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Reproducibility Summary

Scope of Reproducibility — The paper presents a novel post‐hoc regularization technique
for tree‐based models, called Hierarchical Shrinkage [1]. Our main goal is to confirm
the claims that it substantially increases the predictive performance of both decision
trees and random forests, that it is faster than other regularization techniques, and that
it makes the interpretation of random forests simpler.

Methodology — In our reproduction, we used the Hierarchical Shrinkage, provided by the
authors in the Python package imodels. We also used their function for obtaining pre‐
cleaned data sets. While the algorithm code and clean datasets were provided we re‐
implemented the experiments as well as added additional experiments to further test
the validity of the claims. The results were tested by applying Hierarchical Shrinkage to
different tree models and comparing them to the authors’ results.

Results —We managed to reproduce most of the results the authors get. The method
works well and most of the claims are supported. The method does increase the pre‐
dictive performance of tree‐based models most of the time, but not always. When com‐
pared to other regularization techniques the Hierarchical Shrinkage outperforms them
when used on decision trees, but not when used on random forests. Since the method
is applied after learning, it is extremely fast. And it does simplify decision boundaries
for random forests, making them easier to interpret.

What was easy — The use of the official code for Hierarchical Shrinkage was straight‐
forward and used the same function naming convention as other machine learning li‐
braries. The function for acquiring already clean data sets saved a lot of time.

Whatwas difficult — The authors also provided the code for their experiments in a separate
library, but the code did not run out of the box and we had no success reproducing the
results with it. The codewas inconsistent with the papermethodology. We had themost
problems with hyperparameter tuning. The authors did not specify how they tuned the
hyperparameters for the used RF regularizers.

Communication with original authors —We did not contact the authors of the original paper.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

1 Introduction

Tree‐based models (TBM) are commonly used in machine learning. The two most pop‐
ular TBM are without doubt decision trees (CART) [2] and random forests (RF) [3]. The
prior due to its simplicity is used to explain more complex model decisions, while the
latter due to its robustness is used as a baseline for other models. Both models usu‐
ally use the leaf sample average to make predictions. Agarwal et al [1] argue that this
approach is not necessarily optimal and propose a new post‐hoc algorithm called Hier‐
archical Shrinkage (HS) where models instead make predictions based on the weighted
average of the mean responses over the leaf and each of its ancestors.
The authors in [1] first derive HS and compare it to other similar approaches: CARTwith
cost‐complexity pruning, C4.5 [4] (employes pruning during the creation of a tree), and
GOSDT [5] (limits search space during construction of a tree and is not greedy). The
authors evaluate HS on both CART and RFmodels, across both classification and regres‐
sion each containing eight commonly used datasets. In each test‐case authors compare
the TBM with HS and other regularization methods to assess whether HS improves the
predictive power of the twomost popular TBM and how it compares to other regulariza‐
tion algorithms in terms of speed and predictive improvement.
In our analysis, we used the Python library provided byAgarwal et al [1] for theHS,while
for other algorithms we used the libraries and models cited in the paper. Our analysis
mainly focused on statistically quantifying whether and by howmuch HS improves the
predictive power of CART and RF relative to other regularization methods.

2 Scope of reproducibility

The authors of the HS method make many claims about improving predictive perfor‐
mance over other methods and making more robust and simpler explanations. In this
paper, we focused on the four claims we deemed most important:

• Claim 1: HS increases the predictive power of TBM.
The authors claim that the use of HS can improve the predictive performance of
TBM, such as CART and RF.

• Claim 2: HS is better than other regularization algorithms for TBM.
The authors claim that TBM with HS applied performs better than other regular‐
ization methods for TBM.

• Claim 3: HS is faster than other regularization algorithms for TBM.
The authors claim that HS is faster than other regularization methods for TBM
because it does not make structural modifications to the TBM.

• Claim 4: HS leads to more intuitive and robust explanations of RF.
The authors claim that HS removes sampling artifacts and thus simplifies deci‐
sion boundaries for RF and stabilizes feature importance, which makes it easier
to interpret interactions in the model.

