
every prototype by calculating the distance between the two. The similarity score is
the inverse of this distance and the highest similarity score for each prototype is stored.
These scores are fed into the decision module to compute the output logits.
ProtoPNet is inherently interpretable by displaying which local image patches contri‐
bute to its decision. Besides this local interpretability, prototypical models also provide
global interpretability, because the learned prototypes show the regions that the model
focuses on to make its decisions. An example of prototype activation can be seen in
Figure 1.

2.2 Proto2Proto
The purpose of Proto2Proto is to transfer interpretability from a (prototypical) teacher
model to a student model. To do this, the authors define two new losses that force the
student model to agree with the teacher model on both prototypes and local represen‐
tations. The Global Explanation Loss Lglobal is an average of the distance between the
prototypes of the student and the teacher (any distance metric could be used, but both
the original and our paper use Euclidean distance). The Patch-Prototype Correspondence
Loss Lppc is calculated by taking the difference between the student’s and the teacher’s
feature maps of all the active patches, divided by the number of training images. Active
patches are local patches whose distance to the closest prototype is below a threshold τ .
Thus, τ is a hyperparameter that influences the amount of active patches.
The total loss function now becomes

Ltotal = Lmodel + λglobalLglobal + λppcLppc

where Lmodel is the loss of the prototypical method being used and λglobal and λppc are
hyperparameters that balance the newly introduced losses.
In addition to these two new losses, the authors also introduce three new metrics that
evaluate how close the student and teacher models are in terms of interpretability. The
Average number of Active Patches (AAP) is the average number of active patches that a
model has per test image. It is related to local interpretability and should be as simi‐
lar as possible between the teacher and student. The Average Jaccard Similarity of Active
Patches with Teacher (AJS) gives the overlap of the student’s and teacher’s active patches.
It is calculated for a pair ofmodels and can never be higher than 1. AAP andAJS are used
to determine the Patch‐Prototype Correspondence Loss. Finally, the Prototype Matching
Score (PMS) determines the Global Explanation Loss by comparing the prototypes of the
teacher and the student. This requires a modified distance metric and matching algo‐
rithm because the mapping between student and teacher prototypes is not known.

3 Methodology

To verify the first three claims, we identified the following requirements:
Evaluating claim 1 requires training a teachermodel, a baseline student trained without
Proto2Proto and a student model trained using knowledge distillation with the
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Proto2Proto method. If the claim holds, the knowledge distillation model is expected to
be evaluated higher on both accuracy and the novel evaluation metrics than the base‐
line student model. Furthermore, we perform a qualitative analysis of the learned pro‐
totypes.
For claim 2, we need to confirm that Lglobal forces high PMS. As such we need to ablate
Lppc and confirm that PMS stays high.
For claim 3, we need to confirm that Lppc forces high AJS and high similarity between
the student’s and the teacher’s AAP. As such we need to ablate Lglobal and confirm that
AJS stays high and the student’s AAP remains close to the teacher’s AAP.
Finally, claim 4 needs to be verified by conducting a theoretical analysis.
To conduct the experiments we used the public code repository of the authors1. We
used YAMLfiles containing arguments provided by the authors, and altered themwhere
necessary.

3.1 Model descriptions
The authors use two existing prototypical methods: ProtoPNet [4] and ProtoTree [5].
Different CNN architectures were used to extract features from the input image. For
teacher models, the ResNet‐50 and VGG‐19 architectures were used. The student mod‐
els used the ResNet‐18, ResNet‐34, and VGG‐11 architectures. All of these CNN models
have been pre‐trained on the ImageNet‐1K dataset and theweights are downloaded from
the PyTorch website.
The provided codebase lacked any reference to ProtoTree, thus we did not use this archi‐
tecture in our experiments. We reproduced only the ResNet‐50 to ResNet‐18 experiment
because this was the only configuration for which the authors provided the YAML files.

