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Reproducibility Summary

Scope of Reproducibility — This study is an analysis of the reproducibility of the paper Label-
Free Explainability for Unsupervised Models written by Jonathan Crabbe and Mihaela van
der Schaar. The goal of this study is to verify the three main claims of the paper, which
state that their new framework for label‐free explainability is capable of extending (i) lin‐
ear feature importance as well as (ii) example importance methods to the unsupervised
setting, whilst guaranteeing crucial properties, such as completeness and invariance
with respect to latent symmetries. Finally, they use their framework to (iii) challenge
some common beliefs about the interpretability of disentangled VAEs.

Methodology — The paper came with an extensive codebase containing all the necessary
scripts to replicate the experiments in the paper. When comparing latent representa‐
tions we also experimented with a different feature importance algorithm. Further‐
more, we extended an experiment with the addition of a state‐of‐the‐art encoder.

Results —We find that the three main claims of the paper hold true as we were able to
successfully reproduce each corresponding experiment. Our results differ in some mi‐
nor aspects, but they do support the validity of the three main claimsmade in the paper.
Furthermore, we also demonstrated that the framework proposed is expandable in new
contexts, thus providing further support for its utility and applicability.

What was easy — The authors provided a substantial and thorough explanation within
their appendix about the mathematical concepts of their work. Their repository was
also supplemented with rigorous documentation which gave an excellent explanation
of how to carry out various experiments.

What was difficult — Several experiments in the paper takemultiple hours to execute, with
one reproduction taking over 32 hours on the low‐cost computational setup used. More‐
over, a few setup bugs were found, which meant that reproducing the experiments was
a more strenuous task than simply executing a series of command‐line statements.

Communication with original authors —We initiated communicationwith the authors and in‐
quired about specific experimental decisions made in their work. The authors provided
a comprehensive response via email, addressing all questions raised.

Copyright © 2023 E.R. Langezaal et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Eric Robin Langezaal (eric.langezaal@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/EricLangezaal/Re-Label-Free-XAI – DOI https://doi.org/10.5281/zenodo.7885638. – SWH
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[Re] Label-Free Explainability for Unsupervised Models

1 Introduction

Contemporarymachine learningmodels are notorious for not being transparent in their
decision‐making. These models are often referred to as black‐boxes within the research
literature [1, 2]. In high‐pressure environments where the risk of serious complications
is continually present, the opaqueness of these models actively impedes their usage be‐
cause their bias can lead to unfair and even dangerous affairs [3, 4]. The lack of in‐
terpretability of deep models attracted scores of researchers to the field of explainable
artificial intelligence (XAI) [5, 6, 7].
A fundamental methodology applied within XAI is post-hoc explainability. This collec‐
tion of methods offers insight into complex model decisions in terms of interpretability
and explainability. This study concentrates on two specific varieties of post‐hoc explain‐
ability: feature importance and example importance. Feature importance highlights which
features the black‐box model attends to in order to make its decision. Example impor‐
tance examines which samples from the training process influence the decision‐making
on newly observed test examples.
The majority of post‐hoc explainability research has been performed in a supervised
learning setting. Supervised learning exclusively concerns data where there is an ex‐
plicit relationship between the input space X and the label space Y; the model in ques‐
tion attempts to document the correspondence between these two spaces such that
f : X 7→ Y. There have been a broad number of studies that have focused on uncov‐
ering the black‐box in a supervised setting [8, 9], especially in the medical field [10, 11].
However, analysis of black boxes in an unsupervised setting has remained largely unex‐
plored. In an unsupervised setting, the model under examinationmaps the input space
X to a hidden representation or latent spaceH, such that f : X 7→ H.
In their paper, Crabbé and Schaar[12] propose several adjustments to supervised explain‐
ability methods to conduct an analysis of explainability in the realm of unsupervised
models. This study is a review and reproduction of their research while also implement‐
ing a few new features. Their work can be dissected into a few key claims which will
be discussed in the following section together with the scope of reproducibility of their
research. Thereafter follows a section in which the methodology of the execution of the
experiments will be explored. This is followed by a results section which is accompa‐
nied by an interpretation of the outcomes. Lastly, a discussion section will reflect upon
the reproducibility, the approach taken in this study and possible future endeavours.