3 Methodology

Weused theHierarchical Shrinkage predictors [1] provided by the authors in the Python
library imodels1. We also used the provided get_clean_dataset function to load all of the
pre‐cleaned datasets the authors used. In terms of code, our contribution lay in the

1https://github.com/csinva/imodels
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setup and implementation of our claim‐verifying experiments (Sec. 4) and the re‐imple‐
mentation of the authors’ notebooks which either did not run or did not return results
consistent with the paper (Sec. 6).

3.1 Model descriptions
HS algorithmmodifies the prediction values of the nodes for a TBM. HS transforms the
prediction function of the TBM to

f̂λ(x) = Et0{y}+
L∑

l=1

Etl{y} − Etl−1
{y}

1 + λ
N(tl−1)

(1)

where x is a query point, t0 denotes the root node, tl denotes a node in the root‐to‐leaf
path, Etl{y} is the expected value of target variable at node tl, N(tl) is the number of
samples at node tl, and λ is a hyperparameter, either specified by the user or determined
via cross‐validation. The function can be seen as a weighted sum where more weight is
given to the nodes that are closer to the root.
We used the CART algorithm to build decision trees and random forests. For specific
claims, we used the C4.5 and GOSDT algorithms.

3.2 Datasets
We used the same datasets as the authors. The details can be found in Appendix A. We
downloaded all of our datasets using the get_clean_dataset function from the imodels li‐
brary. The data in the datasets were cleaned by the authors, therefore by using these
datasets we ensured that we used the same pre‐processing methods as the authors. We
also checked each dataset, searched for them online in public databases, and compared
them to the ones the authors provide. We were able to find all of the datasets and en‐
sured that the ones we found are the same ones the authors provide. The only dataset
we were unable to verify was German credit. The dataset we found has the same fea‐
tures, number of instances, and target variable distribution, but some of the features
have slightly different value distributions. Despite this discrepancy, we proceeded to
use the dataset, provided by the authors.
We used 2/3 of our data for training and 1/3 for testing. For tunning, we used 3‐fold
cross‐validation using only samples from the training set. All splits were done randomly
(for classification tasks we used stratified splits).

3.3 Hyperparameters
For each experimentwe performed several random splits; for each of the splits we found
the best parameters with hyperparameter search (HPS). We always used the test metric
as our objective function for HPS. In experiments, where the hyperparameter space
was specified by the authors we used grid search, while in instances when it was not
we used Bayesian optimization over a range of reasonable values. We performed grid
search manually and we used the gp_minimize() function from scikit-optimize for Bayesian
optimization2. We selected the HS regularization parameter with grid search from the
set λHS ∈ {0.1, 1, 10, 25, 50, 100}. The same set of parameters was used in all instances
where we applied HS post‐hoc. Additionally, when comparing HS‐RFwith other regular‐
ization methods we used Bayesian optimization to select the optimal maximum depth
of our RF trees from the range dmax ∈ (1, 30), as well as the best fraction of features
used when splitting a RF tree from the range mtry ∈ (0.1, 1.0). These two post‐hoc
regularization methods were applied separately following the original paper. For the

2For Bayesian optimization we used expected improvement as the evaluation function. We conducted 15
trials each with 5 initial starting points. The noise in our kernel was set to σ = 0.01. We did not change other
hyperparameters from their default values.
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cost‐complexity pruning (CCP) α parameter we used the approach from the original
paper where α is chosen for each cross‐validation fold from the α returned by scikit-
learn.cost_complexity_pruning_path such that the number of leaves in the prunned DT is as
close as possible to the specified number of leaves. Additionally, during our HPS we
analyzed the sensitivity of our results to shifts in each individual parameter. We found
that increasing regularization for HS‐DT and HS‐CCP lead to significantly poorer per‐
formance for both regularization and classification, while for HS‐RF it had the opposite
effect improving the models’ performance. For HS‐RF the number of trees used did
not appear to be correlated with the performance of the model indicating that we could
have used a smaller number of trees to achieve similar results. This was not the case for
DT where increasing the number of leaves lead to a significant improvement in perfor‐
mance.