3.2 Datasets
The authors conducted experiments on two datasets. The first is the Stanford Cars
Dataset (CARS)2 [10]. It contains 16,185 images in 196 classes, which are split into a train‐
ing set of 8144 and a test set of 8041 images. The training set is augmented by rotating,
skewing, flipping, and distorting the images. The original paper created 40 variations
of each picture. This was not feasible for our experiment since it increased train times
beyond our computational capacity. Therefore, we lowered the number of variations to
4 per picture.
The second dataset that was used was the CUB‐200‐2011 [11] dataset. However, the au‐
thors did not provide documentation on the used parameters for the models trained on
this dataset. We augmented the CUB dataset and trained it with the same argument set‐
tings. However, due to the lack of hyperparameters, we were unable to train the models
on this dataset faithfully. As such, we only used the CARS dataset.

3.3 Hyperparameters
Training the models requires different hyperparameters, that can be separated into a
few categories.

Prototypical method — In both ProtoPNet and Proto2Proto, the network learns 10 proto‐
types per image class. Other hyperparameters for the knowledge distillation experiment
from ResNet‐50 to ResNet‐18 were provided by the Proto2Proto authors in YAML files.
These files include learning rates for several parts of the model and information about
the dataset. In the supplement, the authors state that ‘[They] follow the same hyper‐
par[a]meters as ProtoPNet [...]’ [1, Suppl. p. 1]. However, when comparing the YAML

1https://github.com/archmaester/proto2proto
2https://ai.stanford.edu/~jkrause/cars/car_dataset.html
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file with the hyperparameters used to train the models in the original ProtoPNet paper
[4, Suppl. p 24], we found that both deviate in the weight for the cluster cost (see A.1).

New hyperparameters for Proto2Proto — The loss function contains two novel hyperparame‐
ters: λglobal and λppc. Both values are set to 10 in all experiments. The threshold value
τ that determines the maximum distance between a prototype and its active patch is
set to 100 during training. During testing, models are evaluated using different values
of τ (see A.2) including infinity (i.e. no maximum distance), and the value yielding the
highest accuracy is used. Prototypes have a dimension of 128 for the VGG model archi‐
tectures and 256 for the ResNet architectures. The authors note that these values were
found to be optimal, but do not explain why or how they arrived at them.

3.4 Experimental setup and code
To carry out the two experiments to reproduce the results of the paper and verify the
authors’ main claims, wemodified the provided PyTorch code. Our code wasmade pub‐
licly available3. The large majority of our code comes from the original authors4 and
the authors of ProtoPNet5.
We trained the student, knowledge distillation, and teacher models with a batch size of
128. We trained the models for 35 epochs. All other hyperparameters were as provided
in the YAML file of the Proto2Proto repository.
When reproducing Table 4 from the original paper in our second experiment, we did
not include the rows that reused the teacher’s decision module for the student, because
the code contained no reference to this configuration. Furthermore, for the knowledge
distillation student with both novel losses ablated, we reused the baseline student, be‐
cause the Global Correspondence Loss and Patch‐Prototype Loss were the only losses
back‐propagated in the first phase of loss calculation.

3.5 Evaluation metrics
To evaluatewhether themodels satisfy claim 1 and claim 3we used themetrics accuracy,
Average number of Active Patches (AAP) and Average Jaccard Similarity of Active Patches with
Teacher (AJS).
Due to computational constraints, we were unable to evaluate the models using Proto-
typeMatching Score (PMS), which prevented the reproduction of the experiment to verify
claim 2.

3.6 Computational requirements
For training, we used a local device with an AMD Ryzen 7 3700x CPU with a RTX 2070
super GPU and 2 cloud devices which both used an NVIDIA T4 GPU from Google Colab.
The computational requirements per experiment were 15 GPU hours on average using
a batch size of 128 with 8 workers. The total computational requirements of all experi‐
ments were 60 GPU hours.
Our experiments only used 4 augmentations per image instead of 40. The average run‐
time of the model, when given the test set, is 25 minutes given a batch size of 128.

3https://github.com/gersondekleuver/Fact
4https://github.com/archmaester/proto2proto
5https://github.com/cfchen-duke/ProtoPNet
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Datasets Methods Settings AAP AJS (↑) Accuracy (↑)

CARS

ProtoPnet ResNet‐50 (Teacher) 35.53 1.0 77.32%
ProtoPnet ResNet‐18 (Student) 40.55 0.71 70.39%

Ours ResNet‐50→ ResNet‐18 (KD) 39.31 0.73 72.94%
(+0.02) (+2.55%)

Table 1. Accuracy and interpretability of the Proto2Proto student with a ProtoPNet teacher and
ResNet backbone. Interpretability is evaluated using the AAP and AJS interpretability metrics.