2 Scope of reproducibility

In their work, Crabbé and Schaar propose several extensions to transfer already exist‐
ing feature and example importance methods from the supervised to the unsupervised
domain. Making use of their newly proposed label‐free explainability methods, they
challenge the interpretability of disentangled representations. In this study we focus
on the reproducibility of their paper and aim to verify the following claims:

• Claim 1 ‐ Label‐free feature importance (LFI): The extension that allows comput‐
ing feature importance scores in the label‐free setting provides sensible scores and
consequently, selecting pixels with higher importance scores (according to the var‐
ious explainabilitymethods) to be perturbed yields significantly larger latent shifts
than perturbing random pixels.

• Claim 2 ‐ Label‐free example importance (LEI): The authors postulate two types of
example importance: loss‐based and representation based. The similarity rate is
calculated between the ground truth label of the examples and the label of the test
example. This respective similarity rate is higher for themost important examples
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compared to the least important examples, which indicates the effectiveness of the
label‐free example importance methods.

• Claim 3 ‐ Interpretability of disentangledVAEs (IDV): The saliencymaps of individ‐
ual latent units in disentangled VAEs cannot be meaningfully interpreted on their
own. The authors show that increasing the disentanglement in the VAE does not
decrease the correlation between the saliency maps of different latent units. This
is quantified by a study of the Pearson correlation coefficient between the saliency
maps of different latent units.

3 Methodology

The authors provided an open‐source implementation of their experiments on GitHub 1.
The repository is well‐structured and contains a comprehensive README file, which ex‐
plains the installation process for all necessary packages, as well as the steps required to
run the scripts and reproduce the results reported in the paper. Aside from a fewminor
technical adjustments, namely the rectification of an import error and the correction
of the order of two function arguments, the code supplied by the authors functioned as
intended. As a result, we were able to generate an output for every experiment that the
authors described in their research paper.

3.1 Model descriptions
For the consistency checks of the label‐free proposed feature and example importance
methods, three different models are fit on three different datasets. The hardware is
described in Appendix E and the datasets are described in Appendix B. A denoising au‐
toencoder CNN is fit on theMNIST dataset [13], an LSTM reconstruction autoencoder on
the ECG5000 time series dataset [14] and a SimCLR [15] neural network with a ResNet‐18
[16] backbone on the CIFAR‐10 dataset [17]. We extract an encoder, denoted by f e, from
each model for interpretation of their respective latent spaces.
For the analysis of the disentangled VAEs, a β‐VAE [18] and a TC‐VAE [19] are set up and
trained on the MNIST and dSprites [20] datasets. The number of latent units (dH ) used
is 6 for MNIST and 3 for dSprites. For both VAEs, 5 models are trained for each β ∈
{1, 5, 10}. This results in 6 different VAE configurations, with 30 models being trained
in total.

3.2 Hyperparameters
The pre‐established hyperparameter settings from the source code and corresponding
paper were used in our experimentation. However, the paper indicated that 20 runs of
each VAE configuration were conducted, while the codebase only incorporated 5 runs.
For the reproducibility study, we opted for 5 runs due to time constraints, see Table 3 in
Appendix E.

3.3 Experimental setup and code
The experiments outlined in the original paper are briefly discussed in this section. Sub‐
sequently, supplementary experiments to their study are explained. For a thorough
comprehension of the used mathematical notation we refer the reader to Appendix A.

1Code published on GitHub at https://https://github.com/vanderschaarlab/Label‐Free‐XAI
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Consistency checks — In the first experiment, consistency checks are conducted to ascer‐
tain the validity of the proposed example and feature importance methods for unsuper‐
vised models. To evaluate the feature importance explanations and verify the LFI claim,
we compute for each image x the label‐free feature importance score bi(f e, x), making
use of the existing feature importancemethods Gradient Shap [21], Integrated Gradients
[22] and Saliency [23]. The top M features, as determined by these scores, are masked
using a mask m ∈ {0, 1}dX , where dX is the dimensionality of the input space. The la‐
tent shift resulting from replacing these most important features with a baseline value,
represented as x̄, is subsequently measured as follows: ||f e(x)− f e(m�x+(1−m)� x̄)||.
The baselines used for different models can be found in Appendix C. The average shift
across the entire test set is reported for various values of M and different feature impor‐
tance methods. If the LFI claim is valid, we expect the latent shift to be higher when
more important features are masked.
To evaluate the example importancemethods and verify the LEI claim, a thousand train‐
ing examples are sampled. For each training example the label‐free example impor‐
tance score cn(f e, x) is computed using several loss‐based (Influence Functions [24] and
TracIn [25]) and representation‐based (Deep‐KNN [26] and SimplEx [27]) example impor‐
tance methods (the definition of these methods can be found in Appendices A.2 and
A.3). To verify the saliency of high‐scoring examples, the M most important examples
(xn1 , .., xnM ) are selected and their ground truth labels (yn1 , .., ynM ) are compared to
the label y of the to be explained test image x. Subsequently, the similarity rates are
computed: 1