3.4 Experimental setup and code
To perform our experiments we used the authors’ code from their Python package imod-
els for applyingHS and reading datasets and our code. We used Python 3.10 and libraries
NumPy, pandas, scikit-learn, matpotlib, plotnine, and others. We structured our experiments
into Jupyter notebooks, one notebook per claim.
We also tested the validity of their HS implementation by building deterministic trees
with CART and manually calculating the application of HS. The tests are in folder tests.
One tests the HS on regressive tasks and the other on classification tasks.
The metrics the authors and we use are the area under the curve (AUC/ROC) for classifi‐
cation and R2 for regression. We take both from the scikit-learn library. For the improve‐
ment comparison, we used the region of practical equivalence of 0.005.

3.5 Computational requirements
We ran our experiments on two computers with the following two CPUs: Intel(R) Core
(TM) i7‐9750HCPU@2.60GHz (CPU1) andAMDRyzen 5 5600X 6‐Core (CPU2). Comparing
CART with HS‐CART for classification took 37 minutes (100 repeats) while performing a
similar experiment comparing CCP (100 repeats) with HS took 4 hours. Measurements
were done in wall time. Comparing RF with other regularization methods on classifi‐
cation datasets took roughly 4.5 hours. For DT cpu and wall time are almost identical,
while for RF the cpu time is roughly 50% larger than wall time. Classification and re‐
gression for claims 1, 2, and 3 were run on CPU2, with the exception of LBS for claim 2
which we ran on CPU1. All experiments for claim 4 were run on CPU1.

4 Results

Our results show that HS improves DT scores and is one of the best forms of regular‐
ization in comparison to other DT regularization methods both in terms of predictive
power as well as in terms of speed. Our results do not indicate that HS is better for
RF than other regularization methods in terms of predictive power, however, they do
show that HS is significantly faster than other regularization methods and is easier to
interpret.

4.1 Claim 1: HS increases the predictive power of TBM.
The authors claim that applying HS to TBM significantly improves their prediction per‐
formance. They test this by applying HS to DT and RF across 16 different datasets; au‐
thors vary themaximumnumber of leaves for DT and themaximumnumber of trees for
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(a) Likelihood of improvement for DT. (b) Likelihood of improvement for RF.

Figure 1. This set of images shows the likelihood that HS improves a TBM score. For DT, the likeli‐
hood of improvement is the highest, while for RF the likelihood of no change is the highest.

(a) Likelihood that HS‐DT is better than DT. (b) Likelihood that HS‐RF is better than RF.

Figure 2. This set of images shows the likelihood that a TBM with HS is better than one without
HS. There is a significant likelihood of HS‐DT being better than DT, while there is no significant
likelihood that HS‐RF will be better than RF.

RF to test how HS improves TBM when the complexity of the models changes. The au‐
thors evaluate the results using several metrics, though they mainly focus on AUC/ROC
for classification and R2 for regression.
We split the author’s claim that HS improves the predictive power of TBM into the like‐
lihood that HS improves the model it is applied to (Fig. 1) and the likelihood that HS ap‐
plied to a TBM on average gives better results (Fig. 2). The authors mix these two claims
thereby summing together the variance of TBM with the variance of the improvement
resulting from HS, as such their results do not conclusively corroborate either of the
claims.
To analyze whether HS improved a specific TBM we created a categorical variable that
represented whether HS improved the score of the TBM. We then fit a hierarchical cat‐
egorical model3, where the first level represented the dataset, and the category in the
second level was whether applying HS improves our TBM score.
To analyzewhetherHS‐TBMwas on average better thanTBM,we split our test scores into
groups where each group was comprised of test scores from runs on the same dataset
and the same number of leaves or trees, then for eachmodel we randomly with replace‐

3 We used the same normal prior pi[d] ∼ N(1/n, 0.5), where pi[d] is the probability of the event being in
category i, n is the number of categories and d is the samples dataset.
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ment sampled 1000 instances using each regularizationmethod and saved howHS‐TBM
fared in comparison to TBM. We then fit a hierarchical Categorical model3, where the
first level represented the dataset, and the category in the second level was howHS‐TBM
fared in comparison to TBM.
Our results (Fig. 1) confirm the sub‐claim that by applying HS to the DT the score is
likely to increase, however, this does not apply to RF with the likelihood of the score
not changing being larger than 50%. Our results (Fig. 2) confirm the sub‐claim that the
likelihood of an HS‐DT score is on average significantly better than a DT score (Fig. 2a),
however, they do not confirm the sub‐claim that HS‐RF is on average better than RF
(Fig. 2b), with a likelihood of over 60% that there is no significant difference between
HS‐RF and RF. More detailed results are in Appendix B.

