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Reproducibility Summary

Scope of Reproducibility — This work studies the reproducibility of the paper ”Label‐Free
Explainability for Unsupervised Models” by Crabbé and van der Schaar to validate their
main claims. These state that: (1) their extension of linear feature importance methods
to the label‐free setting is able to extract the key attributes of the data, (2) the adaptation
of example importance methods to the unsupervised setting succeeds in highlighting
themost influential examples, (3) different pretext tasks do not produce interchangeable
representations and (4) the interpretability of saliency maps is uncorrelated to the level
of disentanglement between individual latent units.

Methodology — The authors provided the codewritten in PyTorch needed to reproduce all
the experiments. Some parts of the code were modified in order to extend the original
experiments. The total computation time required to perform the original and extended
versions of the experiments is 103 GPU hours. Most of the experiments were performed
on NVIDIA TITAN RTX GPU.

Results — The plots supporting the label‐free feature and example importancematch the
ones from the paper, except for the label‐free feature importance experiment for CIFAR‐
10. Similarly, the Pearson correlation results were successfully reproduced. Due to the
nature of the autoencoders used for evaluation, we could not obtain the exact numerical
results. However, we visually and numerically compare the trends, and in most cases,
we observe that our results are similar to the ones in the paper.

What was easy — The paper comeswith publicly available code and an extensive appendix
containing the setup for all experiments. With that, we were able to reproduce all the
experiments with only minor changes to the code.

What was difficult — Despite the fact that running the original experiments was straight‐
forward, extending them to new datasets or models was more challenging. Moreover,
some of the experiments are more resource‐consuming and require more time to run.

Copyright © 2023 S. Garcarz et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Sławomir Garcarz (slawek.garcarz@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/ayiork/Label-Free-XAI. – SWH swh:1:dir:e76ce9ca64bef8b8ab34ef48336017ade33d40b9.
Open peer review is available at https://openreview.net/forum?id=sF_vYZSxSV.
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[Re] Reproducibility Study: Label-Free Explainability for Unsupervised Models

Communication with original authors —We contacted the authors to resolve our concerns
regarding some of the results. They were very helpful and answered all of our questions.
Moreover, they provided us with a pre‐trained SimCLR model. We used this model to
validate our results.

1 Introduction

Recent developments of deep neural networks have resulted in black‐boxmodels whose
transparency plays a key role in explaining decisions made in fields such as healthcare,
finance, or justice. The demand formethods that interpret entangledmodels growswith
their complexity, especially now when unsupervised learning takes over in the form of
autoencoders ([1], [2], [3]). At this moment, there are ways for explaining models in a
supervised setting, such as feature and example importance analysis. Feature impor‐
tance analysis can highlight the contribution a feature has towards a decision made by
a model ([4], [5], [6]). Similarly, example importance analysis highlights the major data
points that influence the training ([7], [8], [9]). These methods are researched in super‐
vised environments, yet in an unsupervised setting, the problem remains unsolved.

To address this issue, Crabbé and van der Schaar introduce ”Label‐Free Explainability
forUnsupervisedModels” [10]. They extend previous explainabilitymethods introduced
in the context of supervised learning such as feature and example importance to the un‐
supervised and self‐supervised regimes by defining a wrapper function to these meth‐
ods. In addition, the authors claim that representation‐based example importance in‐
troduced in supervised contexts can be easily extended to a label‐free setting by replac‐
ing the supervised representation map with an unsupervised one. To show that their
approach is effective and reliable the authors performed several experiments covering
both unsupervised and self‐supervised approaches.

In this research, we aim to evaluate the reproducibility of the paper by replicating their
experiments, andby investigating furtherwith different settings to reinforce their claims.