M

∑M
m=1 δy,ynm , where δ is the Kronecker delta. The same experiment is

conducted for the M least important examples. The distribution of the similarity rates
across a thousand test examples is computed for various values of M . If the LEI claim
holds, the similarity between themost important examples is expected to be higher than
for the least important examples.

Comparing representations from different pretext tasks — To test the efficacy of the feature and
example importance scores, Crabbé and Schaar introduce a specific use case. Neural
models, in this particular case the autoencoder, can be adapted to be suitable for dif‐
ferent pretext tasks on the MNIST dataset. The aim of this experiment is to establish
how the latent representations from different pretext tasks compare to each other. The
denoising autoencoder is used as described in Section 3.1. Furthermore, two additional
pretext tasks with their autoencoders are considered: reconstruction and inpainting
[28]. Lastly, a classifier is trained that includes the same layers as the encoder, as well
as an additional linear layer with an input dimension of 4 and an output dimension
of 10, which uses a Softmax activation function to transform the latent representations
into class probabilities. The hidden representations of the classifier are extracted from
the penultimate layer. For each encoder f e, the label‐free Gradient Shap feature im‐
portance method (introduced in the consistency checks paragraph) is used to extract
saliency maps from the feature importance scores bi(f e, x) for the test images. For the
comparison of the saliencymaps produced by the differentmodels, the average Pearson
correlation coefficient [29] is computed across 5 runs.
We use the label‐free Deep‐KNN example importance method (introduced in the con‐
sistency checks paragraph) to compute the example importance cn(f e, x) of a thousand
training examples for a thousand test images. Again, the average Pearson coefficient
across 5 runs is used to compare the example importance scores created by the differ‐
ent encoders.
Besides the quantitative experiments above, qualitative experiments were conducted in
the original paper. The top examples of the various encoders for a particular test image
are displayed alongside its saliency maps to convey the qualitative differences between
the autoencoders.
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Extensions of the pretext use case — In the results part of Section 4.1, Crabbé and Schaar
state that ‘Label‐free Integrated Gradients outperform other methods for each model’,
which is also confirmed in Figure 1. Yet in the pretext task experiment described above,
Gradient Shap is used, which the authorsmotivate by its better computational efficiency.
However, in our experience the Integrated Gradients feature importance method actu‐
ally required less computational time compared to Gradient Shap (Table 3 in Appendix
E). Since the former distinctly outperforms the latter (Figure 1), we opted to therefore
also repeat the pretext experiment from Section 4.2 of the original paper with the Inte‐
grated Gradients feature importance method.
Furthermore, in their discussion section the authors propose that the analysis of the
label‐free feature and example based importance scores can be extended in several ways.
One of the suggested methods is the addition of state‐of‐the‐art (SOTA) autoencoders
which can be utilised in comparison with the other pretext models. Examining the la‐
tent representation of a SOTA autoencoder in relation to the hidden representations of
other autoencoders might yield interesting results. We opted for experimenting with
the Stacked Capsule Autoencoder [30] (SCAE), which is detailed in Appendix D.1.