4.2 Claim 2: HS is better than other regularization algorithms for TBM.
The authors claim that DT with HS regularization achieves better results than DT with
CCP or LBS regularization and that RF with HS regularization achieves better results
than RF withmtry or dmax hyperparameter tunning. The authors use the same evalua‐
tion metrics as in Claim 1. For each dataset, the authors train all three TBM ten times
and then evaluate it with AUC/ROC or R2.

(a) Likelihood of regularized DT achieving the
best score

(b) Likelihood of regularized RF achieving the
best score

Figure 3. This set of images shows the likelihood that TBM regularizedwith a certain regularization
method achieves the best score. ForDTHS is the best regularizer, significantly outperformingCCP
and LBS. For RF all three method scores are almost indistinguishable.

We split our test scores into groups where each group was comprised of test scores from
runs on the samedataset and the samenumber of leaves or trees, then for eachmodelwe
randomly with replacement sampled 1000 instances using each regularization method
and saved whether the method achieved the best results. Finally, we fit a hierarchical
Bernoulli model3, where the first level represented the dataset, and the category in the
second level was whether the model was the best or not.
Our results (Fig. 3) confirm the author’s claim that HS is a better regularizer than CCP
or LBS, with both HS‐CCP and HS performing similarly indicating we are unlikely to
significantly improve our results by combining HS and CCP. Our results however do
not confirm that HS is a better regularizer for RF compared to mtry or dmax, with both
methods performing similarly to HS. More detailed results are in Appendix C.

4.3 Claim 3: HS is faster than other post-hoc regularization algorithms for TBM.
The authors claim that HS is faster than other post‐hoc regularization algorithms for
TBM. The authors did not specify what experiments they conducted to verify this claim,
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however, we assumed the authorsmeasured thewall and/or CPU time necessary to tune,
train and test each model.
To check this claim, we measured both the CPU and wall time for the tunning, training
and testing phase of each regularization algorithm for each dataset. We summed the
three phases together and calculated the difference between the mean times of HS and
other regularization methods (Tab. 1).
Our results confirm the claim thatHS is significantly faster in CPU time in comparison to
all other regularization methods. While HS is also better in wall time the improvement
is less pronounced. The only instance where HS is slower than all other regularization
methods is in the case of the Recidivism dataset. Considering this is true when com‐
paring HS to both other regularization methods we consider this difference significant.
Comparison of time complexity of different DT regularizers is in Appendix D.

base overtime base overtime
hs
wall

mtry
wall

dmax

wall
hs
cpu

mtry
cpu

dmax

cpu
dataset

Heart 3 2± 1 2± 1 3 11± 1 11± 1
Breast cancer 4 2± 1 2± 1 4 10± 1 11± 1
Haberman 4 2± 1 2± 1 4 11± 1 11± 1
Ionosphere 3 3± 1 4± 1 3 12± 1 13± 1
Diabetes 5 1± 1 2± 1 5 10± 1 10± 1
German credit 6 0± 1 1± 1 6 9± 1 10± 1
Juvenile 12 −2± 5 23± 2 12 7± 5 31± 2
Recidivism 43 −33± 6 −24± 6 43 −24± 6 −16± 6

Table 1. Average execution overtime (± stderr) in seconds of regularized RF relative to HS‐RF for
classification. Blue indicates HS‐RF was faster, red indicates it was slower and grey indicates the
difference in mean execution times was smaller than the standard error of the difference.

