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Reproducibility Summary

Scope of Reproducibility — CartoonX [1] is a novel explanationmethod for image classifiers.
In this reproducibility study, we examine the claims of the original authors of CartoonX
that it: (i) extracts relevant piece‐wise smooth parts of the image, resulting in explana‐
tions which are more straightforward to interpret for humans; (ii) achieves lower distor‐
tion in the model output, using fewer coefficients than other state‐of‐the‐art methods;
(iii) is model‐agnostic. Finally, we examine how to reduce the runtime.

Methodology — The original authors’ open‐sourced implementation has been used to ex‐
amine (i). We implemented the code to examine (ii), as there was no public code avail‐
able for this. We tested claim (iii) by performing the same experiments with a Vision
Transformer instead of a CNN. To reduce the runtime, we extended the existing im‐
plementation with multiple enhanced initialization techniques. All experiments took
approximately 38.4 hours on a single NVIDIA Titan RTX.

Results — Our results support the claims made by the original authors. (i) We observe
that CartoonX produces piece‐wise smooth explanations. Most of the explanations give
valuable insights. (ii) Most experiments, that show how CartoonX achieves lower dis‐
tortion outputs compared to other methods, have been reproduced. In the cases where
exact reproducibility has not been achieved, claim (ii) of the author still holds. (iii) The
model‐agnosticism claim still holds as the overall quality of the ViT‐based explanations
almost matches that of the CNN‐based explanations. Finally, simple heuristical initial‐
izations did not improve the runtime.

What was easy — The mathematical background and intuition of CartoonX were clearly
explained by the original authors. Moreover, the original author’s code was well struc‐
tured and documented, which made it straightforward to run and extend.

What was difficult — Some hyperparameter settings and implementation details needed
to reproduce the experiments were not clear or transparent from the original paper or
code. This made it difficult to implement and reproduce these experiments.

Communication with original authors —We have been in brief communication with the orig‐
inal authors. They were able to address most of our points, providing us with some
additional clarifications about the exact implementation and hyperparameter settings.
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[Re] On the Reproducibility of CartoonX

1 Introduction

The trend towards using ever‐more complex machine learning models in the field of
Computer Vision has led to improved accuracy at the cost of interpretability. Most state‐
of‐the‐art models are inherently opaque, making understanding their inner dynamics
and decision‐making processes difficult. This hasmotivated the emerging research area
of explainable AI [2], with a strong focus on explaining the classification of images. Nu‐
merous explanation methods, like Smoothgrad [3] or LIME [4], have been developed for
image classifiers. Thesemethods all operate in the pixel domain, producing pixel‐sparse
or jittery explanations.
Challenging this approach, the authors of [1] proposedCartoonX; anovel,model‐agnostic
explanation method for image classifiers that operates in the wavelet domain. This
paradigm shift is motivated by the idea that demanding sparsity in the wavelet domain
introduces piece‐wise smooth explanations, i.e., asking the question What is the piece-
wise smooth part of the input signal that leads to the model decision? [1]. CartoonX generates
explanations by applying the rate‐distortion explanation (RDE) framework (originally
proposed by [5] and extended by [6]) in the wavelet domain of an image. RDE is an op‐
timization problem that enforces maximum sparsity with minimum distortion in the
model’s output. This is achieved by optimizing a deletion mask applied to the image
coefficients, thus marking relevant components. In the conventional setting, Pixel RDE
enforces sparsity on (super‐)pixels. In the case of CartoonX, RDE is used to enforce spar‐
sity across the wavelet coefficients.
In this contribution, we aim to reproduce the results of the CartoonX paper and perform
an additional experiment to examine the authors’ main claims. Moreover, an extension
is proposed to improve the runtime of CartoonX.
The remainder of this paper is organized as follows: Section 2 presents the scope of
this reproducibility study and the methodology is outlined in Section 3. In Section 4,
the results are presented and discussed. Section 5 discusses different aspects of the
reproducibility effort. Lastly, in Section 6, a conclusion is given.

2 Scope of Reproducibility

In this reproducibility study, we examine the original authors’ claims:

• CartoonX extracts relevant piece‐wise smoothparts of the image, resulting inmore
straightforward explanations.