2 Scope of reproducibility

The authors developed a new framework called label‐free explainability, which allows
to extend linear feature importance and example importance methods to the unsuper‐
vised setting. They proved the following properties of this framework: completeness
and invariance with respect to latent symmetries. Moreover, the authors experiment
with pretext tasks as a use case for label‐free explainability. Lastly, they evaluated quali‐
tatively and quantitatively whether the generative factor associatedwith each latent unit
is identifiable by using the saliencymap of its latent unit with disentangled VAEs. In this
study, we will verify the following claims of the original paper:

• Claim 1: Defining an auxiliary scalar function as a wrapper around the label‐free
black‐box permits to compute feature importance by utilizing attributions such as
Gradient Shap [4], Integrated Gradients [6], and Saliency [5].

• Claim 2: Label‐free extension for example importance allows to identify salient
training examples that are related to test examples onewants to explain byutilizing
loss and representation‐based methods.

• Claim 3: Given the notion of label‐free explainability, different pretext tasks do not
produce interchangeable representations in self‐supervised learning.
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• Claim 4: The ability to understand the significance of certain features in a model,
represented by saliencymaps, is not dependent on howwell the latent units in the
model are separated or disentangled from one another.

The rest of this report is organized in the following way: in section 3 we present the
methodology by introducing the models, datasets, and the experimental setup used in
our study, section 4 contains the results of the performed experiments, and in section 5
we discuss our experience and conclude on the results.

3 Methodology

The PyTorch implementation for reproducing the experiments is provided by the au‐
thors. By using their experimental settings, we were able to reproduce all the results
from the paper. To conduct further experiments for the generalizability of the paper,
we extended the provided code. We ran the experiments on Nvidia TITAN RTX GPU.

3.1 Model descriptions

Feature Importance — The extension to label‐free feature importance methods proposed
by the authors required defining an auxiliary scalar function gx as a wrapper around
black box function f . That function is then fed to any importance method ai:

bi (f, x) = ai (gx, x) (1)

gx : X → R such that for all x̃ ∈ X :

gx (x̃) = ⟨f (x) , f (x̃)⟩H . (2)

Moreover, the authors proposed to weight importance scores in label‐free environments
by using activation scores from the previous layer. For amore detailed explanation refer
to section 2.2 of the original paper [10].

Example Importance — In terms of the example importance, the authors split the methods
into two families: loss‐based and representation‐based. For the former, in a supervised
setting the importance score is assigned to each training example according to the influ‐
ence on the loss when they are removed. In terms of the label‐free setting, we want to
train our model using a label‐free loss L = X × Θ → H. This is usually not enough as
the authors explain, due to the fact that the importance scores that are computed can
include irrelevant parts of the black‐box. To solve that problem the authors split the
parameter spaceΘ = Θr ×Θirr, where r corresponds to the relevant parameters and irr
to irrelevant parameters. This leads to the following equation:

cn (fθr , x) = δnθrL (x, θ∗) . (3)

Using this equation we assume that the loss depends only on a single input example
which is not true for contrastive losses [11]. Due to the fact that there is no appar‐
ent extension of loss‐based example importance for settings with contrastive losses,
the authors proposed a label‐free modification of the representation‐based example im‐
portance method. Representation‐based methods attribute to each training example a
score by analyzing the example’s latent representation. For experiments with the CIFAR‐
10 dataset, we used the SimCLR model. For the ECG5000 dataset, a Recurrent Autoen‐
coder with an encoder, two LSTMs, and a final linear layer was used. Moreover, for
MNIST we used an autoencoder for each pretext task. Lastly, for disentangled VAEs we
used β‐VAE [12] and TC‐VAE [13]. Descriptions of the models and hyperparameters used
can be found in the Appendix A.1
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3.2 Datasets
In order to check the consistency of the feature and example importance methods, the
authors fitted the models described above on 3 datasets: MNIST [14], ECG5000 [15] and
CIFAR‐10 [16]. They also challenged the interpretability of disentangled representations
by training the β‐VAE and TC‐VAE on both MNIST and dSprites [17]. We extended the
analysis by also using the FashionMNISTdataset [18] to performconsistency andpretext
tests. An overview of the most important information on the datasets can be seen in
Table 1 and more details about them can be found in Appendix A.2.