4.4 Claim 4: HS leads to more intuitive and robust explanations of RF.
The authors state that applying HS to RF removes sampling artefacts and simplifies de‐
cision boundaries. They test this by building an RFwith 50 trees on only two of themost
important features, determined by the mean decrease in impurity (MDI, Gini index).
Our results (Fig. 4) show that the boundaries are smoother after applying HS. HS pre‐
vents overfitting and therefore smoothes the boundary between the target classes. With
simpler boundaries the model predictions can be better explained, leaving much less
uncertainty. The boundaries for all of the classification datasets are in Appendix E.1.
We found two things that did not agree with the author’s results. The change in AUC
after applying HS seemed to be very much dependent on the tree structure and did not
always result in higher scores. After applying HS the AUC changed unpredictably, either
improving or worsening the performance. Another thing we found different was the top
two features, determined by MDI. We found the same two most important features on
two datasets (Diabetes and Breast cancer) out of the eight, and for one (Heart) the top
two features were completely different.
We applied the SHAP algorithm [6] to the resulting RF, which is used for model‐agnostic
explanations. The authors claim that HS improves stability and makes tighter clusters
of SHAP values. Our results (Fig. 5) show that HS lowers the variability of SHAP values,
which makes them more stable. It creates clusters in SHAP values, meaning they can
be more easily interpreted. One thing the authors do not discuss is the smaller SHAP
values ‐ HS does make interpretation more stable, but at the same time lowers the im‐
portance of all features. This, however, does not influence the feature importance for
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(a) Recidivism RF
(AUC 0.569)

(b) Recidivism hsRF
(AUC 0.606)

Figure 4. Applying HS to RF simplifies boundaries. We have the decision boundary before (4a)
and after (4b) applying HS on the Recidivism dataset on the twomost important features, age and
c_jail_time.

classification tasks as only the relative relationsmatter. The results for all other datasets
are in Appendix E.2.

5 Discussion

In this report, we managed to show that HS, as a regularization technique, consistently
improves DT scores. HS was also on average the best regularizer for DT. For RF, HS did
not perform better than other regularization methods and did not consistently improve
RF, however, it was significantly faster compared to other regularization methods. We
hypothesize that the divergence between our observed (Appendix B, C) and the original
paper scores are likely because the differences between our TBM scores were smaller.
We assume that for mtry and dmax the differences might have been caused by using a
different HPS space, possibly indicating a poor choice of HPS space on the author’s part,
while in the instance ofRF our differencesmight be pure chance since the authors used
only 10 samples for their experiments, therefore some variance in score distributions
is expected. The decision boundaries for RF were less fragmented after applying HS,
which made them easier to interpret. HS also lowered SHAP value variability, and as
a result, HS‐RF generated more stable explanations. Based on our results we conclude
that HS is one of the best (evaluated) regularization methods for DT in terms of all three
aspects (score, speed, interpretability). For RF, HS as a regularizationmethod only stood
out in terms of speed, scoring similarly to other regularization methods. We also note
that our results did show that HS improved interpretability, however, no comparison
was done with other regularization methods.

5.1 What was easy
It was easy to use HS and other TBM that were implemented in the imodels library. The
library used the same naming conventions as the scikit-learn library, implementing most
of the standard fit(), predict() and predict_proba() functions. Furthermore, the imodels library
provides a get_clean_datasets() function fromwhichwewere able to download already pre‐
processed datasets, allowing us to focus more of our effort on the reproduction.

5.2 What was difficult
Parts that required changes to the code or that were not present in the imodels library
were generally problematic to implement. While the article did link to the paper repos‐
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(a) SHAP variance on Diabetes dataset.

(b) SHAP values for Heart dataset.

Figure 5. SHAP values before and after applying HS. In the upper figure (5a) we have the variance
reduction for the Diabetes dataset. In the lower figure (5b) we have the SHAP values for the Heart
dataset. We can see that after applying HS (right) the SHAP values are clustered, which makes
features easier to interpret.

itory the tutorial notebooks did not run out of the box and required significant modifi‐
cation to run. One methodological problem was the usage of number of leaves during
evaluation in spite of the fact that a number of leaveswas not a hyperparameter in any of
the methods implemented in either imodels or scikit-learn. We concluded that the authors
most likely specified the maximum number of leaves a tree could have, but we were
unable to verify whether the authors used the max. number of leaves or the number of
non‐leaf nodes (a model attribute implemented for most TBM in the imodels library) for
evaluation. This was because the code in the notebooks used the latter for evaluation,
while the original paper claimed to use the prior.
Another problem we encountered was that the authors did not specify how they per‐
formed hyperparameter search for methods such asmtry and dmax.