• CartoonX achieves lower distortion in the model output while using fewer coeffi‐
cients than other state‐of‐the‐art methods.

• CartoonX is model‐agnostic.

The explanations provided by CartoonX are qualitatively evaluated (i.e., manually com‐
pared and interpreted) to examine the first claim. To investigate whether CartoonX
achieves lower distortion in the model output, the distortion of the different methods is
compared. This is referred to as the quantitative evaluation.
The original authors used two CNNs in their experiments to investigate their claim of
model agnosticism. We extend their experiments by running CartoonX with a Vision
Transformer (ViT). The results of CartoonXwith a ViT are compared to an attentionmap
of the Transformer model. Attention maps have been used in other works to explain
model decisions [7], serving as a basis for the cross‐validation of CartoonX.
The original authors suggested to train a neural network to predict a good initialization
of the deletion mask for arbitrary images of the target distribution with the intention
of significantly reducing CartoonX’s runtime. This should ideally lead to faster conver‐
gence. Due to the computational cost of generating sufficient training data, two differ‐
ent heuristical strategies were assessed.
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Summarizing, the main contributions of this publication are:

• Examining the first two claims of the original authors by reproducing the experi‐
ments and qualitative and quantitative evaluating the results.

• Applying CartoonX with a ViT to investigate the model agnosticism claim.
• Exploring using simple heuristics for initialization to improve runtime.

3 Methodology

The original authors provide a publicly available, well‐documented, and cleanly written
codebase,1 containing all necessary implementations to produce CartoonX and Pixel
RDE explanations. Nonetheless, neither an implementation for their quantitative eval‐
uations nor a reference to the original images was published, complicating the repro‐
ducibility effort. The authors’ implementation was used as a baseline and adapted to
accommodate the outlined extensions and it was supplemented with the quantitative
experiments. We consulted with the authors to verify the correctness of our interpreta‐
tion. The extended open‐source repository is made publicly available.2

3.1 CartoonX
CartoonX [1] is a rate‐distortion‐based explanation method for image classifiers operat‐
ing in the wavelet domain to identify the components (i.e., wavelet coefficients) of an
image that are most decisive for the model’s prediction.
For this, a given image is transformed into its wavelet representation by applying the
Discrete Wavelet Transform (DWT). Out of the resulting DWT coefficients h that rep‐
resent the image in wavelet space, the least relevant components are masked. This
is done by iteratively learning a mask s that minimizes a distortion metric while en‐
compassing minimal components. The sparsity is enforced by applying the ℓ1‐norm
on the mask’s values and controlled using an additional parameter3 λk by which this
loss component is multiplied. Starting with an all‐ones initialization, the mask’s val‐
ues are continuously decreased for wavelet components that contain little classification
decisive information. At every iteration, a batch of L adaptive Gaussian noise sam‐
ples v(1), ..., v(L) is drawn. With these samples, the obfuscations y(1), ..., y(L) are com‐
puted as y(i) = DWT−1(h ⊙ s+ (1− s)⊙ v(i)). Therefore, less relevant components
with mask values close to 0 will be (partially) replaced by noise. The efficacy of the
mask is ascertained by computing the distortion D̂(x, s,Φ) as the average squared dis‐
tances of the post‐softmax originally predicted class probabilities of the original image
x and the set of obfuscations. Together with the sparsity constraint, the loss objective
emerges as l(s) = D̂(x, s,Φ) + λ∥s∥1.
The explanation is ultimately obtained by applying the learned mask to the image’s
wavelet coefficients and converting the resulting representation back into pixel space
as a grayscale image. This results in a piece‐wise smooth image explaining the model’s
decision by highlighting relevant areas for each image. For a more comprehensive and
conclusive background on the rate‐distortion framework and the exact implementation
of CartoonX, we refer back to Sections 3 to 5 in [1].