Datasets and links Samples Classes Description
Train Test

MNIST 60 000 10 000 10 Grayscale images of 0‐9 digits.
CIFAR‐10 50 000 10 000 10 RGB images of objects.
Fashion MNIST 60 000 10 000 10 Grayscale images of clothing items.
dSprites 737 280 ‐ Synthetic images of 2D shapes.
ECG5000 5 000 2 Time series of heart rates.

Table 1. Overview of the datasets used for validating the proposedmethods in the label‐free setting.

3.3 Hyperparameters
The authors of the original paper provided hyperparameters settings for all the exper‐
iments they performed. To match the results of the experiments we have decided to
follow the setup used by them. For additional experiments, we used the same setup of
hyperparameters to ensure the comparability of the results.

3.4 Experimental setup and code
The code developed by Crabbé and van der Schaar is available online on GitHub. It
mainly reflects the setup described in Appendix B of their paper, and therefore con‐
stitutes the base we use for verifying their claims. We use the same metrics as in the
original paper to compute the feature and example importance: latent shift for feature
importance and similarity rate for example importance.
In addition, to support claim 1 we experiment with a pixel‐flipping approach for mask‐
ing CIFAR‐10 (method referenced by the authors in the paper), instead of blurring as
masking. We visually analyze the results and observe the trends in the plots. For ad‐
dressing claim 1, claim 3 and claim 4we experiment with a different predefined attribu‐
tion method from PyTorch, Integrated Gradients, in the context of the pretext and VAE
experiments where Gradient Shap is initially used on the MNIST dataset. We use the
Pearson correlation and the plots produced to quantitatively and qualitatively analyze
the results and compare them with those from the original paper. To further challenge
claim 1 and claim 2, we evaluate the consistency checks on CIFAR‐10 using the architec‐
ture of DenseNet121 (instead of ResNet 18 or 34) for the encoder, which is considered a
more powerful network since all the layers are directly connected to each other. Lastly,
we challenge claim 3 on the Fashion MNIST dataset, compared to the MNIST dataset
used in the paper for the experiments. The code used to produce the results for this
paper is available on this GitHub repository.

3.5 Computational requirements
Due to limited GPU resources, we executed some of our experiments on Intel Core i7
‐ 10750H CPU, however, most of our experiments were performed on a cluster with
NVIDIA TITAN RTX GPU. Table 2 illustrates the required times for each experiment.
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(a)MNIST (b) ECG5000 (c) CIFAR‐10

Figure 1. Consistency check for label‐free feature importance.

Feature Consistency Example Consistency Pretext DVAE
MNIST 1 4 4 11
ECG5000 2 23 ‐ ‐
Cifar10 2.5 2.5 ‐ ‐
dSprites ‐ ‐ ‐ 32
F‐MNIST 1 4 4 ‐

Table 2. GPU hours for reproducing different experiments. ECG5000 features are CPU hours.

4 Results

In this section, we verify the main claims stated by reproducing the experiments from
the paper, as well as challenging them to new experimental setups, such as using differ‐
ent datasets, models, or methods. Overall, the results from the experiments reproduced
follow the same trends as the ones produced in the original paper.

4.1 Results reproducing original paper

Feature Consistency Checks — To verify claim 1, we reproduced feature importance experi‐
ments from section 4.1 of the original paper. In Figure 1 we present our results. Results
forMNIST andECG5000 datasetsmatched those from the original paperwith onlyminor
differences, however, for the CIFAR‐10 dataset we found discrepancies with the original
results. The authors claimed that the latent shift increases quickly when we perturb the
most important pixels and decelerates when we perturb less relevant pixels. This is true
for MNIST and ECG5000 datasets, but according to our results for CIFAR‐10, this conclu‐
sion only holds for the Integrated Gradients method. For Gradient Shap and Saliency,
we observe the opposite. The other claim is that perturbing pixels based on the impor‐
tance score yields a bigger change in latent space than perturbing random pixels. Again
for MNIST and ECG5000, we have been able to confirm that. For CIFAR‐10 this is true
only for the Integrated Gradients method. To conclude, claim 1 made by the authors
was partially confirmed by our experiments.