Disentangled VAEs — In the original paper the interpretability of the latent units in disen‐
tangled VAEs is analysed using their saliency maps generated by a feature importance
method. These units are exclusively sensitive to a single data generative factor, allowing
for interpretable meanings. The aim of their experiments is to determine whether it is
possible to identify the associated generative factor of each latent unit by analysing their
generated saliency maps. To answer this question and verify the IDV claim, qualitative
and quantitative experiments have been set up.
The VAE models as described in Section 3.1 are evaluated with Gradient Shap to get an
importance score ai(µj , x) for each pixel xi from an image x to predict the latent units
µj ∈ [dH ]. For a quantitative result, the Pearson correlation between the saliency maps
of different latent pairs is averaged over 5 runs. A low Pearson correlation indicates
that the latent units attend to different parts of the image. Therefore, we pick the VAE
configuration with the lowest average correlation for both datasets. For these selected
VAEs, the saliency maps are shown for 2 test images on which we can perform a qualita‐
tive analysis. Lastly, the influence of β (which regulates the degree of disentanglement
in the VAEs) on the Pearson correlation between the different latent units is evaluated
by making boxplots of the correlations for various β values. If the IDV claim holds, the
Pearson correlation should not necessarily decrease as β increases.

4 Results

4.1 Results reproducing original paper
The following section will enumerate the obtained results from reproducing the exper‐
iments done by Crabbé and Schaar. The results received from the additional experi‐
ments will be displayed subsequently. Each subsection will examine the original claim
presented by the authors and show our obtained results.

Label-Free Feature Importance — The results of this experiment are presented in Figure 1,
which illustrates that our LFI consistency checks for the MNIST and ECG5000 datasets
are consistent with those of the original study. However, upon conducting LFI consis‐
tency checks for the CIFAR10 dataset, a deviation in trend was observed for all four
feature importance methods, with a side‐by‐side comparison being depicted in Figure 6
in Appendix F.1. Nevertheless, the phenomenon where Integrated Gradients and Gradi‐
ent Shap outperform the randombaseline is similar to what was observed in the original
paper, albeit with a different curve shape.
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(a)MNIST (b) ECG5000 (c) CIFAR10

Figure 1. Consistency check for label‐free feature importance (average and 95% confidence inter‐
val).

Label-Free Example Importance — Figure 2 showcases the results of this reproducibility ex‐
periment, which demonstrates that the LEI consistency checks for both the MNIST and
ECG5000 dataset are consistent with those of the original study. However, similar to the
observations made in the reproducibility experiment of LFI, the LEI consistency checks
for the CIFAR10 dataset in our study deviate from the trend that was observed for the
LEI consistency checks for the CIFAR10 dataset in the original paper. The main differ‐
ence is the scale of the y‐axis, the similarity rate, which is greater in our experiment, as
illustrated side‐by‐side in Figure 7 in Appendix F.2.

(a)MNIST (b) ECG5000 (c) CIFAR10

Figure 2. Consistency check for label‐free example importance (only representation‐based meth‐
ods apply to SimCLR).

Pretext use case comparison — Table 1 contains information from two distinct experiments,
namely the reproduction of the Pearson correlations displayed in the original paper ac‐
quired using Gradient Shap feature importance and our extension of applying the Inte‐
grated Gradients method, which will be discussed together with our addition of SCAE
in Section 4.2.

Int. Grad.
Grad. Shap

Recon. Denois. Inpaint. Classif. SCAE

Reconstruction .40± .01 .33± .03 .45± .01 .39± .01

Denoising .47± .06 .30± .02 .39± .02 .37± .03

Inpainting .45± .07 .43± .05 .32± .01 .41± .03

Classification .42± .01 .38± .04 .35± .03 .43± .02

SCAE .35± .01 .37± .03 .42± .02 .42± .01

Table 1. Pearson correlation for saliency maps (avg +/‐ std) for feature importance methods Gradi‐
ent Shap (Reconstruction) and Integrated Gradients.

Table 2 contains Pearson correlations for the Deep‐KNN example importance method,
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which just like the Gradient Shap results fromTable 1 are consistent with the correlation
scores reported in the original study.

Reconstruction Denoising Inpainting Classification SCAE
Reconstruction
Denoising .12± .06
Inpainting .15± .06 .17± .09
Classification .08± .03 .07± .03 .08± .04
SCAE .08± .02 .10± .03 .10± .02 .05± .01

Table 2. Reproduced Pearson correlation (avg +/‐ std) for the Deep‐KNN example importance
method.

The reproducibility results for the qualitative analysis of the label‐free explainability
framework are presented in Figure 3 and are coherent with the results of the original
study. Specifically for feature importance, the saliency maps for different pretext tasks
vary heavily, which is consistent with the original study. Furthermore, the top examples
are rarely similar, as is also suggested by the quantitative analysis done by Crabbé and
Schaar.

