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Reproducibility Summary

Scope of Reproducibility — In this work, we study the reproducibility of the paper: Pre-Train
Your Loss: Easy Bayesian Transfer Learning with Informative Priors. The paper proposes a
three‐step pipeline for replacing standard transfer learningwith a pre‐trained prior. The
first step is training a prior, the second is re‐scaling of a prior, and the third is inference.
The authors claim that increasing the rank and the scaling factor improves performance
on the downstream task. They also argue that using Bayesian learning with informative
prior leads to a more data‐efficient and improved performance compared to standard
SGD transfer learning or using non‐informative prior. We reproduce the main claims
on one of the four data sets in the paper.

Methodology —We used a combination of the authors’ and our code. The authors pro‐
vided a training pipeline for the user but not the code to fully reproduce the paper. We
modified the training pipeline to suit our needs and created a testing pipeline to eval‐
uate the models. We reproduced the results for the Oxford‐102‐Flowers data set on an
Nvidia RTX 3070 GPU using approximately 310 GPU hours for the main results.

Results — Our results confirm most of the claims tested, although we could not achieve
the exact same accuracy due to missing hyper‐parameters. We reproduced the trend in
how scaling the prior impacts the performance and how a learned prior outperforms a
non‐learned prior. On contrary, we could not reproduce the effect of rank in low‐rank
covariance approximation onmodel performance, as well as the beneficial boost in per‐
formance of Bayesian learning compared to the standard SGD.

What was easy — The authors’ implementation provides various training and logging pa‐
rameters. It is also helpful that the authors provided both the learned priors and scripts
for the download, split and pre‐processing of the data sets used in the study.

What was difficult — Setting the environment for the used packages to work correctly was
difficult. Although many parameters are available for running the pipeline, their de‐
scriptions are misguiding, therefore a lot of time went into clarifying the parameter
function and debugging different settings. The training also took a while, especially
when training 5 models per data point.
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Communicationwith original authors —Wecontacted the authors via e‐mail about their pipeline
and their use of hyper‐parameters but did not hear back.

1 Introduction

Transfer learning is a popular approach in deep learning, allowing model parameters
from a trained model to be reused as an initialisation for a different task. This is espe‐
cially useful when we have little data or computing resources available. Bayesian infer‐
ence offers additional benefits with prior distributions encapsulating the uncertainty of
pre‐trained weights.
The authors suggest a pipeline for Bayesian transfer learning consisting of three steps:

1. Learning the prior on a source task.

2. Re‐scaling the learned prior to express uncertainty.

3. Using the prior with Bayesian inference on a downstream task.

To learn a prior, we fit a probability distribution to the parameters extracted from the
model trained on the source task, meaning we extricate the knowledge about the source
task and can then use it as an informative prior on the downstream tasks, which saves
us time and resources. The source and the downstream task have related yet different
data distributions; thus, it is important to re‐scale the prior. With such an approach, we
are less restrictive and explore a wider parameter space. Finally, we use the informative
prior with Bayesian inference to learn a posterior distribution of the model parameters
on the downstream task and draw samples to initialise the model. The authors state
their pipeline outperforms the standard transfer learning and is simple to apply due to
combining easy‐to‐use existing components.

2 Scope of reproducibility

The paper suggests the pipeline for Bayesian transfer learning consisting of three main
parts: (a) learning the prior, (b) re‐scaling the prior and (c) Bayesian inference. We
aimed to confirm the most important claim from each of those steps.
The first step is using a SWAG method [1] to construct a prior. We did not construct
a prior using SWAG, as this was done using a method from another article. However,
we used a pre‐trained prior made public by the authors. With regard to this step, the
authors claim that:

• Claim 1: by increasing the low‐rank component from zero, the model’s perfor‐
mance improves until it saturates at a relatively small number.

They back this claim by increasing the low‐rank component of the learned prior from
1 to 10 and comparing the model performance of the ResNet50 model on the CIFAR‐10
data set. We tested this claim on the Oxford‐102‐Flowers data set using the same model
and prior but only using the low‐rank span from zero to five as the authors provided
only a covariance matrix of rank five.
The second step is re‐scaling the prior with a variance and covariance scaling factor.
Based on the scaling factor value, the re‐scaling introduces the uncertainty in the prior;
the larger the factor, the more uncertain it is. The authors claim that to optimise per‐
formance; we need to make a prior more diffuse, thus increasing the scaling factor.