Example Consistency Checks — To check whether claim 2 holds or not, the authors con‐
ducted experiments on three different datasets. The setup for these checks is to sam‐
ple 1000 training examples and compute the importance score of each in predicting the
latent representation of the test images. For computing the score, adaptations to the
label‐free setting of several methods (both loss and representation based) were used:
Influence Functions [19][20], TracIn [21], SimplEx [22], DKNN [23]. In order to check the
effectiveness of themethods they selected theM most important training examples and
computed the similarity rates between them. They did the same for the M least impor‐
tant examples and expected the similarity between the least important samples to be
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(a)MNIST (b) ECG5000 (c) CIFAR‐10

Figure 2. Consistency check for label‐free example importance.

lower than between the most important ones. Figure 2 shows the results we obtained
after reproducing the original experiments on MNIST, ECG5000 and CIFAR‐10 datasets.
The plots display the distribution of similarity rates for different values forM and exam‐
ple importance methods. For MNIST and ECG5000 our results match the ones from the
paper, but for CIFAR‐10, even though the trend is similar, the scale of the similarity rate
differs, as for us it peaks at 0.5, while in the original paper, the highest value is around
0.17. All in all, our results validate claim 2which states that label‐free importance scores
allow us to determine the training examples that explain the test ones best.

Comparing the Representations Learned with Different Pretext Tasks — To support claim 1 and
claim2, the authors compared different pretext tasks, such as denoising, reconstruction,
and inpainting, qualitatively and quantitatively. Through this analysis, they support
claim 3. We reproduce the experiments in the same way, by using the MNIST dataset
and averaging the Pearson correlation coefficients of five runs of different autoencoders,
as stated in the original paper in Appendix C.2. For the quantitative analysis, we focus
on interpreting and comparing the Pearson correlation obtained for feature and exam‐
ple importance shown in Table 3a and Table 3b, respectively, with the results from the
original paper. In our case, the Pearson correlation coefficients for saliency maps range
from .32 to .43 corresponding to the moderate positive correlations also obtained in the
original paper. Furthermore, we have Pearson correlation coefficients for example im‐
portance ranging from .05 to .13 corresponding to the weak correlations obtained in the
original paper.

Pear. Rec. Den. Inp.
Den. 0.38± 0.02
Inp. 0.33± 0.05 0.32± 0.02
Clas. 0.43± 0.02 0.4± 0.01 0.35± 0.04

(a) Pearson correlation for saliency maps (avg +/‐ std).

Pear. Rec. Den. Inp.
Den. 0.08± 0.04
Inp. 0.13± 0.05 0.09± 0.01
Clas. 0.07± 0.02 0.05± 0.02 0.08± 0.02

(b) Pearson correlation for example imp. (avg +/‐ std).

Table 3. Pretext experiment results.

In terms of the qualitative analysis, we plot the most important examples and saliency
maps for different encoders to support claim 2 and claim 3. Visually, one can interpret
the saliency maps as being different from one pretext task to another. Moreover, the
top examples produced by different pretext tasks are hardly similar. Both conclusions
reinforce the previous results from the quantitative analysis and compare positively to
the results from the paper. Examples of these visualizations are shown in Appendix A.3.
In conclusion, the representations of different pretext tasks are not interchangeable.

ChallengingAssumptionswithDisentangledVAEs — To investigate thepaper’s claim4, we trained
two disentangled VAEs, β‐VAE and TC‐VAE onMNIST and dSprites datasets. For the qual‐
itative Analysis, we have validated the three paper’s conclusions. Saliency maps of four
test images are shown in Figure 3. Firstly, the latent unit can be sensitive and insensitive
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to similar images (Latent Unit 2 of the MNIST VAE is sensitive to image 1 but not to Im‐
age 2). Secondly, the focus of a latent unit can be completely different between similar
images (Latent unit 5 of dSprites VAE in Image 1 focuses on the interior of the rectangle,
and in Image 2 it focuses on the border of the rectangle). Lastly, some latent units focus
on the same part of the image (Image 3 of MNIST). In terms of the quantitative Analysis,
box plots observed in Figure 4 have some differences from the ones in the paper. That
could be normal given how unstable and hard to seed VAEs are. Regarding the dSprites
dataset, the plot shows a moderate increase in the Pearson correlation coefficients with
β. Concerning the MNIST dataset, we observed a slight decrease in Pearson correlation
with β. That leads us to the conclusion that increasing β does not suggest that latent
units are paying attention to a specific part of the image, which is the same conclusion
as in the paper.

