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Reproducibility Summary

Scope of Reproducibility — This study aims to reproduce the results of the paper ’FOCUS:
Flexible Optimizable Counterfactual Explanations for Tree Ensembles’ by Lucic et al.[1].
The main claims of the original paper are that FOCUS is able to (i) generate counter‐
factual explanations for all the instances in a dataset; and (ii) find counterfactual ex‐
planations that are closer to the original input for tree‐based algorithms than existing
methods.

Methodology — This study replicates the original experiments using the code, data, and
models provided by the authors. Additionally, this study re‐implements code and re‐
trains the models to evaluate the robustness and generality of FOCUS. All the experi‐
ments were conducted on a personal laptop with a quad‐core CPUwith 8GB of RAM and
it approximately took 33 hours in total.

Results — This studywas able to replicate the results of the original paper in terms of find‐
ing counterfactual explanations for all instances in datasets. Additional experiments
were conducted to validate the robustness and generality of the conclusion. While there
were slight deviations in terms of generating smaller mean distances, half of themodels
still outperformed the results of the existing method.

Whatwas easy — The implementation of the original paper is publicly available onGitHub.
The repository contains the models and data used in the original experiments. Also, the
authors provided a technical appendix, which includes all hyperparameters that were
used for the experiments for reproduction upon request.

Whatwas difficult — Although the implementation codewas available, it employs outdated
packages and the code structure is complex. Also, the comments in the functions and
the documentation of the code are sparse or nonexistent, which made it difficult to fol‐
low the code.

Copyright © 2023 K. Morita, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Kyosuke Morita (kyosuke1029@icloud.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/kyosek/focus-reproducibility – DOI 10.5281/zenodo.7931344. – SWH
swh:1:dir:e096a518285f9ee2f9ee2c5943293ba30f7e17b0.
Data is available at https://github.com/a-lucic/focus.
Open peer review is available at https://openreview.net/forum?id=n1q-iz83S5&noteId=60kzDmcWau.
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[Re] FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles

Communication with original authors — I reached out to the authors to obtain the hyperpa‐
rameters used in the experiments. The authors responded promptly with a detailed
technical appendix of the original paper.

1 Introduction

The importance of interpretability in machine learning models is growing as they are
increasingly being applied in real‐world scenarios. Understanding how models make
decisions not only benefits the users of the model, but also those who are affected by
the decisions made by the model. Counterfactual explanations have been developed to
cope with this issue, as they allow individuals to understand how they would achieve a
desirable outcome with minimal changes to their original data. Lucic et al.[1] proposed
a method called FOCUS, which is designed to generate optimal distance counterfactual
explanations to the original data for all the instances in tree‐based machine learning
models. This study aims to reproduce and evaluate their findings, as well as conduct
additional experiments.

2 Scope of reproducibility

The generation of counterfactual explanations is a problem that has been addressed
by several existing methods. Wachter, Mittelstadt, and Russell [2] formulated this prob‐
lem into an optimisation framework, however, this approach is limited to differentiable
models. The original paper aimed to extend the framework to non‐differentiable mod‐
els, specifically tree‐based algorithms, by introducing a probabilistic model approxima‐
tion. A crucial aspect of this method is the approximation of a pretrained tree‐based
model, represented as f , achieved by replacing each split in each tree with a sigmoid
function with a parameter σ that is defined as:

sig(z) = (1 + exp(σ · z))−1, (1)

where σ ∈ R>0. This sigmoid function is incorporated into the function t̃j(x) that ap‐
proximates the node j activation tj(x) of the tree‐basedmodel f for a given input x. This
function is defined as:

t̃j(x) =


1, if j is the root,
t̃pj

(x) · sig(θj − xfj ), if j is left child,
t̃pj

(x) · sig(xfj − θj), if j is right child,
(2)

where θj is a threshold for activation of node j.
Thismethod approximates a single decision tree T . A tree approximation can be defined
as:

T̃ (y|x) =
∑

j∈Tleaf

t̃j(x) · T (y|j). (3)