• Claim 2: using a non‐re‐scaled prior can provide a worse likelihood than using
Bayesian methods from scratch. Using a more diffused prior optimises perfor‐
mance to a certain point. Increasing a scaling factor further decreases the effect,
making the prior near‐uniform.
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They back this claim by comparing the performance of the ResNet50 model on the
CIFAR‐10 data set using different scaling factors on a logarithmic scale. We tested this
claim on the Oxford‐102‐Flowers data set using torchvision and SimCLR (self-supervised,
SSL) prior, provided by the authors.
The third step is Bayesian inference, which uses a learned and re‐scaled prior from the
previous steps. The authors claim that:

• Claim 3: modifying loss surface on a downstream task improves performance,

• Claim 4: Bayesian learning provides a particular performance boost with informa‐
tive priors,

• Claim 5: informative priors lead to more data‐efficient performance.

They back the claims by comparing the performance of different combinations of in‐
ference and priors on 4 different data sets with varying sizes. We chose the Oxford‐102‐
flowers data set and SimCLR prior to reproduce the results.

3 Methodology

The authors released PyTorch pre‐trained priors and the code for using priors for down‐
stream inference. However, the code itself is insufficient to reproduce the paper’s re‐
sults. We used the authors’ code as a framework for learning but implemented the eval‐
uation part ourselves. The code was hard to navigate due to ambiguous parameters and
a few hard‐to‐spot bugs.

3.1 Model descriptions
Replicated results are based on the ResNet50model architecture with 2.5M trainable pa‐
rameters. Throughout, we used SimCLR (self‐supervised) pre‐trained prior as our prior.
We only used torchvision prior for the comparison of the scaling effect. We use Stochas‐
tic Gradient Langevin Dynamics (SGLD) with Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC) for Bayesian inference and Stochastic Gradient Descent (SGD) for stan‐
dard learning.

3.2 Data sets

Oxford 102 Flower Data set — The authors provided a python script that downloaded the
data set and split it into train, test and validation sets based on the includedfiles. Through‐
out the study, we use the Oxford‐102‐Flowers data set [2]. The set consists of 8189 flower
images distributed into 102 classes, where each class has 10 training and 10 validation
images, while other images are used for testing. The data set can be downloaded from
https://s3.amazonaws.com/fast-ai-imageclas/oxford-102-flowers.tgz. Train, test and validation
sets contain all the classes and have 1020, 6149 and 1020 images, respectively. We used
the authors’ code for pre‐processing, specified by the data set’s authors.
The authors did not specify the procedure for downsampling the data set. We took one
image for each class for data sets of sizes 5, 10, 50 and 100 while sampling images uni‐
formly for larger data set sizes.

3.3 Hyper-parameters
The authors performed a hyper‐parameter search for models prior to training but did
not report them. We extracted most of the parameters used in the final model from the
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Hyper‐parameter batch size learning rate no. cycles weight decay

Value 16 0.01 4 10−4

Table 1. Hyper‐parameters used in training of models.

available code and set the rest to the middle value among the tested ones. The hyper‐
parameterswere the same for all trainedmodels except for the one that was being varied
in the experiment (rank and scaling factor).
When training models on data sets with 5 and 10 images, we adjusted the batch size to 5
and 10, respectively. The number of epochs varied based on the size of the data set and
the batch size.

3.4 Experimental setup and code
We modified and debugged the code from the authors. In every setting, we trained 5
models using the same parameters to evaluate the SE of the performance. This pro‐
cedure was the same as in the original paper. Models were trained for 30000 training
steps, resulting in 483 epochs for the full Oxford‐102‐Flowers data set. When training
on smaller data sets (5 and 10), we trainedmodels for up to 30000 epochs. The evaluation
criteria of performance for all models was accuracy.

The importance of rank in low-rank approximation —We used Bayesian learning to train the
model on the full training data set with re‐scaled prior. We re‐scaled the prior’s variance
and covariance matrix with a scaling factor of 105 and evaluated the performance of
models with their covariance rank from 1 through 5. For the rank 0 approximation, we
used a zero covariance matrix.