5.3 Communication with original authors
We did not contact the original authors. Most of the choices in the original paper were
well documented andwewere generally able to fill in the gaps formissing specifications
based on the contents of the corresponding claim. Additionally, we also considered
not contacting the authors to have specific benefits such as using improved evaluation
methodology or using different HPS techniques, which allowed us to test the robustness
of the author’s claims to small alterations in the proposed methodology. By taking this
approachwhile our reproducibilitymight have possibly suffered it enabled us to expand
on the authors’ results in certain areas.
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6 Appendix

A Datasets

Here we list all of the datasets with their corresponding information (Tab. 2). We used
eight classification and eight regression datasets. For each dataset, we list the number
of samples, the number of features, the distribution of the target variable, and a link to
the dataset.

dataset Samples Features Target Link

Cl
as
si
fic

at
io
n

Heart 270 15 44.4% UCI ML repo
Breast cancer 286 9 29.2% UCI ML repo
Haberman 306 3 73.5% UCI ML repo
Ionosphere 351 34 64.1% UCI ML repo
Diabetes 768 8 34.9% Kaggle

German credit 1000 20 70.0% UCI ML repo
Juvenile 3640 286 13.4% nacjd

Recidivism 6172 20 48.4% ProPublica

Re
gr
es
si
on

Friedman1 200 10 14.25± 5.01 scikit‐learn
Friedman3 200 4 1.33± 0.30 scikit‐learn
Diabetes 442 10 152.1± 77.1 scikit‐learn

Geographical music 1059 117 0.02± 1.00 PMLB
Red wine 1599 11 5.63± 0.81 UCI ML repo
Abalone 4177 8 9.93± 3.22 UCI ML repo

Satellite image 6435 36 3.67± 2.21 PMLB
CA housing 20640 8 2.07± 1.15 Kaggle

Table 2. Datasets used by the authors throughout their paper. The Target column displays the per‐
centage of positive cases for classification tasks, andmean response valuewith standard deviation
for regression tasks.

B Claim 1: HS increases the predictive power of TBM.

Based on Fig 6 we can see that our results are similar in terms of mean score to the orig‐
inal paper, the only consistent difference being the larger variance. This explains the
observed disparity between ours and the author’s results since while HS‐DT performs
better than DT, the difference is not statistically significant4 due to the larger variance.
We further analyzed the likelihood that the top scores of HS‐DT were better than the top
DT scores (Fig. 7a) and found this to be the case in nearly all instances with improve‐
ments being less pronounced for regression than for classification. This might indicate
that HS influences different evaluation metrics differently.
When checking the likelihood of improvement (Fig. 7b) we can see that the likelihood
that applying HS to DT improves the scores or does not significantly worsen them is
almost 100% indicating that HS is indeed a valid form of regularization for DT.
Finally, we checked how HS improved DT when the DT was trained using the default
number of leaves5. This is n/3 and

√
n for regression and classification, respectively.

Here it is apparent that there are no improvements, likely due to the fact that the defaults
build small trees that cannot be regularized significantly, therefore users should not
expect improvements if they use HS while using default parameters.

4We considered differences statistically significant if they differed by one standard deviation.
5Missing bars indicate that DT built less than five trees near the default number of trees making it so that

our conclusions would not have enough significance for those datasets.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

When comparing top scores of HS‐RF and RF (Fig. 8a) it appears that the likelihood that
we can generate a top score using RF is similar to the likelihood that we can generate a
top score using HS‐RF indicating that HS does not significantly improve RF scores. This
conclusion is enforced by the comparison of RF andRF afterHSwas applied to it (Fig. 8b)
indicating that while some improvements were still visible these improvements were
much smaller andmuch less consistent across datasets. We conclude this is likely due to
the regularizing effect of using ensembles which decreases the potential improvements
offered by HS.

C Claim 2: HS is better than other regularization algorithms for TBM.