Lppnet Lppc Lglobal AAP AJS Accuracy
✓ 40.55 0.71 70.39%
✓ ✓ 17.78 0.73 51.22%
✓ ✓ 31.51 0.53 13.44%
✓ ✓ ✓ 39.31 0.73 72.94%

Teacher 35.53 1.0 77.32%

Table 2. Performance of ResNet‐18 student trained using a ResNet‐50 teacher on different losses.

4 Results

4.1 Experiment 1
The results of the first experiment are shown in Table 1. In agreement with the original
study, our knowledge distillation student model is closer to the teacher model in both
accuracy and interpretability. These results support claim 1. Comparison of our results
with Table 2 from Keswani et al.[1] shows that our trained models obtain lower accuracy
and higher AJS.
Figure 1 shows themost highly activated prototypes for our trainedmodels for a sample
test image. Contrarily to Figure 1 in the original paper, we do not observe similarities
between the most active prototypes of the teacher and the knowledge distillation stu‐
dent.

4.2 Experiment 2
Table 2 shows the results of the loss ablation experiment. WhenLglobal is ablated, the dis‐
tance between the student’s and teacher’s AAP become larger. Moreover, AJS decreases.
Furthermore, when Lppc is ablated, the AJS remains the same. These results are in line
with the results from the original paper, but go against claim 3.

4.3 Theoretical analysis
To evaluate claim 4, it has to be made explicit what the authors mean by ‘faithfulness
of the student to the teacher in terms of interpretability’. Usage of the concept inter‐
pretability varies throughout the field [12]. Definitions are often left implicit, but one
that has been given is ‘the ability to explain or to provide the meaning in understand‐
able terms to a human’ [13, p. 93:5]. Prototypical methods satisfy this notion of inter‐
pretability. The goal, then, is not just to use an interpretable teacher model to train an
interpretable student model, as the student model is already inherently interpretable
due to its prototype layer.
Instead, the goal is that the student provides explanations that are similar to those of
the teacher. When the authors talk about transferring interpretability from teacher to
student, they do not refer to how interpretable the model is, but to the specific explana‐
tions that themodel provides. This is why the proposed evaluationmetrics aremeasures
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Figure 1. Comparison of sample prototypes of test image between teacher model, baseline student
model and Proto2Proto student model, following Figure 1 from the original paper. We do not
observe noticeable similarities between any of the models’ most active prototypes.

of proximity between the prototypes of both models. Under this understanding of inter‐
pretability transfer, claim 4 holds.

5 Discussion

The principal goal of this paper was to reproduce the experiments of the Proto2Proto
study and to verify the authors’main claims. Wewere able to reproduce two experiments
from the original setup, with some limitations.

5.1 Verifying claims

Claim 1 — The quantitative results we obtained are in linewith claim 1. However, wewere
not able to conduct as many experiments as in the original research, so these results are
weak. Moreover, our qualitative results do not show the same conclusion. The code
required to obtain these results had to be modified, and we have reason to believe the
final code is faulty: 10 out of 10 runs on the teacher model with different test images
each gave an incorrect prediction, which seems unlikely given that the model got an
accuracy score of 77%.

Claim 2 —We were unable to verify or falsify claim 2 because we could not use the pro‐
vided code to calculate PMS. This code could be optimized in future work.

Claim 3 — Our quantitative results go against claim 3. Ablating the global loss leads to
an increased difference in AAP and a lower AJS, suggesting that Patch‐Prototype Corre‐
spondence Loss is not sufficient to force student prototypes to be close to the teacher.

Claim 4 — Our theoretical analysis of the paper supports claim 4. Future research could
make the goal and interpretation of interpretability transfer more explicit.
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5.2 What was easy
The original paper was clearly written and well‐structured, which facilitated a quick
understanding of the theoretical knowledge. There was a clear overview of the claims,
which simplified the process of verifying the paper in an organized manner. The exper‐
iments for which YAML files were provided were simple to conduct.