Re-scaling the prior —We trained the model with the rank of the covariance matrix set to
5 and 10 for SimCLR and torchvision priors, respectively. When scaling, we scaled both
the variance and the covariance matrix. We evaluated the performance of the models
with their scaling factor set from 100 through 109 by increasing the exponent by one.

Evaluating the performance —We trained 2 models using Bayesian learning and 2 models
using SGD. One Bayesian and one SGD model were trained using a learned prior with a
rank five covariancematrix and scaling factor of 109. The other twowere trained using a
non‐learned prior using a normal zero‐mean prior. The rank and the scaling of the prior
were not specified by the authors, but wemade an educated guess based on results from
the first two steps and the default parameters of the pipeline.

3.5 Computational requirements
We fine‐tuned the models using RTX 3070 GPU with 8Gb of memory. Training a model
on the Oxford‐102‐Flowers data set with batch size 16 took around 1 hour, thus taking
approximately 5 hours to reproduce one data point with the standard error. Training
on smaller data sets took up to 4 hours. The total GPU time to reproduce results was
approximately 310 hours (Table 2).

4 Results

We confirm the paper’s main claims by replicating some of the results; however, we
were not able to achieve the exact same accuracy. Firstly, the rank of a low‐rank com‐
ponent of the covariance matrix did not significantly affect the models’ performance
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Results Claims approx. GPU hours

Rank influence 1 30
Scale influence 2 80
Inference comparison 3,4,5 200

Total ∼ 310

Table 2. Approximate GPU hours to reproduce results of this paper.

when using the Oxford‐102‐Flowers data set and the ResNet50 architecture. Secondly,
scaling either of the learned priors with an increasingly larger scaling factor increased
themodels’ performance. Lastly, we observe that Bayesian learning with a learned prior
outperforms learning with a non‐learned prior. However, we could not reproduce the
result where the Bayesian model outperforms the standard SGD learning. Even though
we could not fully reproduce the paper’s results, we must acknowledge that some pa‐
rameters were not specified, and our parameter choices might differ. We report results
step‐wise following the three steps in the article.

4.1 The influence of low-dimensional rank on performance
The authors claim that (Claim 1): with an increasing low‐rank component from zero,
the model’s performance improves until it saturates at a relatively small number. They
argue that increasing the rank of a low‐rank component of a covariancematrix improves
performance. However, the performance should stagnate after increasing the rank to
some low value. They note that higher ranks add incrementally smaller corrections to
the approximation and mostly add noise.
We observe the performance of the ResNet50model with a learned SimCLR (SSL) prior to
varying low‐rank covariance approximations on the Oxford‐102‐Flowers data set (Figre).
We used the scaling factor of 105 for variance and covariance scaling.
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Figure 1. Model performance with varying ranks of a low‐rank covariance matrix.

Weobserve that changing the rank of low‐rank covariance approximation does not affect
performance on the Oxford‐102‐Flowers data set. The results indicate that either the
rank does not affect the performance or the scaling factor was too large for effect to be
visible. The authors did not specify the scaling factor used; thus, we cannot compare
the results fully.
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4.2 The influence of prior scaling on performance
The authors claim that (Claim 2): using a non‐re‐scaled prior can provide a worse likeli‐
hood than using Bayesianmethods from scratch. Using a more diffused prior optimises
performance to a certain point. Increasing a scaling factor further decreases the effect,
making the prior near‐uniform.
Weobserve the performance of theResNet50modelwith a pre‐trainedpriorwith varying
scaling factors on the Oxford‐102‐Flowers data set. We test the claim using torchvision
and SimCLR (SSL) pre‐learned prior. In experiments with varying scaling factors, a non‐
re‐scaled prior is represented as scaling the variance and covariance by 100 = 1. On
the other hand, a non‐informed prior is a pre‐trained prior multiplied by a large scaling
factor such as 109.
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Figure 2. Model performance with varying scaling factors.