In this section, we investigate whether HS is better than other regularization algorithms
for TBM. Based on our results we conclude that HS is not significantly better than other
regularization methods. For DT HS‐CCP is significantly better than CCP, but not sig‐
nificantly better than LBS (Fig. 9a & 9b6) as the later occasionally performs better and
occasionally worse but always within one standard deviation of HS‐CCP.
For RF (Fig. 9c) we can see that in most instances all methods perform similarly to one
another, the exceptions being the breast‐cancer and recidivism dataset. There is no
consistency inhowour scores differ from the original papers; for datasets like haberman
they are higher, for breast‐cancer they are lower and for heart they are roughly the same.
Based on the above observation and the high variance of scoreswe conclude that neither
our nor the author’s results are necessarily conclusive and more samples would need to
be generated in order to definitively show which method is better.

D Claim 3: HS is faster than other post-hoc regularization algorithms for
TBM.

In this section, we investigate the execution time of HS in comparison to other regu‐
larization algorithms for DT. Based on our results we conclude that as the size of the
dataset grows HS the differences in speed becomemore pronounced with HS becoming
significantly faster for larger datasets. Additionally, it appears that especially for small
datasets CCP is faster than HS. We also note that there appear to be no significant differ‐
ences between cpu and wall time indicating that parallelization has no impact on the
speed of regularization of DT.
We see that HS takes up a considerable amount of the overall execution time of HS‐RF
(Fig. 10b), therefore we conclude that using HS for regularization has substantial time
costs albeit lower than that of other evaluated regularizationmethods. Additionally, the
time costs appear to grow as the dataset size increases. The opposite appears to be the
case for DT were the time cost decreases as the dataset grows indicating that HS can be
used to regularize DT without significantly increasing the execution time of DT. Finally,
we note that Fig. 10 only displays the relative wall time of HS‐TBM, however this was
done intentionally since relative wall and cpu times were the same up to two decimal
places for both HS‐TBM.

6We did not calculate the experiment for california‐housing due to the large execution time of CCP on large
datasets; To train one DT regularized with CCP it took approx 1.5 h of wall time (see Tab. 3)
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

base overtime base overtime
hs
wall

ccp
wall

hs
cpu

ccp
cpu

dataset

heart 0.019 −0.010± 0.000 0.019 −0.010± 0.000
breast‐cancer 0.019 −0.009± 0.000 0.019 −0.009± 0.000
haberman 0.018 −0.008± 0.000 0.018 −0.008± 0.000
ionosphere 0.031 −0.002± 0.000 0.031 −0.002± 0.000
diabetes 0.027 0.042± 0.000 0.027 0.042± 0.000
german‐credit 0.028 0.099± 0.001 0.028 0.099± 0.000
juvenile 0.149 2.372± 0.014 0.149 2.372± 0.014
recidivism 0.057 5.381± 0.012 0.057 5.381± 0.012

friedman1 0.013 0.059± 0.000 0.013 0.059± 0.000
friedman3 0.011 0.039± 0.000 0.011 0.039± 0.000
diabetes‐regr 0.016 0.315± 0.001 0.016 0.315± 0.001
red‐wine 0.034 0.927± 0.004 0.034 0.927± 0.004
abalone 0.054 16.031± 0.033 0.054 16.026± 0.033
satellite‐image 0.224 11.108± 0.058 0.224 11.107± 0.058
california‐housing 0.365 5149.957± 2.861 0.365 5149.957± 2.855

Table 3. Average execution overtime (± standard deviation) in seconds of regularized DT relative
to HS‐DT for classification. Blue indicates HS‐DT was faster, red indicates it was slower and grey
indicates the difference in mean execution times was smaller than the standard error of the dif‐
ference.

E Claim 4: HS leads to more intuitive and robust explanations of RF.

E.1 Decision boundaries
In this section we investigate how the HS influences the decision boundaries of clas‐
sification problems as learned by RF. The two features were picked by best MDI. The
comparison of boundaries before and after applying HS is on Fig. 11 and Fig. 12. In
all of the cases the resulting decision boundary is simpler and less fragmented, which
makes the model easier to interpret.