Additionally, this method replaces the maximum operation of f , which is an ensemble
ofM many trees with weights ωm ∈ R by a softmax function with temperature τ ∈ R>0.
Thus, the approximation f̃ can be expressed as:

f̃(y|x) =
exp(τ ·

∑M
m=1 ωm · T̃m(y|x))∑

y′ exp(τ ·
∑M

m=1 ω · T̃m(y′|x)
(4)

It is important to note that this approximation method can be applied to any tree‐based
model.
The main claims of the original paper are that FOCUS is able to:
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• generate counterfactual explanations for all instances in a dataset ‐ Reliability.

• find counterfactual explanations that are closer to the original input for tree‐based
algorithms than existing frameworks ‐ Effectiveness.

3 Methodology

This study uses the code, data, and models provided by the original authors to repro‐
duce their original experiments. In addition, to evaluate the robustness and general‐
ity of FOCUS, several modifications were made to the original implementation. These
modifications include: (i) updating the versions of Tensorflow from 1.14.0 to 2.11.0 and
scikit‐learn from 0.21.3 to 1.0.2, (ii) reorganising the code by removing redundant func‐
tions and simplifying the code structure and (iii) adding unit tests. Furthermore, this
study conducts an additional experiments on ”German credit” dataset [3].

3.1 Model descriptions
The pretrained models include Decision Tree (DT), Random Forest (RF), and Adaptive
Boosting (AB) with DT as a base learner. In addition, this study retrained allmodels. The
sets of employed hyperparameters are reported in Table 6 in Appendix A. In the cases
where hyperparameters were not specified, the default values were used. The accuracy
of the retrained models is reported in Table 8 in Appendix C.

3.2 Datasets
The four binary classification datasets used in the original experiments are:

• Wine Quality [4] ‐ This dataset contains 4,898 data points with 11 features. The orig‐
inal dataset presents the wine quality on a scale of 0‐10, but the original authors
modified it into binary classification. The modified dataset adapts a ”high quality”
wine if the quality is higher than or equal to 7. There are 1,060 positive class data
(22%).

• HELOC [5] ‐ This dataset contains 10,459 data points with 23 features. There are
5,000 positive class data (48%).

• COMPAS [6] ‐ This dataset contains 6,172 data points with 6 features. There are
2,990 positive class data(48%).

• Shopping [7] ‐ This dataset contains 12,330 data points with 9 features. There are
1,908 positive class data (15%).

The original paper states that all features in the datasetswere transformed into the range
of 0 and 1, and all categorical featureswere removed. These datasetswere pre‐processed
by the original authors. In addition to those datasets, this study employs the German
credit dataset to test the generality of FOCUS. This German Credit dataset aims to clas‐
sify individuals into two categories, thosewith good credit risk and thosewith bad credit
risk. It contains 999 data points with 49 features, including 7 numerical and 42 categor‐
ical features. Instead of removing all the categorical features, this study used one‐hot
encoding for all categorical features. Furthermore, to run the experiments, this study
normalised the numerical features, so that all the values are between 0 and 1. There are
300 bad credit risk data points (30%) in this dataset.
All models used in the experiments are trained on 70% of each dataset and the rest of
30% were used to find counterfactual examples.
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3.3 Hyperparameters
There are four hyperparameters of FOCUS, specifically, sigma (Equation 1), tempera‐
ture (Equation 4), distance weight, which is a trade‐off parameter between distance loss
and prediction loss and learning rate of Adam [8]. This study used the hyperparameters
provided by the original authors to reproduce the original experiments.
Additionally, this study conducted a hyperparameter tuning using the Optuna pack‐
age[9]’s Bayesian optimisation for the retrained models. The search spaces of hyper‐
parameters can be found in Table 9 in the Appendix D. The search was conducted for
100 trials. It is worth noting that since DTmodels do not use the temperature parameter,
the search for temperature was disabled when tuning DT models.
Due to resource and time constraints, this study was unable to run hyperparameter tun‐
ing for all models and dataset combinations, particularly for larger models such as RF
and AB models. The used hyperparameters for all the retrained models are reported in
Table 10, 11, 12 and 13 in Appendix E.

