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Reproducibility Summary

Scope of Reproducibility — In this report, we aim to validate the claims of Bansal et al [1].
These are that the recurrent architecture presented, with skip connections and a pro‐
gressive loss function, prevent the original problembeing forgotten or corrupted during
processing, allowing for the recurrent module to be applied indefinitely and that this ar‐
chitecture avoids the overthinking trap. We use both code released by the authors and
newly developed to recreatemany results presented in [1]. Additionally, we present anal‐
ysis of the newly introduced alpha hyperparameter and investigate interesting pertur‐
bation behaviour of prefix sums models. Further, we conduct a hyperparameter search
and provide an analysis of the Asymptotic Alignment scores [2] of the models presented.

Methodology —We use the PyTorch code released by the authors to replicate accuracy
experiments. We then, independently, develop our own code using PyTorchFI [3] to
replicate perturbation experiments presented in [1]. Overall, providing a replication
of all results shown in the main body of [1]. We then extend these results, providing
an analysis of the alpha hyperparameter, analysis of perturbation recovery, Asymptotic
Alignment scores [2] and a hyperparameter search. We used both a Nvidia RTX 2080Ti
GPU and sets of three NVIDIA Quadro RTX6000 GPUs, taking a total of 982.2 GPU hours
to create all results presented in the main body of this report.

Results —We verify the authors’ claims by replicating the experiments presented in [1].
All of our experiments show identical results to the ones presented in [1], apart fromper‐
turbation testing for which we provide an additional in depth analysis. We also provide
an analysis of the new alpha hyperparameter and a hyperparameter search.

What was easy — The code provided by Bansal et al gave clear instructions on how to use
it, along with pretrained models being available for all problems.

Whatwas difficult — Chessmodels required a considerable amount of time to train, putting
a drain on resources. Also, code for reproducing perturbation results was not available
so this had to developed from scratch.

Communication with original authors —We had good communication with the original au‐
thors, both emailing and meeting online.
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[Re] End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking

1 Introduction

In previous work by Schwarzchild et al. [4], it is shown that recurrent neural networks
have the capability to logically extrapolate. This is wheremodels trained on small/“easy”
problems can extrapolate to solve larger/“harder” versions of the same problem, with‐
out the need for extra training. This is similar to the way humans learn, starting with
toy problems, eventually being able to solve complex problems of the same nature.
Bansal et al. [1] extend this work introducing two new components to the neural net‐
works used in [4]. These are ‘recall’, which is adding skip connections at the beginning
of each application of the recurrent module, so the original problem is reintroduced to
the network repeatedly; similar to rereading the question. Also added is a progressive
loss function, this helps stop the model learning time related behaviour, crucial as we
want to apply the recurrent module a different number of times, dependent on the com‐
plexity of the problembeing solved. This progressive loss is analogous to truncated back
propagation through time [5]. These models are then tested on three problems:

1. Prefix Sums: Given a bit string, compute its prefix sum.

2. Mazes: Given a maze with the start marked as green and end as red respectively,
find a route between the two points using the white corridors.

3. Chess: Given a chess board, find the optimal next move.

The conclusion of this work is in the title of the paper, the neural networks introduced
are able to synthesise algorithms to solve these problems. This is a large progression
from previous work and combined with the claimed high out of distribution testing ac‐
curacy gained from the skip connections and progressive loss function, is a new and
novel technique with possible far reaching impacts if the results are repeatable.
While Bansal et al. released code to reproduce the accuracy results they show, many
require changes to input parameters and work to present them in the same format as
originally shown in [1]. We then extend this, creating experiments to test all perturba‐
tion results shown along with an in depth analysis of these results. Also, we conduct a
hyperparameter search by extensively searching the space of possible hyperparameters,
especially focused on the alpha hyperparameter introduced in the progressive loss func‐
tion, to verify hyperparameter choice. Moreover, we integrate this with work from Anil
et al. [2] to generate Asymptotic Alignment scores for the models Bansal et al. propose.
This new analysis shows on a deeper level the models unique behaviour under pertur‐
bation and the impact of the newly introduced alpha hyperparameter on both accuracy
and Asymptotic Alignment score.