(a) Top Examples (b) Saliency Maps

Figure 3. Label‐Free explanations for varying pretext tasks.

Disentangled VAEs — To qualitatively comment on the saliency maps of different latent
units, we pick the combination of VAE type and corresponding β value that lead to the
lowest average Pearson correlation to display. Differently from the original study, the
lowest correlation (Appendix F.3) was achieved by a TC‐VAE with β = 10 for MNIST, and
a β‐VAE with β = 5 for the dSprites dataset.

(a)MNIST (TC‐VAE, β = 10) (b) dSprites (β‐VAE, β = 5)

Figure 4. Saliency maps of the models with lowest Pearson Correlation.

Figure 4 displays the feature importance per latent unit for two different images for both
datasets, using the VAE configurations above. We observe that it is difficult to meaning‐
fully interpret the saliency maps for a given latent unit. Looking at the MNIST results,
latent unit 3 has moderate to strong feature activation for the first test image while hav‐
ing no feature activation for the second image; nevertheless, both images represent the
same digit. Moreover, feature activation does not appear to be region bound for each
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latent unit. The second test image in the dSprites case shows similar feature activation
for different latent units. Therefore, we cannot reach a conclusion about the activation
of a latent unit with regard to certain features being present in an image based on these
saliency maps, which supports the IDV claim.
The boxplots in Figure 5 display an increase of correlation between the saliency maps
of latent units as β grows. Only the TC‐VAE for the MNIST dataset does not exhibit this
trend. This refutes the concept that increasing disentanglement leads to less correlation
between the latent units of a disentangled VAE.However, it is significant tomention that
the boxplots in Figure 5 are fairly different than the boxplots produced by Crabbé and
Schaar. Combined with the large margins of uncertainty of each box, it can be argued
that drawing a specific conclusion from these plots might be unproductive.

(a)MNIST (b) dSprites

Figure 5. Pearson Correlation for the saliency maps of differing values of β.

4.2 Results beyond original paper

Integrated Gradients — Our results for feature importance using Integrated Gradients are
compared to the results of the original paper, which uses Gradient Shap. These findings
are presented in Table 1, which shows an average Pearson correlation for Integrated
Gradients and Gradient Shap of 0.406 and 0.379 respectively. Combining this with the
lower computational cost for Integrated Gradients (see Table 3 in Appendix E) would
suggest that Integrated Gradients is a better feature importance method.

Addition of SCAE — It becomes apparent from Table 1 that the important features denoted
by the SCAE correlate relatively weakly to the important features produced by recon‐
struction and denoising. This might possibly be due to the fact that the pretext tasks
of reconstruction and denoising are significantly different from the task of the SCAE.
We can observe that the SCAE correlates better with inpainting. Moreover, we can no‐
tice that Table 2 displays a weak correlation between the chosen training examples by
the SCAE and the training examples of all other models. Lastly, the saliency maps dis‐
played in Figure 3b show that the SCAE’s highlighted features significantly vary from
the important features of the other pretext tasks.

5 Discussion

Firstly, the reproduced results in Figure 1 and Table 1 support the LFI claim. Using the
label‐free feature importance framework proposed by Crabbé and Schaar, the three dif‐
ferentmethods significantly outperform the random baseline in the consistency checks.
However, some deviations from the results of the original study were found for the
CIFAR‐10 dataset with the SimCLR model. This different curve shape is most likely
caused by small differences in the SimCLR model, according to the original authors.
Nonetheless, the conclusions that can be drawn from either figure remain the same.
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The consistency checks indicated that the label‐free feature framework performs best
on the Integrated Gradients method, for both the reproduced and original results.
Secondly, the experimental results of this paper support the LEI claim; the results for
the consistency checks for the label‐free example importance methods align with the
results of the original paper.
Moreover, the results in this paper also substantiate the IDV claim since the Pearson
correlation between latent units does not decrease as the disentanglement parameter β
is increased. Thus we can conclude that more disentanglement does not cause deterio‐
ration of the similarity between the saliency maps of varying latent units.
Lastly, the addition of the SCAE autoencoder in this paper demonstrates that the pro‐
vided label‐free framework also works on other autoencoders, which further strength‐
ens the LFI and LEI claims. Further dissection of the results specific to the SCAEmodel
can be found in Appendix D.2.