5.3 What was difficult

Deficient documentation —Using the authors’ codewasmore difficult than expected. There
was minimal documentation: the code contains some comments, but functions and
classes had no explanation. Furthermore, there was no overview of the folder structure.
Use of variable names in the paper and in the codebase did not correspond (e.g. in the
paper they refer to ‘Patch‐Prototype Correspondence Loss’ and ‘Global Explanation Loss’
for the novel losses, while the codebase uses ‘addOnLoss’ and ‘protoLoss’, respectively).
Additionally, the YAML file with arguments for the various scripts completely lacked
documentation and not all variable names were transparent.

Incomplete codebase — The codebase lacked elements vital to reproducing some experi‐
ments. Specifically, there was no reference to the CUB dataset and ProtoTree.
YAML files were provided only for the experiment with knowledge distillation from
Resnet‐50 to Resnet‐18. We tried recreating the other experiments, but had to make
too many assumptions about the missing values to be able to faithfully reproduce them.
Furthermore, the code contained no reference to the experimental configuration that
reused the teacher’s decision module for the knowledge distillation student.

Computational restraints —We were unable to run Proto2Proto on the CPU, since the code
attempts to use a GPU regardless of the specified argument in the YAML file. As a result,
a GPU was required not only for training, but also for setup and testing of the code.
Furthermore, a significant constraint in reproducing the paper were the computational
requirements needed to reproduce the authors’ original experiments. The requirements
to train themodels with the provided hyperparameters were beyond our computational
resources, as were the requirements to evaluate the PMS metric. We were unable to
obtain the weights of the trained models to alleviate this issue. In further research, the
reproduction could be conducted with more computational resources, allowing for a
more accurate reproduction.

Visualization — Figure 1 is a recreation of Figure 1 in Keswani et al.[1], for which the au‐
thors claim to have used similar code to the original ProtoPNet paper. The code required
for these visualizations was not included in the Proto2Proto repository. To reproduce
these images, we modified the ProtoPNet codebase. Although the Proto2Proto model
builds on ProtoPNet, the implementations differ. Additionally, the ProtoPNet code ex‐
pects different directory and model structure. Furthermore, generating the prototype
visualization requires data about the model’s prototypes. We had to modify the train
scripts, in order to retrieve the model prototypes needed.

5.4 Communication with original authors
We reached out to the authors to ask for trained model weights and unspecified hyper‐
parameters. We did not receive a response.
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A Hyperparameter deviations

We found two deviations between the hyperparameters as provided in the Proto2Proto
codebase and the hyperparameters as reported in the paper.

A.1 Cluster loss
ProtoPNet supplement:

In our experiments on both CUB‐200‐2011 and Stanford Cars, we set the coef‐
ficient of the cluster cost to 0.8, and the coefficient of the separation cost to
0.08 during stochastic gradient descent of layers before the last layer, and we
set the coefficient of the L1‐regularization term (on the weight connection
between each prototype of class k and the logit of class k′ ̸= k) to 10−4 during
convex optimization of the last layer. For the coefficient of the cluster cost
and the coefficient of the separation cost, we considered three different set‐
tings: (1, 0.1), (0.8, 0.08), (0.6, 0.06), and chose the pair (0.8, 0.08) using cross
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validation. For the coefficient of the L1‐regularization term, we considered
10−3, 10−4, and 10−5, and chose 10−4 also by cross validation.

Proto2Proto YAML file:

lossList:
crossEntropy:
consider: true
weight: 1.0

clusterSep:
consider: true
clusterWeight: 1.0 # Not 0.8
sepWeight: -0.08

l1:
consider: true
weight: 1.0e-04

A.2 Possible values of τ
Proto2Proto supplement:

For training τtrain = 100 and for testing, we choose τtest from the set
{0.1, 0.45, 1, 5, inf}.

Proto2Proto code:

distance_thresholds = [0.01, 0.1, 0.2, 0.45, 1.0, 3.0, 5.0, None]
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