2 Scope of reproducibility

In this report we aim to validate the claims of Bansal et al., present analysis of the al‐
pha hyperparameter and investigate interesting perturbation behaviour of prefix sums
models.

1. First, we reproduce all results shown by Bansal et al. in [1]. These can be sum‐
marised as:

• Theprovided recurrent architecture, with skip connections, prevents the orig‐
inal problem from being forgotten or corrupted.

• The new progressive training routine prevents the network learning time spe‐
cific behaviours, so the recurrent module can be applied indefinitely.
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• Themodels with this recurrent architecture avoid the overthinking trap, scal‐
ing arbitrarily.

These claims are validated in [1] by testing against the easy to hard data set [6],
showing higher accuracy than previously achieved, extrapolation to much
more complex examples and that the original problem is not forgotten, we
will verify them in the same way.
Bansal et al. often validate their three claims together for each of the three
test cases, this can be seen in Figures 3 to 6 of their paper. However, they
do also validate the robustness of the skip connections and convergence over
time in Figure 7 of their work.

2. We also do an analysis of the alpha hyperparameter introduced by Bansal et al. to
control the progressive loss.
The alpha hyperparameter is shown to be crucial by Bansal et al. as it varies from
1.0 for prefix sums models to 0.01 for maze models, we look at the behaviour of
this parameter for maze models.

3. We do an analysis of what is causing prefix sums models to recover quicker from
some perturbations than others.
When reproducing the results we saw interesting behaviour in perturbation recov‐
ery, we look at this on a closer level for prefix sums models.

3 Methodology

We are thankful to Bansal et al. for releasing such a well written code base, 1 different
to most research code bases, the authors use the Hydra package [7] to control hyperpa‐
rameters making the code much more readable. There is ample documentation in the
README.md file and launch directory both in the GitHub repository to begin training
models. In this code base there is all of the material to reproduce any accuracy experi‐
ment shown in [1]. However, the code for perturbation experiments, which we believe
to be as crucial as the accuracy experiments because they validate the methodology,
was not released by the authors nor shared with us. We decided to use the PyTorchFI [3]
library to implement these experiments as it allows run time access to the features of
the networks with ease. We had good access to GPUs, thanks to department resources,
sums and maze models were trained on a single Nvidia RTX 2080Ti GPU and chess mod‐
els were trained on multiple sets of three NVIDIA Quadro RTX6000 GPUs.

3.1 Model descriptions
The models used are specific to this paper so there is a detailed description of them
in [1] but we will highlight the key points here. The Deep‐Thinking (DT) models are
created by using a recurrent module which can be repeatedly applied and is based on
a ResNet block [8] with ReLUs in between each layer in the block to create a recurrent
neural network. The DT‐Recall networks have the original input concatenated to the
current features each time the recurrent module is applied. DT‐Recall‐Progressive (DT‐
Recall‐Prog) models have an alpha hyperparameter strictly greater than 0 meaning that
the progressive loss is used in training, which can be summarised as L = (1 − α) ·
Lmax−iters + α · Lprogressive and is detailed fully in Algorithm 1 of [1] by Bansal et al.

1https://github.com/aks2203/deep‐thinking
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3.2 Datasets
All of the data used is taken from the easy to hard datasets [6], this is downloaded lo‐
cally at run time automatically by installing the PIP package of the GitHub repository. 2

This is in the requirements.txt of the code base provided by Bansal et al. so should be
installed automatically when setting up the whole code base. For prefix sums there are
10,000 examples of each size available and we used the default train to validation split of
80/20. Details of the examples available are in [6] or in the README.md of the GitHub
repository for the datasets. As we are testing the model’s ability to extrapolate, we test
on a set of different size so we can use all the examples from this set. Formazes, we have
50,000 training examples again with a train to validation split of 80/20 and 10,000 testing
examples. For maze models there is no defined difference between the sets for training
and testing unlike for prefix sums where a set can be used for training or testing. For
chess, we have 1.5 million examples sorted in ascending order of difficulty, for training
we define a set from 0 to i and for testing we define a, not necessarily disjoint, set of
[j‐100,000, j] examples, the default i and j in [1] are 600,000 and 700,000 respectively.