5.1 What was easy
The codebase provided by the authors was extensive and easy to execute with a com‐
mand line interface. Moreover, the paper itself had a large appendix in which the au‐
thors explained the mathematics behind their label‐free feature and example impor‐
tance methods in considerable detail. This appendix also contained additional results
of the experiments whichmade for a seamless comparison with our reproduction of the
research.

5.2 What was difficult
Even though the source codewas vast and thoroughly documented, we encountered sev‐
eral software‐breaking bugs which needed to be resolved before reproduction was pos‐
sible. The errors ranged from simply recovering a missing import to improper function
arguments for example importance methods such as DKNN. Furthermore, the mathe‐
matics behind both Gradient Shap and TracIn required a solid understanding of fairly
complicated multivariate calculus and statistics.

5.3 Communication with original authors
Contact with the original authors of the paper was established through email. We have
posed a series of questions regarding the reproducibility of the original results. First of
all, the LFI results reproduced for CIFAR‐10 in Figure 1c differed from the paper to an
extent where only Integrated Gradients truly matched. The response was that SimCLR’s
weight initialisationmight have differed in both studies and therefore created a different
baseline for the results. Furthermore, we noticed the authors applied Gradient Shap to
the pretext use case, regardless of the fact that Integrated Gradients displayed better
performance in the consistency checks. The authors utilised Gradient Shap because
they stated the method is less computationally expensive than Integrated Gradients. In
our reproduction however, we observed the converse to be the case (see Appendix E
Table 3). Finally, the obtained boxplots for the IDV claim differed significantly. The
authors mentioned that VAEs are extremely unstable and difficult to seed, thus giving a
high likelihood of dissimilarity between runs.
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A Mathematical definitions

The following definitions are directly quoted from the original paper [12].

A.1 Definition 1 (Label-Free Feature Importance)

Let f : X → H be a black‐box latent map and for all i ∈ [dX ] let ai(·, ·) : A(RX )×X → R
be a feature importance score linear w.r.t. its first argument. We define the label‐free
feature importance as a score bi(·, ·) : A(HX )×X → R:

bi(f , x) ≡ ai(gx, x)

gx : X → R such that for all x̃ ∈ X :

gx(x̃) = 〈f (x), f (x̃)〉H,

where〈·, ·〉H denotes an inner product for the spaceH.

A.2 Definition 2 (Label-Free loss-based example importance)
Let fθr : X → H be a black‐box latent map trained to minimize a loss L : X × Θ → R
on a training set Dtrain = {xn|n ∈ [N]} (N is the length of the training set). To measure
the impact of removing example xn from Dtrain with n ∈ [N], we define the Label-Free
loss-based example importance as a score cn(·, ·) : A(HX )×X → R such that:

cn(f θr , x) = δnθrL(x, θ∗). (1)

Where δnθrL(x, θ∗) is an estimation of the loss shift that can be evaluated by using the
Influence Functions method[24] or the TracIn method [25].

A.3 Definition 3 (Label-Free representation-based example importance)
Besides the loss based‐example importancemethods, representation‐based example im‐
portance methods are used to attribute an importance score to examples.

To quantify the affinity between x and the training set examples, we attempt a recon‐
struction of f e(x) with training representations from f e(Dtrain): f e(x) ≈

∑N
n=1 wn(x) ·

f e(xn). Thefirst approach [26] to defineweightswn(x) is to identify the indicesKNN(x) ⊂
[N ] of the K nearest neighbours (DKNN) of f e(x) in f e(Dtrain) and weigh them accord‐
ing to a Kernel function κ : H2 → R+:

wn(x) = 1[n ∈ KNN(x)] · κ[f e(xn), f e(x)], (2)

Where 1 denotes the indicator function.
A second method (SimplEx) to learn the weights [27] is by solving:

w(x) = argminλ∈[0,1]N

∥∥∥∥∥f e(x)−
N∑

n=1

λnf e(x
n)

∥∥∥∥∥
H

, (3)

where
∑N

n=1 λ
n = 1. For the Label‐Free setting, we can take cn = wn without any

additional work and thus compute the Label‐Free example importance score this way.
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B Datasets

Three different datasets are used for the quantitative and qualitative experiments regard‐
ing label‐free feature and example importance. An additional fourth dataset is used for
the study on disentangled VAEs. The datasets will be briefly discussed below.