3.2 Model descriptions
To reproduce the results from the original paper, we also used a pre‐trained
MobileNetV3‐Small [8] (Top‐1 accuracy 67.7%; 1.8M parameters). It was additionally

1https://github.com/skmda37/CartoonX
2https://github.com/JonaRuthardt/MLRC-CartoonX
3Parameter k refers to the number of pixels, while λ refers to the sparsity level. We will treat them as a

single parameter to retain consistency with the original authors.
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used to test for the speed‐up effects of different mask initialization techniques. Fur‐
thermore, a pre‐trained Transformer‐based classifier in the form of DeiT‐tiny [9] (Top‐1
accuracy 72.2%) was examined. This particular ViT was chosen due to its comparatively
few 5M parameters, thus, behaving runtime efficiently. All models used in this study
and the original paper were pre‐trained on ImageNet1K.

3.3 Datasets
For all experiments, we used the same random sub‐set of 100 images of 100 distinct but
randomly selected classes from ImageNet.4 In line with the original publication, the
imageswere resized to 256×256 pixels. Only for experiments involving the Transformer‐
basedmodel (i.e., theModel Agnosticism Experiment) were the images resized to 224×224
pixels to ensure model compatibility.

3.4 Experimental setup and code
In order to verify and extend the claimsmade in [1], three different experimental setups
are proposed and specified in this Section.

Reproducibility Experiment — The reproduction of the experiments consists of two parts.
The qualitative experiment, corresponding to the claim that CartoonX is qualitatively
better to interpret, and the quantitative experiment, corresponding to the claim that
CartoonX achieves lower distortion while using fewer coefficients. Both quantitative
and qualitative experiments were evaluated akin to the original paper.
For the qualitative experiment, explanations for the 100 images with both the CartoonX
and Pixel RDE methods were created. The most insightful and interesting explanations
are used to highlight and discuss the interpretability of CartoonX compared to Pixel RDE.
To increase transparency and mitigate potential selection biases, all results underlying
the qualitative evaluations are made publicly available in our repository.
The quantitative experiment consists of three different subexperiments. In the first two
subexperiments, the optimized masks for the 100 explanations of the qualitative experi‐
ment are used. For the first subexperiment, all components are randomized with adap‐
tive Gaussian noise, except for an iteratively increasing fraction of the most relevant
components, (i.e., the highest mask values). Conversely, in the second experiment, the
most relevant components are randomized. Finally, the third subexperiment examines
the distortion and non‐sparsity (the two loss terms) for varying λk.

Model AgnosticismExperiment — To examine the claim that CartoonX ismodel‐agnostic, the
ViT DeiT‐tiny [10] was integrated into the CartoonX framework. For all 100 images, three
different explanations were created: a CartoonX explanation for both the ViT as well
as the CNN, and the attention rollout [11]. The latter method linearly combines the
attention weights throughout the layers of the vision transformer. More specifically, at
each layer, it merges the attention at each position with the attention at each position of
the previous layers. To account for the multiple attention heads, we take an average of
all heads. The implementation by [12] is used to create the attention rollout. Moreover,
the quantitative evaluation for this experiment is set up analogously to the quantitative
evaluation for the reproducibility experiment.

Runtime Efficiency Experiment — To improve runtime, we explore using simple heuristics
for initializing the deletion mask. Two different strategies were tested. In the first strat‐
egy, we use an efficient preoptimization algorithm, which iteratively decreases the ini‐
tial mask from 1 to 0 in one‐percent increments until the network predicts a new class.

4https://github.com/EliSchwartz/imagenet-sample-images
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This pre‐convergence criterion was chosen heuristically. Up until this point, the gradi‐
ents are still largely useful. The second strategy uses a binary foreground mask as an
initialization, with 1 for wavelet coefficients corresponding to foreground regions and
0 for those corresponding to background regions. The main idea is that the network
primarily uses the foreground to predict the class. Consequently, it is the part of the im‐
age containing most of the relevant frequencies needed to explain the model’s decision.
The efficacy of each of these approaches was evaluated based on the loss curves ob‐
tained during the actual optimization. Hence, it is possible to ascertain that the model
converges towards approximately the same loss value and if it does so after fewer itera‐
tions. We compared these strategies to a random initialization and the default all‐ones
initialization, as implemented by the original authors.