3.3 Hyperparameters
We found the hyperparameters provided were stable and good choice in all cases, in the
sense that they allowed us to reproduce all results with high accuracy but some can be
varied without impact perhaps making themmore suitable for particular use cases. We
do however do a further analysis of the alpha hyperparameter in Section 4.2 and a larger
hyperparameter search in Appendix Section A.2.

3.4 Experimental setup and code
The accuracy results presented are quickly recreated using the code base from Bansal
et al. Specifically, the README.md, launch files and data analysis files are needed to
do this. For the perturbation results, which we have implemented in Python indepen‐
dently, it is slightly more complicated; as we need to firstly train the models, then refer‐
ence them separately to do the testing. Meaning that there is a small amount of python
knowledge required here, specifically, how file paths work and creating a string, before
the user can execute this code.

3.5 Computational requirements
As referenced above, we used both a Nvidia RTX 2080Ti GPU with 11GB of memory and
sets of three NVIDIA Quadro RTX6000 GPUs with 22GB of memory. The time taken to
reproduce accuracy results are shown in Table 1. The maze testing takes longer due to
the number of iterations as we test for one thousand iterations. The chess training takes
longer as our compute resources have a two day time limit so we use the implemented
checkpoint system and restart from the best previous iterationmeaning some iterations
are ran twice, as they are not recalled in the second run when training the model. For
perturbation results, the sums single bit flip result takes approximately 4.5 days on a
single GPU as this goes through each of the 10,000 examples one at a time. The maze
perturbation and average change in features results take 4.5 hours and 1 hour on average
respectively.

4 Results

Our results almost flawlessly support all claims made by Bansal et al. Also, we provide
extra detail on the alpha hyperparameter and its role in Section 4.2. Following this,

2https://github.com/aks2203/easy‐to‐hard‐data
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Problem Average Time to Train (hours) Average Time to Test (hours)
Prefix Sums 2 0.2

Mazes 9 2.25
Chess 72 1.3

Table 1. Average time taken to train and test the three types of models.

we do further analysis of the time taken to recover from perturbation for prefix sums
models.

4.1 Results reproducing original paper
As stated in Section 2, the claims of the paper are often validated together for each of the
three test cases in an ablation style, comparing each of the four possible types ofmodels
that can be created with the recall connections and progressive loss: Deep Thinking
(DT), Deep Thinking Progressive (DT‐Prog), Deep Thinking Recall (DT‐Recall) and Deep
Thinking Recall Progressive (DT‐Recall‐Prog). This further verifies the claims as we can
be sure that both the recall and progressive loss are needed for the highest accuracy.

Figure 1. My reproductions of:
Left: ‘Figure 3’ of [1]. Prefix sums models trained on 32 bit data, tested on 512 bit data.
Right: ‘Left of Figure 6’ of [1]. Prefix sums models trained on 32 bit data, tested on 48 bit data.

Prefix Sums Experiments — These experiments support all claims in point one of Section 2.
The prefix sums results fromBansal et al. can be summarised in Figures 3 and left of 6 of
[1]. These results show DT‐Recall models out performing DT and Feedforward networks
in accuracy over time. This supports all of the claims as the original problem is not
forgotten for 500 test iterations maintaining 100% accuracy to the point when testing
is stopped. The recurrent module is applied for this many steps also, supporting part
two of the claim. The overthinking trap is avoided as once the solution has been found
it is maintained. Our reproductions can be seen in Figure 1, we do see a difference in
the DT‐Prog line not gaining some accuracy when testing on 512 bits and a difference in
the speed of degradation in accuracy for the DT‐Prog model when testing on 48 bit data.
We questioned Bansal et al. on this and believe it is because they had a 99% training
accuracy threshold for all models; we did not apply this, meaning some of our models
mayhave performedworse. This reinforces the repeatability of the claim for prefix sums
models as the DT‐Recall models were both reproduced easily without this threshold.