(a)MNIST (b) dSprites

Figure 3. Saliency maps for each unit of the disentangled VAEs.

(a)MNIST (b) dSprites

Figure 4. Pearson correlation between saliency maps for different values of β.

4.2 Results beyond original paper

Fashion MNIST — In order to test the generalizability of the methods, we run the feature
and example importance experiments on a different dataset, Fashion MNIST. We also
compared both quantitatively and qualitatively the representations learned for several
pretext tasks and questioned how different the representations are from each other by
computing their Pearson correlation coefficient and plotting the most important sam‐
ples and the saliency maps. The feature importance graph can be seen in Figure 5a
and it shows that the representation shift increases abruptly when we perturb the most
important pixels, following the same trend as for the other datasets. The example im‐
portance graphs alongwith the correlation coefficients and plots can be seen in detail in
Appendix A.4. The results for Fashion MNIST reinforce the idea that encoders trained
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(a) Fashion MNIST. (b) CIFAR‐10: black pixel masks. (c) CIFAR‐10: DenseNet encoder.

Figure 5. Consistency check for label‐free feature importance on additional experiments.

on different pretext tasks pay attention to distinct features in the image and that the
learned representations are not interchangeable.

Additional experiments for CIFAR-10 dataset — In section 4.1 evaluating claim 1, we men‐
tioned that we found inconsistencies between the original and our results for the CIFAR‐
10 dataset. We decided to investigate further this experiment. As a first step, we plotted
themasked images to confirm that the quantitative analysis is correct. These results can
be found in Figure 6. According to the results, the Integrated Gradients method worked
best because most of the pixels covered are on the object, while for the other methods,
a lot of pixels identified as salient are in the background. This observation matches
the quantitative results presented in section 4.1. In addition, we experimented with the

Figure 6. Image from CIFAR‐10 with blur mask.

original pixel‐flipping approach proposed
by (Montavon et al., 2018)[24] towhich the
authors referred. This masking method,
instead of blurring the most important
pixels uses black pixels as a baseline. In
Figure 5b we present the results of this ex‐
periment. As we can see Integrated Gra‐
dients and Gradient Shap methods per‐
formed better in this setup, however the
relative difference from theRandombase‐
line method is smaller than previously.
We have also decided to plot the masked
imageswhich againmatched quantitative
metrics. Those results are presented in
Figure 13 available in the appendix.

Explainability analysis with different attribution
methods — The authors concluded after the feature consistency checks that the label-free
Integrated Gradients outperforms other methods for each model tested. However, for their
pretext and VAE tests, they used label‐free Gradient Shap to produce the saliency maps.
In this experiment, we want to observe the generalizability of the label‐free feature im‐
portance in the context of self‐supervised learning and disentangled VAEs. We experi‐
ment with label‐free Integrated Gradients by using it as an attribution method for label‐
free feature importance. The experimental settings remain the same as described for
the pretext and VAE experiment, respectively. The quantitative and qualitative results
for each attributionmethod are shown in Appendix A.6. We obtain the same conclusion
about the medium Pearson correlation for the feature importance and the low correla‐
tion for the example importance as in the original paper. For the VAE experiment, the
Pearson correlation coefficients have higher values compared to the ones obtained us‐
ing Gradient Shap in the original paper. However, we observe that as β grows, latent
units are not paying attention to distinct parts of the image because the Pearson correla‐
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tion does not decrease at the same time with β. Therefore, we could conclude both the
pretext and VAE experiments similarly as in the original experiments, using label‐free
Integrated Gradients instead of label‐free Gradient Shap, enhancing claim 1. This also
proves the generalizability of the label‐free feature importance, which is an easy‐to‐adapt
method to practical examples and existing supervised explainability methods.