3.5 Hyperparameters
For all experiments, the default values for all hyperparameters – as specified in [1], Sec‐
tion 5 – were used. Whenever the hyperparameters were not specified, we used the
default values in the code provided by the original authors. To choose a proper value
for λk for the ViT, we did a qualitative search (see Appendix A for details). For the atten‐
tion rollout explanation, the attention heads were fused by taking the mean (as done in
[11]) and the discard ratio of 0.9 is chosen, to focus on the highest attention values. The
following table gives an overview of the experimental setups used:

Experiment CNN λk ViT λk P. RDE λk iter. b. size optimizer lr init. mask
Reprod. 20 N/A 4 2000 64 Adam [13] 10−3 ones
Agnost. 20 10 N/A 2000 64 Adam 10−3 ones
Runtime 20 N/A N/A 2000 64 Adam 10−3 various

Table 1. Overview of hyperparameter settings used in our experiments.

3.6 Computational requirements
Obtaining a singular explanation with the Mobilenet‐based CartoonX and Pixel RDE ap‐
proaches required 96 and 75 seconds on anNVIDIATitanRTX, respectively. This equates
to a total GPU walltime of 28.5 hours to obtain all quantitative and qualitative results
of 100 images with six different λk. This is proportional to the reported times in [1].
Furthermore, the creation of all relevant explanations for the model agnosticism exper‐
iment requires 272 seconds per image. Thus, for this whole experiment, 7.5 hours of
runtime were used. Finally, to test various mask initializations, 2.3 hours were used.
The overall GPU utilization during this study amounted to approximately 38.4 hours.

4 Results and Discussion

Weperformed a qualitative and quantitative analysis of the results of CartoonX and com‐
pared them to Pixel RDE. Furthermore, CartoonX’s performance on ViTs was evaluated
and the results were compared to the corresponding attention masks. Lastly, different
initialization strategies for the deletion mask, including a preoptimization algorithm
intended to improve the runtime of CartoonX, were examined.

4.1 Results reproducing original paper

Qualitative Reproducibility Experiment — The original authors claimed that CartoonX ex‐
tracts relevant piece‐wise smooth parts of the image, resulting in more intuitive expla‐
nations. In Fig. 1 we present a selection of explanation comparisons between CartoonX
and Pixel RDE. Pixel RDE produces pixel‐sparse explanations. Conversely, CartoonX
introduces sparsity in the wavelet domain, blurring out irrelevant areas of the image.
These characteristics are what the notion of piece‐wise smooth areas refers to.
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Figure 1. Examples of images where CartoonX produces subjectively better explanations (left) and
examples of images where Pixel RDE produces subjectively better explanations (right).

Figure 2. Examples of misclassifications where CartoonX provides a useful explanation for further
investigation (left) and where CartoonX fails at providing a useful explanation (right).

Fig. 1 highlights selected samples where either CartoonX outperforms Pixel RDE (left)
or vice‐versa (right). Here, outperform refers to the subjective, qualitative evaluation of
the results. In the left images, the explanations provided by Pixel RDE are sparse and
hard to interpret. Sometimes irrelevant parts of the background have also beenmarked.
CartoonX conserves the shape and, to some degree, the texture of the relevant parts of
the image. In the right images, all objects themselves are identified as the principal
explanations by Pixel RDE. CartoonX also considers the people using these things and
part of the background as an explanation. Nonetheless, overall it was much easier to
find examples of CartoonX outperforming Pixel RDE than the other way around. Even
in the latter case, CartoonX still provides predominantly reasonable explanations.
Fig. 2 shows instances where the model fails and CartoonX either indicates potential
reasons (left) or fails to deliver an interpretable explanation (right). The left images show
how the outlines of the objects resemble objects of other classes, giving engineers a
chance to adapt their models. Pixel RDE cannot produce this explanation. In the right
images, neither method provides a useful explanation.