3.4 Experimental setup and code

Experiment 1 — This study aims to reproduce experiments from the original paper, with
the exception of other papers’ proposed methods. The experiments include (i) produc‐
ing counterfactual explanations for all datasets by using pretrained models to examine
the reliability claim and (ii) evaluating effectiveness claim by comparing the average dis‐
tance of counterfactual explanations against the existing methods called DACE [10].
The same evaluation metric as the original paper will be utilised in this study. Let X
be the set of N original data points and X̄ be the set of N generated counterfactual
explanations. The mean distance metric can be derived as:

dmean(X,X) =
1

N

N∑
N=1

d(x(n), x(n)). (5)

Four distance functions are used for evaluation: Euclidean, Cosine, Manhattan, and
Mahalanobis. The results of these experiments can be found in Table 1 and 3.

Experiment 2 — This study conducts additional experiments to provide further support
for the claims. These experiments aim to evaluate the robustness and generality of the
FOCUS. Robustness is tested by updating the code implementation andmodels, and gen‐
erality is tested by applying the updated FOCUS implementation on a different dataset.
The results of these experiments can be found in Table 4 and 5.

3.5 Computational requirements
All the experiments in this study were conducted on a laptop with a 1.4 GHz Quad‐core
Intel Core i5 processor and 8 GB of RAM. The run time to rerun the experiments on
the models was: Decision Tree (DT) models took under a minute, Random Forest (RF)
models took approximately 20 minutes and Adaptive Boosting (AB) models took approx‐
imately 15 minutes on average. To run the retrained models, DT models took under a
minute, RF models took approximately 30 minutes and AB models took 15 minutes on
average. The study also conducted hyperparameter tuning on a few DT models, which
took around 3hours permodel. In total, rerunning the experiments took around 8hours,
running the retrained models took around 9 hours, and hyperparameter tuning took
around 16 hours.
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4 Results

4.1 Results reproducing original paper
Experiment 1 evaluates the main claims, specifically Reliability and Effectiveness. As de‐
scribed in Section 3.4.1, experiment 1 reruns the published code by the authors and
compares the results to the reported results in the original paper.

Reliability — Table 1 validates theReliability claimof FOCUS for nearly allmodels, datasets
and distance function combinations. There are two outcomes that failed to find coun‐
terfactual explanations for all instances ‐ RF and AB models on COMPAS dataset using
Manhattan distance. Based on the fact that the majority of outcomes align with the
original results, it is conjectured that the two unsuccessful outcomes were caused by
misreported hyperparameters. To evaluate this hypothesis, this study conducted hyper‐
parameter tuning for those two models. Table 2 reports the mean Manhattan distance
and found hyperparameters for those two cases. After the hyperparameter tuning, both
experiments were able to find counterfactual explanations for all the instances and also
themean distance was closer to the original results. Although there are slight discrepan‐
cies in the rerun results in terms of the mean distances, this study was able to produce
similar results to the original paper and draw the same conclusion ‐ rerunning the orig‐
inal experiment was able to find a counterfactual explanation for all instances.
The results presented above demonstrate that the hyperparameters of FOCUS have a
strong impact on the outcome of the experiments. To providemore insight on this point,
section 4.2 discusses how the choice of hyperparameters affects the results and their
tendencies.

Effectiveness — The results that support the Effectiveness claim are presented in Table 3.
This table provides the mean Mahalanobis distance of the rerun models, the original
models, and the existing framework, DACE. The rerun models’ results slightly deviate
from the original results. SeveralmeanMahalanobis distances of the rerunmodels were
found to be larger than the reported results of DACE. This study attempted to replicate
the results throughhyperparameter tuning, however, no set of hyperparameterswas dis‐
covered that would produce the results as originally reported. Another potential expla‐
nation for the deviation of results could be related to the calculation of theMahalanobis
distance, yet thorough unit tests of the relevant functions did not reveal any problem‐
atic areas. Further investigation and experimentation may be necessary to fully com‐
prehend the source of the discrepancy observed in this experiment. Despite this, the
study still provides evidence that half of the rerun models exhibited better results than
those produced by the original DACE framework, lending partial support to the claim
of effectiveness.