Evaluating CIFAR-10 experiments using DenseNet — To validate the integrity of claim 1 and
claim 2 further in terms of the model used, we decided to change the encoder of the
SimCLR network from a ResNet18 (or 34) to a DenseNet121. By running the same ex‐
periments we obtained identical results as can be seen in Figure 5c. The results can be
found in the appendix (Figure 18). The trends are the same as the ones using the ResNet
encoder, designating that the conclusion does not depend on the encoder.

5 Discussion

In this study, we carried out multiple experiments to replicate the key findings from the
original research. Our reproducibility results lend credence to the original claims, as
we were able to largely replicate the original findings. We validated the four claims of
the authors, except for some minor discrepancies on CIFAR‐10. Regarding these incon‐
sistencies, we decided to contact the authors, and they provided us with the pre‐trained
model they used to perform experiments in the original paper. With the use of this
model, we were able to obtain the same results as the authors, however, we couldn’t
reproduce them by training the model on our own. Additionally, we asked the authors
why they choose to blur pixels instead of changing them to black. They justified it by
pointing out that for the CIFAR‐10 dataset, some black pixels may be salient, which will
result in zero attribution. We confirmed that by looking at the results, however the pa‐
rameters for Gaussian Blur were handcrafted and might not generalize well to different
datasets. Aiming to prove the robustness of the proposed frameworks for a label‐free
feature and example importance we decided to test them in different settings. Firstly,
we used a different dataset, the Fashion MNIST dataset, and we were able to prove that
the conclusions still hold. Secondly, by swapping the encoder of SimCLR from ResNet
to DenseNet we proved that the results are not dependent on the encoder. Furthermore,
we experimented with a different attribution in the practical example of pretext tasks in
self‐supervised learning and VAE challenge, namely label‐free Integrated Gradients in‐
stead of Gradient Shap, to support the generability of the label‐free feature importance.

5.1 Reflection: What was easy, and what was difficult?
The original paper had all the newly introducedmethods and experiments clearly stated
and further explained in the appendix withmathematical proofs, detailed architectures
of the models, values for hyperparameters and qualitative results. On top of this, hav‐
ing access to the original code implementation made it easy and straightforward to run
all the experiments. The datasets were also publicly available. Even though the code
was available and most of the reproducibility experiments were done without any mod‐
ifications, the comments in the code were too sparse; therefore, understanding and ex‐
tending the code demanded more time than expected. Moreover, the ECG5000 example
importance experiments required more than the maximum time that we could use the
GPU continuously. Thus, we modularized the code to save intermediate results which
we merged together in the end.

ReScience C 9.2 (#16) – Garcarz et al. 2023 9

https://rescience.github.io/


[Re] Reproducibility Study: Label-Free Explainability for Unsupervised Models

5.2 Communication with original authors
We raised questions about some differences in the results, explored explanations for
implementation decisions, and then got in touch with the authors for clarification. The
authors replied immediately and provided satisfactory answers tomost of our questions.
However, a few of the answers were not sufficient. For instance, concerning the differ‐
ences in the results using CIFAR‐10 dataset, the authors provided the specific file with
the trained parameters that were used for obtaining the results in the original paper.
We were able to reproduce the original results using the pretrained model given by the
authors. However, we were not able to find what exactly is causing the difference; we
believe that they used different hyperparameters than specified in the paper.
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A Appendices

A.1 Models

SimCLR — SimCLRmodel [11] is a self‐supervised learningmethod that aims to learn rep‐
resentations of the input data by comparing different augmented versions of the same
input via contrastive loss in the latent space. The authors used the combination of ran‐
dom crop and colour distortion as augmentationmethods. Pre‐trained ResNet‐18 [25] or
Densenet‐121 [26] was used as an encoder on top of which a projection headwith two lin‐
ear layers and ReLU activation function was trained for 100 epochs. Hyperparameters
used for training are in the table 4.