Mazes Experiments — These experiments support all claims in point one of Section 2. The
maze models maintain the original problem throughout, supporting part one of the
claims as themodelsmaintain high accuracy once it has been achieved; also supporting
part three of the claims that the overthinking trap is avoided. The recurrent module is
applied many more times than in the prefix sums experiments, further supporting that
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it can be applied indefinitely and scale to arbitrarily many times. These results from
Bansal et al. can be summarised in Figures 4 and Right of 6 of [1] and our reproductions
can be seen in Figure 2. We see slight differences mainly attributed to our reproduc‐
tions not using a 99% accuracy threshold; meaning we see some of our reproductions
fall towards the lowest variance bounds in the plots in [1], such as the DT‐Recall model
in Left of Figure 2.

Figure 2. My reproductions of:
Left: ‘Figure 4’ of [1]. Maze models trained on 9x9 data, tested on 59x59 maze data.
Right: ‘Right of Figure 6’ of [1]. Maze models trained on 9x9 data, tested on 13x13 maze data.

Chess Experiments — These experiments support all claims in point one of Section 2. All
claims are supported as the original problem is not forgotten and the overthinking tap is
avoided as the DT‐Recall‐Prog model does not deteriorate after finding a high accuracy
solution. Also, the models are tested for a different number of test iterations compared
to prefix sums and mazes further supporting part two of the claims. This time we also
reproduce an appendix result for completeness as for both prefix sums and mazes we
showed testing for both a large and small extrapolation. Our reproductions of Figure
5 and 9 can be seen in Figure 3, of chess models trained on the first 600,000 examples
and then tested on examples [600k,700k] and [1M, 1.1M] respectively. We do see the
DT‐Recall line peaking achieving multiple local maxima, throughout the testing in both
cases; this could be the skip connections in practice but the lack of progressive loss func‐
tion means that these peaks are not held and deteriorate. We see the DT‐Prog models
again achieving lower accuracy than expected, this is due to the lack of 99% training
accuracy threshold, which appears to impact the progressive model in all experiments.
Our DTmodels accuracy peaks higher than in [1] but without recall and progressive loss
this accuracy deteriorates quickly, highlighting the impact of the additions Bansal et al.
have made.

Figure 3. My reproductions of:
Left: ‘Figure 5’ of [1]. Chess models trained on the first 600k examples, tested on examples
[600k,700k].
Right: ‘Right of Figure 9’ of [1]. Chess models trained on the first 600k examples, tested on exam‐
ples [1M, 1.1M].
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Perturbation Experiments — As stated earlier, this code has been independently reproduced
by ourselves, so this further supports the repeatability of the results shown.
There are three perturbation results shown in Figure 7 of [1]. Left of Figure 7 shows the
time taken to recover from a one bit flip at the ith index after solving for 50 iterations in a
prefix sums test. A reproduction of this is shown in Figure 4, we see hooked ends on the
left side, a further analysis of this is provided in Section 4.2 ‐ Hooked End Perturbation
Analysis. Middle of Figure 7 of [1] shows the time taken to recover after swapping the
features, after solving for 50 iterations for a maze model. We instead reproduce Figure
12 where all features are set to zero instead of anothermaze. These two results reinforce
part one of the claim that the skip connections prevent the original problem being for‐
gotten as even when perturbed the models still solve for the original problem solution.
Also supporting part two of the claims of [1], that the learning is independent of time as
the models recover from these perturbations after the 50th iteration when the original
problem had already been solved. Right of Figure 7 of [1] shows the change in features
at each step of solving, measured by the L2 norm. This supports part three of the claim
that the overthinking trap is being avoided as both theDT‐Recallmodels continue to con‐
verge over time. This result does depend heavily on the models being used to produce
it which explains the difference in values but the same overall pattern is seen.

Figure 4. My reproductions of:
Left: ‘Left of Figure 7’ of [1]. Prefix sumsmodels perturbed by flipping the ith bit after 50 iterations.
Middle: ‘Figure 12’ of [1]. Mazemodels perturbed by setting all features to 0 after the 50th iteration.
Right: ‘Right of Figure 7’ of [1]. Change in the features of maze models over time when solving,
measured by the L2 norm.