Quantitative Reproducibility Experiment — The original authors claimed that CartoonX
achieves lower distortion in the model output while using fewer coefficients than other
state‐of‐the‐artmethods. Fig. 3 shows three qualitative evaluations of CartoonX vs. Pixel
RDE. The left‐most plot depicts the rate‐distortion curvewhen keeping themost relevant
coefficients while randomizing the others. The relevance corresponds to the associated
mask value. A good explanation yields a steep decrease in the distortion for low rates, as
few coefficients are necessary to classify the image consistently. The middle plot shows
the rate‐distortion curve when randomizing the most relevant coefficients while keep‐
ing the others. A good explanation induces a sharp initial increase. The right‐most plot
shows the distortion as a function of the sparsity‐enforcing hyperparameter λk. A suit‐
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Figure 3. Distortion as a function of relevant components (left, middle), identified by the explain‐
ability method. Distortion as a function of the sparsity settings (right).

able explanation constitutes a compromise between low distortion and high sparsity.
Across all subexperiments, CartoonX matches or outperforms Pixel RDE.
The exact results diverge in three slight ways from Fig. 7 in the original paper. First, the
steep decrease for low rates of non‐randomized components for CartoonX andPixel RDE
(solid lines, left plot) differs from the original figure in terms of magnitude (it drops to
0.25 in ours vs. 0.45 in [1]). Even though the drop is steeper in our reproduction, the gen‐
eral result stays the same. They indicate that the most relevant components are equally
important for CartoonX and Pixel RDE initially. Second, we observe a slight increase
of distortion for both methods after the initial drop, whereas in the original paper the
distortion dropped more continuously. Since we mostly care about the relative initial
drop, we still confirm the conclusion that CartoonX is superior according to this metric.
Third, the obtained non‐sparsity values when varying λk (dashed lines, right plot) are
significantly lower, despite the curves’ general shape being similar. Notwithstanding,
our results are in line with the claims made by the original authors, as the non‐sparsity
value values for Pixel RDE (red) are always higher than for CartoonX (blue).

4.2 Results beyond original paper

Model Agnosticism Experiment —We examine the claim that CartoonX is model‐agnostic
by running CartoonX on a ViT. Fig. 4 shows four resulting sample explanations, qual‐
itatively comparing the original image, CartoonX for CNN, CartoonX for ViT, and the
attention rollout. For a fair comparison, only the cases where the CNN and the ViT
predicted the same and the correct class were considered. On the left side in Fig. 4,
two examples are shown where both CartoonX for CNN and CartoonX for ViT provide a
helpful explanation. Moreover, for both images, this coincides approximately with the
attention rollout. On the right side in Fig. 4, two examples are shown where CartoonX
for ViT provides a very sparse, almost completely black, explanation while CartoonX for
CNN does not. For both images, the attention rollout is not sparse and mainly marks
the upper background of the image as having high attention values, also not providing
an interpretable reason for the models’ decision.
In Fig. 5, both curves for CartoonX (with CNN and ViT) follow a similar shape. The dis‐
tortion achieved with the ViT drops sharply when randomizing all but themost relevant
components (left) and increases sharply when randomizing the most relevant compo‐
nents (right). This is in accordance with the findings for CartoonX on CNNs.
Overall, when regarding the results of all 100 images, themajority of ViT CartoonX expla‐
nations are sparser and more sensitive to the choice of λk compared to their CNN coun‐
terparts. Furthermore, in Fig. 5, both a sharper initial drop (left) and increase (right) can
be observed for the CNN compared to the ViT, indicatingmarginally worse performance
for ViTs. While the CNN‐based explanations are marginally superior, the correct iden‐
tification of relevant components in the ViT case is still apparent. Hence, our findings
mostly support the claim of model agnosticism.

Runtime Efficiency Experiment — The original authors proposed using neural networks to
predict an initialization for the deletionmask to speed up their algorithm’s runtime. We
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Figure 4. Caseswhere CartoonX provides a useful explanation for both CNN andViT (left) and cases
where CartoonX (ViT) and the attention rollout do not provide an intelligible explanation of the
model’s decision (right).
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investigated whether simple heuristics could already produce a good initialization suit‐
able for that purpose.
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Figure 6. Comparing the loss curves of the CartoonX optimization algorithmwith different deletion
mask initializations for two different images.