Name Value
Optimizer SGD
Learning rate 0.6
Momentum 0.9
Weight decay 1× 10−6

Temperature 0.5

Table 4. SimCLR hyperparameters.

ECG5000 autoencoder —We used the Recurrent Autoencoder that the authors used which
consists of an encoder with an embedding dimension of 64, two LSTM layers and a de‐
coder with two LSTMs and a final Linear layer. The model was trained to minimize the
reconstruction loss given by Lrec(x) =

∑T
t=1 |xt − [fd ◦ fe(x)]t|, where x is a vector repre‐

senting one time series sample, T is the resolution of the heartbeat (T = 140) and fe and
fd stand for the encoder and decoder functions. The model was trained for 150 epochs
using the Adam optimizer.

MNIST autoencoder - Pretext Tasks — For each pretext task, a new autoencoder is trained.
Each autoencoder is trained for 100 epochs, using the Adam optimizer, patience 10, and
the same hyperparameters as presented in the paper. The classifier used follows the
same architecture as the encoder used for the autoencoder, with an additional Softmax
layer producing class probabilities. The pretext tasks tested are denoising, reconstruc‐
tion, and inpainting, and for each pretext task the objective is to minimize their denois‐
ing, reconstruction, and inpainting loss accordingly as shown in equations 4, 5, 6. More
details about these equations can be found in the original paper in Appendix C.1 and
Appendix C.2.

Lden(x) = Eε[x− fd ◦ fe(x+ ε)]2 (4)

Lrec(x) = [x− fd ◦ fe(x)]2 (5)

Lin(x) = EM [x− fd ◦ fe(M⊙ x)]2 (6)

DisentangledVariational Autoencoder (VAE) —Weused theprovided code forVAEexperiments
and we ran two versions of disentangled VAEs: β‐VAE [12] and TC‐VAE [13], with beta
values β ∈ {1, 5, 10}. We trained the models for 100 epochs on MNIST and dSprites
datasets (90%‐10% train‐test split) using dH = 3 and dH = 6 latent units respectively. We
ran 5 times for every disentangled VAE type for each β. Thus, in total, 30 models were
trained.
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A.2 Datasets

MNIST — This is a black‐and‐white image dataset containing digits from 0 to 9. Each im‐
age is 28x28 pixels. For the feature importance experiment the denoising autoencoder
was trained on the entire training set and the attribution methods were tested on the
whole training set. The example importance experiments were run on a subset of 1000
training and 1000 testing samples.

Fashion MNIST — It is similar to MNIST, but instead of digits, the images depict clothing
items that belong to 10 different categories. The partitioning was done in the same way
as for MNIST.

CIFAR-10 — This RGB image dataset contains 32x32 pixel pictures of objects correspond‐
ing to 10 categories. A 50000/10000 partition was used for the feature importance ex‐
periment, while for determining the most important examples, they used a subset of
1000/1000.

ECG5000 — Is a time series dataset that describes the heartbeat of a patient. Each time
series describes one single heartbeat with a resolution of 140 time steps. This dataset
was split into 4000 training and 1000 testing samples when conducting the experiments.

dSprites — This is a synthetic dataset of images showing 2D shapes generated from the
following latent factors: colour, shape, scale, rotation, x and y positions of a sprite. The
dataset has a total of 737280 images, from which 10% were used at test time.
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A.3 Reproducing Pretext Experiments

Visualisations —We visualise the top examples produced by different pretext tasks as well
as their saliency maps for qualitatively interpreting the results. The results are shown
in Figure 7 and Figure 8.

Figure 7. Label‐free top example for various pretext tasks.
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Figure 8. Label‐free saliency for various pretext tasks.

ROARTest — The original paper also computes an additional test supporting the label‐free
feature importance method. The test follows the same consistency check for feature
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importance, with a difference in first removing the most important pixels, and then
training the autoencoder on the modified data. We compare results with the original
paper in Figure 9 and obtain a similar trend.