E.2 SHAP plots and variability
In this section we investigate howHS influences the SHAP value plots and their variabil‐
ity for RF with and without HS. The experiment was done by witholding 50 data points
from a classification problem, build a RF with 2/3 of the remaining data, and evaluate
SHAP values for each held out sample. This was repeated 100 times. We then averaged
the variance for each feature across all held out samples.
Value plots for classification data sets are on Fig. 13 and Fig. 14. We can see that after
applying HS the explanations for each feature have tighter clusters, and explanations
are less noisy.
We showed that HS clusters the explanations together, which means it reduces the ex‐
planation variance. The comparison of the variability of SHAP interpretations for clas‐
sification data sets can be seen on Fig. 15 and Fig. 16.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) DT AUC score before and after applying HS regularization.

(b) DT R2 score before and after applying HS regularization.

(c) RF AUC score before and after applying HS regularization.

Figure 6. HS improves DT AUC andR2 score for smaller datasets with the improvements decreas‐
ing as the dataset size grows, however for RF no such improvement is visible.
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(a) Comparison of top scores between HS‐DT and DT for each dataset.

(b) Comparison of improvement in DT scores before and after HS regularization for each dataset.

(c) Comparison of scores between HS‐DT and DT when using default hyperparameters for each dataset.

Figure 7. Each figure in our image set represents the likelihood that out of 1000 sampled pairs HS
scored better (blue), both pairs scored the same (green) or DT scored better (orange).
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Comparison of top scores of HS‐RF and of RF for
each dataset.

(b) Comparison of improvement in RF scores before
and after HS regularization for each dataset.

Figure 8. Each figure in our image set represents the likelihood that out of 1000 sampled pairs HS
scored better (blue), both pairs scored the same (green) or RF scored better (orange).
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) DT AUC score before and after applying HS regularization.

(b) DT R2 score before and after applying HS regularization.

(c) RF AUC score before and after applying HS regularization.

Figure 9. HS improves DT AUC andR2 score for smaller datasets with the improvements decreas‐
ing as the dataset size grows, however for RF no such improvement is visible.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Fraction of HS‐DT execution time spent on DT (or‐
ange) and HS (green).

(b) Fraction of HS‐RF execution time spent on RF (or‐
ange) and HS (green).

Figure 10. Dotted red line marks 50% and blue lines mark largest standard deviation across all
datasets.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Heart RF
(AUC 0.658)

(b) Heart hsRF
(AUC 0.711)

(c) Breast cancer RF
(AUC 0.505)

(d) Breast cancer hsRF
(AUC 0.500)

(e) Haberman RF
(AUC 0.537)

(f) Haberman hsRF
(AUC 0.464)

(g) Ionosphere RF
(AUC 0.869)

(h) Ionosphere hsRF
(AUC 0.876)

Figure 11. Comparison of decision boundaries for the first four classification data sets as learned
by RF before and after applying HS.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Diabetes RF
(AUC 0.700)

(b) Diabetes hsRF
(AUC 0.697)

(c) German credit RF
(AUC 0.594)

(d) German credit hsRF
(AUC 0.561)

(e) Juvenile RF
(AUC 0.671)

(f) Juvenile hsRF
(AUC 0.671)

(g) Recidivism RF
(AUC 0.569)

(h) Recidivism hsRF
(AUC 0.606)

Figure 12. Comparison of decision boundaries for the last four classification data sets as learned
by RF before and after applying HS.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Heart

(b) Breast cancer

(c) Haberman

(d) Ionosphere

Figure 13. Comparison of SHAP value plots for the first four classification data sets before and after
applying HS.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Diabetes RF

(b) German credit

(c) Juvenile

(d) Recidivism

Figure 14. Comparison of SHAP value plots for the last four classification data sets before and after
applying HS.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Heart

(b) Breast cancer

(c) Haberman

(d) Ionosphere

(e) Diabetes

(f) German credit

Figure 15. Comparison of SHAP value variabilities for the first six classification data sets before
and after applying HS.
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[Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods

(a) Juvenile (b) Recidivism

Figure 16. Comparison of SHAP value variabilities for the last two classification data sets before
and after applying HS.
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