Fig. 6 shows the loss curves for different initialization strategies for two sample images.
While the preoptimized mask leads to faster initial convergence, the loss curve flattens
quickly. Before qualitatively good convergence, the preoptimization and normal initial‐
ization curves reunite again. It is important to note that the slight differences in loss
after around 1000 iterations make a notable difference in the explanation’s quality. The
foreground segmentation did not yield beneficial results due to the final loss being too
high compared to other methods. Lastly, random initialization was tested, which led to
unrobust results.
These outcomes indicate that more complex approaches might be required to obtain
the desired speedup. Such an approach could be to utilize neural networks to predict
the initial deletion mask. Furthermore, our results suggest that these networks must
act risk averse, i.e., using a less sparse mask rather than blocking out many wavelet
coefficients. The reason for that is that unrobust results were observed for any mask,
which was already made too sparse at initialization.

4.3 Critique of our methods
For all experiments, a value for λkwas qualitatively, thus somewhat subjectively, chosen.
Being limited to running the experiments on a small subset of ImageNet, consisting
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of 100 random images from distinct classes, the samples were not entirely randomly
chosen (no duplicate classes were included). Nonetheless, this method ensures more
diversity, especially in the qualitative analysis. The lack of a decisive measure to define
convergence complicated the determination of a suitable number of training iterations.
Furthermore, it led to a rather vague interpretation of what can be considered a speedup
of the algorithm. Lastly, it should be noted that the attentionmask, used for comparison
in the ViT experiment, is not explicitly designed to serve as an explanation [14].

5 Reproducibility review

5.1 What was easy
The original paper had an extensive explanation of the background of CartoonX, both
mathematically and intuitively. Moreover, they provided an article on wavelets5 for ex‐
plainability, making it easier to understand. The provided implementation was well‐
documented and ran trouble‐free. Therefore, the qualitative experiments were easy to
replicate, by merely executing the code on different images and analyzing the results.
Furthermore, it was straightforward to extend their code, as it was well‐modularized.

5.2 What was difficult
Recreating Fig. 3 was difficult due to uncertainties of which hyperparameters (λk, num‐
ber of iterations) ormodelswere used. Furthermore, since there is no convergence crite‐
rion provided for CartoonX, it was difficult to get an intuition for the loss curves. Lastly,
the original paper did not specify the exact subset of ImageNet images. This necessi‐
tates a more general evaluation but hinders direct comparisons between the original
paper and ours.

5.3 Communication with original authors
We inquired about clarifications on the values used for λk for the qualitative analysis.
The authors reported that they used variant values for different images. Nonetheless,
only the same value for each imagewas used in this study to ensure consistency between
different images. We further enquired about the λk values used to recreate Fig. 7(a) and
(b) of the original paper. Unfortunately, confirmation regarding these values was not
provided. Overall, the authors were quick to respond and were open to answer most of
the questions as detailed as possible.

6 Conclusion

CartoonX is a valuable explanation method that yields piece‐wise smooth explanations.
We found this explanation style to bemore interpretable than pixel‐sparse explanations.
It works well for CNNs and, for the most part, also yields good explanations for ViTs.
Overall, it is a valuable addition to the ever‐growing set of explanationmethods available
to deep learning researchers, engineers, and users.
Future research could explore how to define a decisive measure of convergence for
CartoonX. Such a measure would help evaluate the effectiveness of smart initializa‐
tion strategies to improve runtime. Specifically, we see potential to investigate neural
networks for predicting initial deletion masks, as previously discussed and already sug‐
gested by the original authors. Lastly, considering a wider range of image‐specific λk
values, especially for the ViT, might improve the overall quality of the explanations.

5https://julheg.github.io/waveletexplainability/
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Figure 7. Ten examples of CartoonX with a ViT with λk = 2, 10, 200 are depicted in the two top,
middle and bottom rows, respectively. Overall, with λk = 20, most of the explanations are rela‐
tively sparse, with some explanations being completely black. With λk = 2 there are no entirely
black explanations. However, with this setting some explanations of images did not contain a lot
of sparsity, i.e. did not show a clear explanation. Utilising λk = 10 constituted a suitable trade‐off
between the explanations’ sparsity and their expressiveness for most images.
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