4.2 Results beyond original paper
As described in 3.4, this study conducts additional experiments to test the robustness
and generality of FOCUS in terms of the Reliability claim. This is examined by retraining
models on the updated code implementation and applying FOCUS on those models on
all datasets including the German credit dataset.

Robustness andGenerality — The robustness and generality of FOCUSare presented through
the outcomes of the experiment, as illustrated in Tables 4 and 5. The findings reveal that
all DT models are capable of generating counterfactual explanations for all instances,
while a limited number of RF and AB models were able to do so. Additionally, a sig‐
nificant proportion of the RF models encountered difficulties running due to limited
computational resources, which have impacted the ability to perform hyperparameter
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Dataset Distance function DT RF AB

Wine
Euclidean 0.268

(0.268)
0.188
(0.188)

0.268
(0.188)

Cosine 0.003
(0.003)

0.009
(0.008)

0.026
(0.014)

Manhattan 0.268
(0.268)

0.312
(0.312)

0.528
(0.360)

HELOC
Euclidean 0.133

(0.133)
0.186
(0.186)

0.136
(0.136)

Cosine 0.001
(0.001)

0.002
(0.002)

0.001
(0.001)

Manhattan 0.152
(0.152)

0.284
(0.284)

0.203
(0.203)

COMPAS
Euclidean 0.015

(0.092)
0.079
(0.079)

0.076
(0,076)

Cosine 0.008
(0.008)

0.011
(0.011)

0.007
(0.007)

Manhattan 0.102
(0.093)

0.002*
(0.085)

0.072*
(0.090)

Shopping
Euclidean 0.142

(0.142)
0.023
(0.025)

0.028
(0.028)

Cosine 0.055
(0.055)

0.013
(0.013)

0.006
(0.006)

Manhattan 0.128
(0.128)

0.026
(0.026)

0.047
(0.046)

Table 1. Mean Euclidean, Cosine and Manhattan distance for all the original datasets and model
combinations. The numbers in the parentheses are the mean distance of the reported distance in
the original paper. * denotes that it failed to produce counterfactual explanations for all instances.

Model Mean distance sigma temperature distance weight learning rate
RF 0.116 6 12 0.01 0.002
AB 0.090 4 1 0.05 0.001

Table 2. Found new hyperparameters and Manhattan mean distances.

tuning for most of the RF and AB models. This limitation is further explored in follow‐
ing section.
Overall, the experiment results provide additional evidence of the robustness and gener‐
ality of FOCUS’s reliability claims. Although the conclusions drawn from the experiment
are limited to DTmodels, they demonstrate that FOCUS can draw the same conclusions
as the original study, evenwhenmodels are retrained on updated codebases and applied
to a different dataset. However, further research could extend these findings to other
model types.

Impact of hyperparameters on results — During the experiments, this study learned that hy‐
perparameters affect results strongly. Theoretically, the hyperparameters of FOCUS
(sigma and temperature) influence the quality of the model approximation f̃ , of f . As
sigma increases, the probabilistic approximation of the node activation becomes an ex‐
act approximation of the indicator functions (as per Equation 1), and increasing tem‐
perature leads the maximum operation of f to a unimodal softmax distribution (per
Equation 4).
Empirically, this study found that the quality of the approximation of the original model
f has a significant effect on the results. For instance, the number of counterfactual
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Dataset Model Reproduction Original Original DACE
Wine DT 2.354 0.542 1.325
HELOC DT 1.128 0.810 1.427

COMPAS DT 0.938 0.776 0.814
AB 0.756 0.636 1.570

Shopping DT 1.424 0.023 0.050
AB 0.148 0.303 3.230

Table 3. Mean Mahalanobis distance for all the original datasets and model combinations.