4.2 Results beyond original paper
The new progressive loss measure is well reasoned in [1] but there is no evidence to
relate this to the choice of the alpha value for each model. In this section we further
investigate this and also look into what is causing the hooked ends in Left of Figure 4.

Alpha Value Analysis — As seen in Figure 1 both the DT‐Recall and DT‐Recall‐Prog lines
reach 100 % accuracy for prefix sums models but for mazes only the DT‐Recall‐Prog
model reaches 100% accuracy, so we do our investigation on maze models. This will
increase the reliability of results as in prefix sums models there is a lot of variability
from the optimiser found, also noted by Bansal et al. in their paper. There is research
into stabilising the optimiser that is found, such as by Bai et al. in [9] but this is not
implemented in the current code base. Here we found that there does appear to be a
point of degradation in accuracy as we change the alpha value, shown in Figure 5. We
do note that the networks may find a good optimiser from other alpha values due to
the random nature of the learning process but in Figure 5 we average multiple models
to gain a repeatable picture of the models behaviour. It is important to note the default
alpha value of 0.01 formazes is above the threshold of 0.1wehave found, so this supports
the authors choice.
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Figure 5. Multiple maze models trained on 9x9 mazes, tested on 59x59 mazes with alpha values of
0.1 or 0.2.

Hooked End Perturbation Analysis —We decided we would look at the amount of work done
by the models when recovering from perturbation which we measured by the amount
of times the value of a bit is changed. We then averaged these results, which can be seen
in Left of Figure 6. We thenmultiplied the average number of bits changed per iteration
by the average time to recover to get the average total amount of work done over all it‐
erations, which can be seen in Right of Figure 6. These both suggest that the amount of
work themodel is doing is causing the hooks, possibly implying themodels are learning
the importance of these bits at the left end of the string, as these as the most important.
This highly tailored behaviour is extraordinary and from conversations with the authors
we agree this difference to the origional paper is because we have averaged over all test‐
ing examples, where as they only tested a subset for Figure 7 of [1]. Bansal et al. noted
similar extraordinary behaviour was seen in maze models when they are perturbed but
we could not reproduce this in a manner which can be presented in a paper. Linking
this point back to the previous two, when creating Middle of Figure 4 we repeated the
result over multiple alpha values and found that testing on a subset we could produce
the result with a large range of alpha values; where as when we worked with all exam‐
ples available, the set of alpha values which could recover was only those smaller than
0.1, i.e. above the threshold of 0.1 found in Section 4.2 ‐ Alpha Value Analysis.

Figure 6. Left: The average number of changes to a bits value per iteration after a one bit perturba‐
tion.
Right: The total number of changes to a bits value after a one bit perturbation.
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5 Discussion

Overall, all of our results support those of Bansal et al. We shed more light on the new
alpha hyperparameter presented and tested aspects more rigorously revealing the truly
remarkable nature of the models created in [1]. The largest noticeable weakness in our
work is that the code base released by the authors is used and we have not recreated
fully the code from the description given in the paper. However, over the course of this
project we have become very well accustomedwith both the paper and code and believe
there is no discrepancy between the two. Also, we did not reproduce perturbations in
the exact same way that the authors did but the benefit of this is that we have seen the
same results from two perspectives. There are many strengths to this reproduction, the
main ones being the rigour; models were trained and tested in batches of all models
needed for one experiment, so there was no cherry picking of results. Moreover, for the
perturbations section we reproduced the results fully independently, we believe this to
be the gold standard of validation for the claims made in the paper by Bansal et al.

5.1 What was easy
The code base released by Bansal et al. is very well written and documented, the use
of the Hydra package [7] made all hyperparameters easily available to both change and
understand their function. The paper is written in a very intuitive way with the wording
lending itself to the popular definitions of the words, such as ‘overthinking’ meaning
deteriorating accuracy due to processing for too long. The authorswere easily accessible
and more than happy to help with any questions we had, which made the experience of
reproducing the results much better.