MNIST — The MNIST dataset is a commonly used dataset for image classification tasks.
It comprises 60,000 training and 10,000 test images of handwritten digits in the range
0‐9, each with corresponding labels. All images are in grayscale and have a size of 28x28
pixels. We corrupt each training image with random noise ϵ ∼ N (0, 1

3 I) where I is the
identity matrix.

ECG5000 — This dataset contains 5000 univariate time series, each describing the heart‐
beat of a patient. Each time series comes with a binary label indicating whether the
heartbeat is normal or not.

CIFAR-10 — A dataset consisting of 60,000 32x32 color images in 10 classes, with 6,000
images per class. There are 50,000 training images and 10,000 test images. The 10 classes
are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

dSprites — The dSprites dataset, which is commonly used to assess the disentanglement
properties of unsupervised models, consists of 2D shapes that are procedurally gener‐
ated from 6 ground truth independent latent factors: color, shape, scale, rotation and x
and y positions of a sprite. All possible combinations of the latent variable values add
to a total of 737.280 64x64 black and white images.

C Baselines latent shift

To compute the latent shift, several baselines x̃ are used for different models. As a base‐
line for determining feature importance in the MNIST dataset, a black image is used
represented by x̃ = 0. In the ECG5000 dataset, the average normal heartbeat is used as
the baseline represented by x̃ =

∑
x∈Dtrain

x
|Dtrain| . In the CIFAR‐10 dataset, a blurred

version of the image being explained is used as the baseline, represented by x̃ = Gσ ⊗x,
where Gσ is a Gaussian blur of kernel size 21 with width σ = 5 and ⊗ represents the
convolution operator.

D Stacked Capsule Autoencoder (SCAE)

D.1 SCAE setup
The Stacked Capsule Autoencoder [30] (SCAE) employs geometric relationships between
parts of objects to make a reasonable reconstruction while also estimating which object
parts are present within a given image. The SCAE comprises of two separate models,
the Part Capsule Autoencoder (PCAE ‐ regarded as the encoder) and the Object Capsule
Autoencoder (OCAE ‐ regarded as the decoder). The PCAE receives an input image y
and transforms it into anM number of capsules. Each capsulem contains a pose vector
xm which denotes spatial information about a part of the image, a presence probability
dm ∈ [0, 1] and a vector of special features zm. The special features are a distinguishable
attribute of that specific part of the image; in the paper, the authors simply use colour
as the special feature. Alongside colour, the special features zm for a particular capsule
also track the level of transparency of a given object to simulate occlusions. Each of

ReScience C 9.2 (#4) – Langezaal et al. 2023 13

https://rescience.github.io/


[Re] Label-Free Explainability for Unsupervised Models

these capsules is then applied to a template Tm to create a transformed template T̂m.
These templates are learned sets of parameters. The core concept is that the received
geometric information from the part capsules and the transformed templates are suffi‐
cient for the reconstruction of the image by the OCAE. Each capsule is only allowed for
a single usage, meaning that an image can be reconstructed as a weighted combination
ofM capsules containing geometrical information and a single template. The output of
the PCAE is therefore a capsule plus a flattened transformed template for each capsule
inM .
For this research, we flatten the capsules to create aZ dimensional latent representation
when computing the feature and example importance scores (not during initial training)
because the methods of importance attribution enforce this form of latent representa‐
tion. This essentially does not harm the information stored in the latent space, since the
Z dimensional latent space now just comprises ofM × (xm, dm, zm, T̂m) vectors stacked
on top of each other and we can still evaluate the latent shift accordingly.

D.2 SCAE discussion
Table 1 displayed that the SCAE has the strongestmeasure of correlationwith an inpaint‐
ing autoencoder. As mentioned in the previous subsection, the part capsules track the
level of transparency of the corresponding parts to inform the decoder about possible
occlusions. The main concept of inpainting is reconstructing parts of an image hidden
by specific occlusions. This might cause the models to more deeply correlate in their
hidden representation.
Furthermore, there is an overall weak correlation with the other pretext tasks for the
example importance case (shown in Table 2). The latent space of SCAE’s encoder is
specifically modelled towards a given structure. The hidden representation is dissected
in part capsules which all contain information about separate locations of the image
plus an additional template which it deforms with that same information. This strongly
distinct manner of organising the latent space might explain the low correlation of se‐
lected top examples to top examples of other models.
Lastly, the saliency maps of the SCAE (Figure 3b) vary substantially from the other mod‐
els’ saliency maps. This is more evidence that the task of the SCAE greatly differs from
the tasks presented in the original paper. The SCAE pays attention to alternative pix‐
els within the MNIST digits, presumably because it is attempting to obtain geometric
objects from the images rather than performing a more standard task such as recon‐
struction.
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E Computational requirements