Dataset Distance function DT RF AB

Wine

Euclidean 0.358
(0) ‐ 0.197

(954)

Cosine 0.006
(0) ‐ 1.458

(1)

Manhattan 0.358
(0) ‐ 0.578

(431)

Mahalanobis 4.069
(0) ‐ 4.436

(435)

HELOC

Euclidean 0.122
(0) ‐ 0.110

(794)

Cosine 0.001
(0)

1.248
(0)

1.213
(0)

Manhattan 0.139
(0)

0.327
(0)

0.366
(207)

Mahalanobis 0.876
(0) ‐ 0.913

(719)

COMPAS

Euclidean 0.083
(0)

0.099
(8)

0.054
(37)

Cosine 0.012
(0)

1.273
(13)

1.088
(14)

Manhattan 0.118
(0) ‐ 0.053

(1330)

Mahalanobis 1.158
(0)

0.470
(181)

0.479
(37)

Shopping

Euclidean 0.0352
(0) ‐ 0.041

(280)

Cosine 0.013
(0) ‐ 1.161

(40)

Manhattan 0.043
(0) ‐ 0.067

(305)

Mahalanobis 0.460
(0) ‐ 0.734

(317)

Table 4. Mean Euclidean, Cosine and Manhattan distance for all the original datasets and model
combinations. ‐ denotes that failed to run. The numbers in the parentheses indicate the number
of instances that are unable to find a counterfactual explanation.
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Distance function DT RF AB

Euclidean 0.003
(0)

0.112
(0)

0.003
(63)

Cosine 1.001
(0)

1.424
(0)

1.502
(6)

Manhattan 0.003
(0)

0.082
(9)

0.006
(40)

Mahalanobis 62.074
(0) ‐ 1.852

(47)

Table 5. Mean Euclidean, Cosine, Manhattan and Mahalanobis distance of each model on the Ger‐
man credit dataset. ‐ denotes that failed to run. The numbers in the parentheses indicate the
number of instances that are unable to find a counterfactual explanation.

Figure 1. Found counterfactual explanations %
on COMPAS dataset. This data was collected
when hyperparameter tuning was run for 100
trials on the DT model by using Mahalanobis
distance. The Hyperparameter tuning algo‐
rithm found optimal solutions for over 90% of
instances in most cases (86 instances), there‐
fore, the figure has been scaled for improved
visualisation.

Figure 2. Hyperparameter importance for each
dataset. This data was collected when hyper‐
parameter tuning for DT models by using Ma‐
halanobis distance was run. Note that DT
models do not use temperature hyperparam‐
eters, thus there are only three hyperparame‐
ters tuned for those models.

ReScience C 9.2 (#12) – Morita 2023 8

https://rescience.github.io/


[Re] FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles

explanations found can range from 20% to 100% based on the chosen hyperparameters
as demonstrated in Figure 1. The analysis of the hyperparameter importance for DT
models, as presented in Figure 2, indicates that the approximation of node activation
(sigma) has a strong effect on both the mean Mahalanobis distance and the number of
counterfactual explanations found on all datasets. Conversely, changes to the prediction
loss‐distance loss trade‐off parameter (distance weight) and the learning rate of Adam
did not exhibit a significant impact on the results. These findings are limited to DT
models, and future studies could extend these findings to other model types.

Model size consideration — This study encountered difficulties in running RF models for
more than half of the experiments. Initially, it was suspected that this difficulty was
caused mainly due to limited computational resources. Also, the original paper’s exper‐
iments were conducted on a machine with a 48‐core CPU and 256GB of RAM, while this
study’s experiments were conducted on a computer with a quad‐core CPU and 8GB of
RAM.
However, Table 7 in Appendix B shows that the majority of the retrained models are
smaller in size on the disk than the original ones. Despite this, the study was unable to
run the retrained models but was able to run the original ones. This suggests that the
inability to execute the retrained models may not be solely attributed to their size, and
other factors may be contributing.