5.2 What was difficult
The chessmodels requiring somuch time to trainwas a drain both on time and resources
but overall added to the rigour of the report. We had to request access to extra compute
resources to do this as they require a lot of memory to train and test. From the wording
in [1] we originally believed all code was available in the GitHub repository, so having to
create all of the code for perturbation analysis was unexpected but did give us a deeper
understanding of the code base andmodels, as we were dealing with them on a layer by
layer basis.

5.3 Communication with original authors
We had very good communication from the authors, with Avi Schwarzschild providing
an email chain for questions and setting up multiple meetings with Eitan Borgnia and
Arpit Bansal, for which we are extremely grateful. Through out the report we have men‐
tioned where the authors added to our discussions.

5.4 Acknowledgements
We thank Avi Schwarzschild for feedback and comments on the report. We would also
like to thank the Richard Cunningham and the Scientific Computing Research Technol‐
ogy Platform from theUniversity ofWarwick formaintaining the compute facilities used
for this project. We also thank the reviewers for their detailed feedback.
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A Appendix

A.1 Asymptotic Alignment Score
Bansal et al. looked to find models which are able to extrapolate from small to larger
problems. In [2], Anil et al. define the notion of path independence for equilibrium
models. Themodels developed by Bansal et al. in [1] are a subset of equilibriummodels.
This allows us to view the problem from another perspective knowing how our models
behave in practice, we can relate this to the theory. Calling the process of training on
an “easy” set of problems and testing on a “harder” set of problems upwards generalisa‐
tion. Anil et al. define path independence of a model to be “converg[ing] to the same
limiting behaviour regardless of the current state.” We have already seen examples of
the path independence property being displayed by the Deep Thinkingmodels, with the
models recovering from perturbation, converging to the same solution from the initial
start point and after perturbation. Anil et al. propose the Asymptotic Alignment score
(AA score) to quantitatively measure path independence, which is detailed in Algorithm
1, where fw is a network which in the case of the Deep Thinking models is run for many
iterations on each input. Overall, an AA score of 1 indicates high path independence
and lower values less so, as a score of 1 means that the two solutions found from two
different start points converged to the same point.
Linking back to Section 4.2 ‐ Alpha Value Analysis, we looked at how the AA score is
impacted as the alpha value changes; this can be seen in Figure 7. Here we see the AA
score inferring to an extent the accuracy of the models for the larger extrapolations; a
low AA score also indicates low accuracy as if a model does not converge, it will also be
inaccurate. Themazemodels have higher AA scores for lower alpha values for whichwe
expect high accuracy and the chess models have higher AA scores for higher alpha val‐
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Algorithm 1 Asymptotic Alignment score

Input: X =
[
x1, x2, . . . , xn

]
, fw ▷ Each xi is an input to fw

Z =
[
0, 0, . . . , 0

]
▷ The same shape as x

Z ′ ← fw(X,Z) ▷ Run the input network on input
X(i) starting from Z(i)

Zp ←permute Z’ so Z ′(i) ̸= Zp(i)
Z ′′ ← fw(X,Zp)
return average(cosDistance(Z ′(i), Z ′′(i))

procedure COſDıſTANCE(x1, x2)
return x1

∥x1∥2
· x2

∥x2∥2

end procedure

Figure 7. The AA scores of DT‐Recall‐Prog models for all three problems with varying alphas

ues, for which we also see high accuracy in testing. Interestingly, the AA scores are high
for all values of alpha for prefix sums models. This may infer as the problem becomes
harder, the choice of alpha parameter is more important to achieving high accuracy; ob‐
viously this cannot be verified without extending the networks to solve more problems.
Overall, we have empirically analysed at the link between the AA score and the accuracy
of the models by comparing to the link between alpha value and the models accuracy.