(a) Our result. (b) Their result.

Figure 9. Comparing ROAR test results.

A.4 Experiments on Fashion MNIST

Example consistency — It can be seen in Figure 10 that the same trend as for the other
datasets holds for Fashion MNIST when testing the example consistency: the similarity
rate between the most important examples is much higher than for the least important
ones, showing that the method allows the identification of training samples related to
test examples in the label‐free setting.

Figure 10. Consistency check for label‐free example importance on Fashion MNIST.

Quantitative analysis for pretext tasks — Table 5 and Table 6 show the Pearson correlation
coefficients of representations learned for different pretext tasks on Fashion MNIST
dataset. The Pearson scores range from .31 to .49 corresponding to moderate positive
correlation for saliencymaps and from .07 to .31 corresponding to weak correlations for
example importance.

ReScience C 9.2 (#16) – Garcarz et al. 2023 16

https://rescience.github.io/


[Re] Reproducibility Study: Label-Free Explainability for Unsupervised Models

PEARSON RECON. DENOIS. INPAINT. CLASSIF.
RECON.
DENOIS. .49± .05
INPAINT. .43± .02 .45± .02
CLASSIF. .37± .01 .36± .02 .31± .03

Table 5. Pearson correlation for saliency maps (avg +/‐ std).

PEARSON RECON. DENOIS. INPAINT. CLASSIF.
RECON.
DENOIS. .27± .06
INPAINT. .30± .03 .31± .09
CLASSIF. .07± .02 .07± .03 .07± .03

Table 6. Pearson correlation for example importance (avg +/‐ std).

Qualitative analysis for pretext tasks — The most important examples can be seen in Figure
11 and the saliency maps can be visualized in Figure 12. By plotting these images we
can better understand the choice of most important examples: if we look at the saliency
maps for the sneaker image, we see that only the inpainting and the classification repre‐
sentations focus on themidsole and outsole of the shoe, leading to havingmore relevant
top examples to the test image for these tasks.
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Figure 11. Top examples for sandal, shirt, sneaker, bag and ankle boot categories.
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Figure 12. Saliency maps.
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A.5 CIFAR-10 masked images

Figure 13. Example of masked image from CIFAR‐10 dataset for black pixel mask

A.6 Explainability analysis with different attribution methods

Integrated Gradients — For the pretext experiment, we analyse the results quantitatively in
Table 7 and Table 8 and qualitatively in Figure 16 and Figure 15. Moreover, for the VAE
experiment, we analyse the results quantitatively in Figure 14 and qualitatively in Figure
17. Both experiments use label‐free Integrated Gradients as their attribution method.

PEARSON RECON. DENOIS. INPAINT. CLASSIF.
RECON.
DENOIS. 0.45± 0.06
INPAINT. 0.43± 0.08 0.45± 0.05
CLASSIF. 0.39± 0.03 0.4± 0.02 0.35± 0.05

Table 7. Pearson correlation for saliency maps (avg +/‐ std) using label‐free Integrated Gradients.

PEARSON RECON. DENOIS. INPAINT. CLASSIF.
RECON.
DENOIS. 0.14± 0.04
INPAINT. 0.18± 0.04 0.21± 0.04
CLASSIF. 0.09± 0.02 0.09± 0.02 0.1± 0.01

Table 8. Pearson correlation for example importance (avg +/‐ std) using label‐free Integrated Gra‐
dients.
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Figure 14. Pearson correlation between saliency maps for different values of β using label‐free
Integrated Gradients.

Figure 15. Top examples using label‐free Integrated Gradients.
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Figure 16. Saliency maps using label‐free Integrated Gradients.
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Figure 17. Saliency maps for each unit of the disentangled VAEs using Integrated Gradients.

A.7 DenseNet Experiments

Figure 18. Consistency check for label‐free example importance (left) and label‐free feature impor‐
tance (right) using DenseNet121 on CIFAR‐10 dataset.
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