5 Discussion

This study aimed to assess the reliability and effectiveness claims of FOCUS and has
drawn several conclusions based on the results of two experiments.
Firstly, in regards to the reliability claim, the experiments’ results validate the original
paper’s results. Also, the additional experiment demonstrated that FOCUS is robust and
generalisable. The additional experiment was limited to DT models, however, future
studies could expand the investigation to other tree‐based models such as XGBoost [11]
and LightGBM [12].
Moreover, this study sheds light on the impact of hyperparameters on the results of
FOCUS. It was demonstrated that the selection of hyperparameters can significantly in‐
fluence the ability of FOCUS to generate counterfactual explanations, thus emphasising
the importance of hyperparameter tuning in future studies.
Additionally, the study also highlighted the issue of running larger models as described
in Section 4.2. This study suggests that this difficulty may not be solely due to model
size, but other factors may also be contributing. Further research is needed to investi‐
gate these factors and find ways to overcome these challenges, to enable the application
of FOCUS on larger models.
The effectiveness claim is partially supported by this study. While FOCUS was able to
generate the counterfactual explanations for all instances, the mean Mahalanobis dis‐
tanceswere not consistent with the results reported in the original paper. This deviation
raises questions about the reproducibility of the results and highlights the need for fur‐
ther investigation to determine the cause.

5.1 What was easy
The original paper’s implementation is accessible on GitHub. The repository includes
themodels and data utilised in the experiments. The authors have alsomade available a
technical appendix, which can be requested and provides all the necessary information,
including hyperparameters to reproduce the experiments.
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5.2 What was difficult
The code for the implementation was available, however, it utilises outdated packages
and the code structure is complex, making it difficult to follow the code. Additionally,
the comments and documentation within the code are minimal or absent. Adding unit
tests to the codebase helped me to improve my understanding of the structure. Fur‐
thermore, for stronger support on the claims made in the paper, it would have been
beneficial to run the previously developed framework, DACE, however, due to time con‐
straints and the complexity of using the CPLEX Optimizer 1, this study was unable to do
so.

5.3 Communication with original authors
I contacted the authors to obtain the hyperparameters used in the experiments, and
they responded promptly with a detailed technical appendix of the original paper.
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A Hyperparameters for retrained models

Table 6 reports the hyperparameters that were used to retrain each model for each
dataset. Retrained DT models still employ the same hyperparameters as the original
models, but the other models, most of them have a smaller structure than the original
models.

Dataset Hyperparameter DT RF AB

Wine Max Depth 2
(2)

4
(4)

2
(4)

Num Trees 1
(1)

100
(500)

100
(100)

HELOC Max Depth 4
(4)

2
(4)

1
(8)

Num Trees 1
(1)

100
(500)

100
(100)

COMPAS Max Depth 4
(4)

2
(4)

1
(2)

Num Trees 1
(1)

100
(500)

100
(100)

Shopping Max Depth 4
(4)

4
(8)

1
(2)

Num Trees 1
(1)

100
(500)

100
(100)

German Max Depth 2
(‐)

3
(‐)

2
(‐)

Num Trees 1
(‐)

100
(‐)

100
(‐)

Table 6. Hyperparameters of retrained models. Numbers in the parentheses are the hyperparam‐
eters of the original models.

B Model size comparison

Table 7 reports the model sizes of retrained and original models on the disk. Most re‐
trained models have a smaller size as smaller hyperparameters were used compared to
the original models.

DT RF AB
Dataset Retrained Original Retrained Original Retrained Original
Wine 3 2 263 711 48 131
HELOC 4 2 94 703 34 148
COMPAS 2 2 94 467 34 85
Shopping 4 2 265 143 34 89
German 2 ‐ 144 ‐ 48 ‐

Table 7. Size of models on the disk. The unit of this table is KB.