All our experiments are run on a cluster whose nodes are equipped with Nvidia Titan
RTX GPUs. Running the reproducibility experiments comes at a total computational
cost of 68 GPU hours. Our own experiments, which make use of the model checkpoints,
come at a total computational cost of 4.5 GPU hours. A further breakdown of the com‐
putational costs is presented in Table 3.

Experiment type Experiment name Section Dataset Dataset specific GPU hours Total GPU hours

Reproducibility

Consistency features 4.1

MNIST 0.376

0.765ECG5000 0.033

CIFAR10 0.356

Consistency examples 4.1

MNIST 3.212

23.791ECG5000 20.567

CIFAR10 0.012

Use Case: representations

learned with different pretext

tasks

4.2 MNIST 3.550 3.550

Challenging our assumptions

with disentangled VAEs
4.3

MNIST 7.725
39.941

dSprites 32.216

Additional

experiments

Extension 1 of the pretext use

case: The Stacked Capsule

Autoencoder (SCAE)

‐ MNIST 1.106 1.106

Extension 2 of the pretext use

case: Integrated Gradients

instead of Gradient Shap for

feature attribution

‐ MNIST 3.386 3.386

Table 3. Overview of the computational cost, in terms of GPU hours, for each experiment.

F Reproducability differences

While reproducing the experiments from the original paper some differences were en‐
countered with respect to the original figures in the study. Since our main report only
details the results obtainedwhen replicating the experiment, this section also highlights
the original figures copied from the paper by Crabbé and Schaar.

F.1 Label-Free feature importance
While the three different feature importance methods and the random baseline showed
the same effect in representation shift on the MNIST and ECG5000 datasets as the origi‐
nal study, our results differed quite substantially on the CIFAR10 dataset. This different
curve shape is most likely caused by the difference in weight initialisation for the Sim‐
CLR model.
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(a) Result original paper (b) Reproducibility study result

Figure 6. Differences between the original paper and our reproducibility study for the consistency
check for label‐free feature importance on the CIFAR10 dataset (average and 95% confidence in‐
terval).

F.2 Label-Free example importance
While the shape of the original and reproduced sets of graphs in figure 7 match, the
similarity rates of our results are scaled up compared to the original study, in a very
consistent manner. Again, this deviation is most likely caused by a difference in weight
initialisation for the SimCLR model.

(a) Result original paper (b) Reproducibility study result

Figure 7. Differences between the original paper and our reproducibility study for the consistency
check for label‐free example importance on the CIFAR10 dataset (average and 95% confidence
interval). Notice the difference in scale for the similarity rate on the y‐axis.

F.3 Saliency correlations for different disentangled VAEs
In the final experiment of the paper, different combinations of two types of disentangled
VAEs and correspondingβ values are trained formultiple runs. For a qualitative analysis,
the authors state they showcase saliency maps for the configurations with the lowest
Pearson correlation coefficient, as that corresponds to latent units paying attention to
distinct parts of the images, which is desirable for disentanglement. It is reported that
this entails a β‐VAE with β = 10 for MNIST and a TC‐VAE with β = 1 for dSprites, but the
actual Pearson scores this decision is based on are not reported. In our reproduction
study however, the criterion of using the lowest Pearson score, averaged over 5 runs,
leads to a different conclusion for the configuration to use for both datasets. Therefore
selecting a TC‐VAE with β = 10 for MNIST and a β‐VAE with β = 5, as per table 4.
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VAE Type β Average Pearson (n=5)

MNIST dSprites

Beta 1 0.024426 0.303969

TC 1 0.023251 0.266775

Beta 5 0.026577 0.237737

TC 5 0.024480 0.283371

Beta 10 0.028552 0.369678

TC 10 0.018717 0.403007

Table 4. Averaged Pearson correlation coefficient for different types of VAEs and values of β.
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