We observe that both the torchvision and the SimCLR prior produce a reduction in test
error, thus increasing the performance. The decrease in test error using the SimCLR
prior is evident from scaling by a factor of 102 through 105. The decrease in test loss is
shifted towards higher scaling factors and spans from 104 through 108 using the torchvi-
sion prior. We note that these priors do not have the same rank with 5 and 10 for SimCLR
and torchvision, respectively. Interestingly, the model performance is also better when
using the torchvision prior.
We can confirm the first part of the authors’ claim that using a non‐re‐scaled prior will
negatively impact the performance compared to the re‐scaled one. However, increasing
the scaling factor towards the near‐uniform prior does not decrease the performance
compared to the prior multiplied by a smaller scaling factor.

4.3 Comparison of Bayesian and non-Bayesian learning
We observe the performance of the ResNet50 model with a combination of priors and
inference techniques on theOxford‐102‐Flowers data set. We use either Bayesian or SGD
learning with the learned SimCLR or a Gaussian zero‐mean prior.
We observe that models using the learned prior outperform models using non‐learned
prior. The increase in performance is mostly observed when training models on mod‐
erately sized data sets with only a few (if any) samples per target class. We also observe
both Bayesian learning and standard SGD learning perform similarly on all data set sizes,
with the SGD outperforming the Bayesian inference on larger data sets.
The authors claim that (Claim 3): modifying loss surface on a downstream task im‐
proves performance. We observe the same trend in model performance; thus, we can
confirm the claim for this data set. They also claim that (Claim 4): Bayesian learning
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Figure 3. Comparison of model performance based on a prior selection.

provides a particular performance boost with informative priors. The authors did not
specify whether they were comparing Bayesian learning to SGD or learning with a non‐
learned prior. In the former, we can only confirm the claim for using smaller versions
of the Oxford‐102‐Flowers, as with larger variations, the SGD performs equally or out‐
performs Bayesian learning. In the latter, we can fully confirm the claim as the perfor‐
mance increase is substantial, especially for moderately sized data sets. The last claim
is that (Claim 5): informative priors lead to more data‐efficient performance. We can
also confirm this claim, as we observe a larger difference between informative and non‐
informative model variants when the data set sizes are smaller.

5 Discussion

Our reproducibility report highlights the main claims of the paper. However, the repro‐
ducibility of the full paper was not achieved. There were a few unknown parameters re‐
garding the model training and hyper‐parameters for the models’ optimal performance.
Using the low‐rank approximation of the covariance matrix does not improve perfor‐
mance on the Oxford‐102‐Flowers data set. The lack of increasing performance when
using higher approximation ranks might be attributed to the prior or the task itself. We
can only claim that Claim 1 should not be generalised without a proper evaluation of
the task at hand.
Increasingly scaling a learned prior does have a beneficial effect onmodel performance;
thuswe can confirmClaim 2. However, we cannot claim that the increased performance
is due to added uncertainty or scaling prior to near‐uniform prior.
Finally, we can confirm Claims 3 and 5 about performance gains of Bayesian learning
and informative priors. Even though we did not reproduce the exact values, the trend
in overall performance among inference‐prior combinations is the same. We cannot
confirm Claim 4 about the performance boost of Bayesian learning because the SGD
model performs better on the large‐sized Oxford‐102‐Flowers data set.
There are many more experiments in this paper that we have not reproduced in this re‐
port. We would caution anyone who wishes to reproduce the results that the model per‐
formancewill varywithout an extensive and computationally demandinghyper‐parameter
search.
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5.1 What was easy
The article was very well written, and itsmain claimswere stated explicitly. The authors
provided the code for the training pipeline, which is a great learning of individual parts
of the proposed approach. Preparing the data and pre‐processingwere alsowell‐written,
and we could reuse those parts entirely.

5.2 What was difficult
We underestimated the computational time to reproduce the results, thus we would
discourage reproducing the results without access to a computing cluster. Navigating
through the code is fairly simple, but the lack of documentation requires more effort
to understand individual parts. A bunch of TO‐DO comments in the code reduce the
confidence in the code to function properly. Because the training cycles are long and
parameter testing is time‐consuming, wewould encourage thosewhowish to reproduce
the results, to take the authors’ code as a template and write the pipeline themselves.

5.3 Communication with original authors
We communicated with the authors via e‐mail but did not receive any reply. Thus we
would caution about generalising our results as we did not perform a greedy hyper‐
parameter search as did the authors.
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