ReScience C 9.2 (#12) – Morita 2023 11

https://rescience.github.io/


[Re] FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles

C Accuracy of retrained models

This study retrained models with new hyperparameters in order to conduct further ex‐
periments. The train/test split method used in this study follows the original paper,
where 70% of the dataset was used for training and 30% was used for test. This study
employs the accuracy score as a metric. The accuracy score can be derived as

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

Dataset DT RF AB
Wine 0.796 0.788 0.771
HELOC 0.679 0.692 0.701
COMPAS 0.651 0.677 0.675
Shopping 0.890 0.893 0.892
German 0.700 0.713 0.723

Table 8. Accuracy of all the models

D Hyperparameter tuning

In this study, hyperparameter tuning was performed on a few pretrained models and
retrained DT models by using Optuna’s Bayesian optimisation. Table 9 illustrates the
search spaces of hyperparameters. It is worth noting that since DT models do not use
the temperature parameter, the search for temperature was disabled when tuning DT
models to save some computational costs.

Search space
Hyperparameter Min Max Step

sigma 1 20 1
temperature 1 20 1

distance weight 0.01 0.1 0.01
learning rate 0.001 0.01 0.001

Table 9. Hyperparameters and their search spaces

E FOCUS hyperparameters

Table 10, 11, 12 and 13 report used hyperparameters for retrainedmodels. As DTmodels
do not use temperature, it is not reported.
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Dataset Model sigma temperature weight distance learning rate

Wine DT 1 ‐ 0.05 0.001
AB 5 1 0.05 0.005

HELOC DT 2 ‐ 0.05 0.001
AB 10 1 0.05 0.001

COMPAS
DT 4 ‐ 0.01 0.009
RF 7 3 0.01 0.001
AB 10 1 0.01 0.005

Shopping DT 2 ‐ 0.05 0.005
AB 10 1 0.05 0.001

German
DT 7 ‐ 0.01 0.001
RF 7 3 0.01 0.001
AB 7 3 0.01 0.001

Table 10. FOCUS hyperparameters for using Euclidean distance

Dataset Model sigma temperature weight distance learning rate

Wine DT 1 ‐ 0.05 0.005
AB 1 1 0.01 0.005

HELOC
DT 2 ‐ 0.05 0.005
RF 5 5 0.05 0.005
AB 1 1 0.05 0.005

COMPAS
DT 10 ‐ 0.05 0.005
RF 10 6 0.01 0.005
AB 10 1 0.05 0.005

Shopping DT 10 ‐ 0.05 0.001
AB 10 5 0.05 0.001

German
DT 7 ‐ 0.01 0.001
RF 7 3 0.01 0.001
AB 7 3 0.01 0.001

Table 11. FOCUS hyperparameters for using Cosine distance

Dataset Model sigma temperature weight distance learning rate

Wine DT 1 ‐ 0.05 0.001
AB 6 1 0.01 0.005

HELOC
DT 2 ‐ 0.05 0.001
RF 5 5 0.01 0.005
AB 4 1 0.05 0.001

COMPAS DT 6 ‐ 0.01 0.005
AB 5 10 0.05 0.005

Shopping DT 2 ‐ 0.05 0.005
AB 10 1 0.05 0.001

German
DT 7 ‐ 0.01 0.001
RF 7 3 0.01 0.001
AB 7 3 0.01 0.001

Table 12. FOCUS hyperparameters for using Manhattan distance
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Dataset Model sigma temperature weight distance learning rate

Wine DT 4 ‐ 0.01 0.003
AB 10 1 0.01 0.005

HELOC DT 7 ‐ 0.01 0.002
AB 10 1 0.01 0.005

COMPAS
DT 4 ‐ 0.01 0.008
RF 10 1 0.01 0.005
AB 4 2 0.05 0.001

Shopping DT 20 ‐ 0.02 0.003
AB 10 1 0.01 0.001

German DT 18 ‐ 0.01 0.003
AB 7 3 0.01 0.001

Table 13. FOCUS hyperparameters for using Mahalanobis distance
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