A.2 Hyperparameter Search
As we were using the default hyperparameters given by Bansal et al., we felt it was im‐
portant to try some variations of these hyperparameters. The authors did note that this
is the third iteration of these models to be produced, so many of the hyperparameters
have been well tuned over time. For clarity, we include Table 2 detailing the original
hyperparameters used by Bansal et al.
Due to the cost of training chess and maze models compared to prefix sums models
the majority of our search is done over prefix sums models. For each of the tests only
the stated hyperparameters are varied and all others remain the same, meaning we can
compare to the plots shown in Section 4.1 to see the impact. We do not vary the num‐
ber of epochs as the DT‐Recall‐Prog models maintain high accuracy once it is achieved,
due to their architecture as shown in Section 4. All prefix sums experiments shown
are trained on 32 bit data and tested on 512 bit data. All mazes experiments shown are
trained on 9x9 data and tested on 59x59 data. We show a subset of alpha values for each
experiment, for prefix sums higher alpha values are used and for mazes lower alpha
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values are used, as evidence shown suggests these are the most likely alpha values to
consistently achieve high accuracy. Each experiment has been repeated multiple times
to verify the results shown.

Prefix Sums Mazes Chess
Alpha 1 0.01 0.5
Epochs 150 50 130

Learning Rate 0.001 0.001 0.01
LR Decay step step step
LR Factor 0.1 0.1 0.1

LR Schedule 60,100 100 100,115
LR Throttle False True False
Optimiser Adam Adam SGD

Clip 1 N/A N/A
Train Batch Size 100 50 300
Test Batch Size 500 25 300

Table 2. The default hyperparameters from [1].

Learning Rate — For prefix sums the default learning rate is 0.001, we tested both 0.01 and
0.0001 over a range of alpha values. The learning rate of 0.01 led to vanishing gradients
for all alpha values and the learning rate of 0.0001 made no discernible difference when
compared to the learning rate of 0.001. This is shown in Left of Figure 8. We have not
included plots for models which experienced vanishing gradients as they fail to achieve
any noticeable accuracy.

Optimiser —We tested stochastic gradient descent (SGD), RAdam [10] and AdamW [11]
as alternatives to the default Adam optimiser for prefix sums models. We varied alpha
values and used learning rates of 0.01, 0.001 and 0.0001 for SGD and a learning rate of
only 0.001 for both variations of the Adam optimiser. Interestingly, the SGD optimiser
led to vanishing gradients for all learning rates and all alpha values, we spoke to Bansal
et al. and they said they had experienced the same problem with SGD leading them to
use Adam. For both RAdam and AdamWwe saw no discernible difference to the normal
Adam optimiser in the accuracy of the models produced, still seeing high variability in
the time taken by themodels to reach high accuracy. These results can be seen in Figure
9.

Figure 8. Left: Accuracy of prefix sums models with varying alpha values and learning rate of
0.0001.
Right: Accuracy of prefix sums models with varying alpha values and learning rate factor of 0.01.

Learning Rate Factor —Next in our hyperparameter search on prefix sums models, we
looked at learning rate factor, this is the amount the learning rate is multiplied by at
each step, sometimes referred to as the gamma hyperparameter. We tested a factor of
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Figure 9. Left: Accuracy of prefix sums models with varying alpha values and RAdam optimiser.
Right: Accuracy of prefix sums models with varying alpha values and AdamW optimiser.

0.01, ten times smaller than the default value; we did not test values smaller as we felt
the difference each iteration would then make to the overall optimisation would be too
small. This did not lead to any noticeable change in the overall accuracy or time taken
to reach peak accuracy of the models. This result is shown in Right of Figure 8.

Learning Rate Scheduler —We also experimented by changing the scheduler from a mutli‐
step scheduler to a cosine annealing scheduler on prefix sums. We used the PyTorch
default values for torch.optim.lr_scheduler.CosineAnnealingLR scheduler. The result
of this can be seen in Figure 10. The evidence suggests changing the scheduler does not
impact the ability of the prefix sums models to extrapolate, therefore either scheduler
can be used for these Deep Thinking models.

Figure 10. Accuracy of prefix sums models with varying alpha values and cosine annealing sched‐
uler

Figure 11. Left: Accuracy of prefix sums models with varying alpha values and training batch size
of 50.
Right: Accuracy of prefix sums models with varying alpha values and training batch size of 150.

Training Batch Size — To complete our hyperparameter search for prefix sums models we
look at the batch sizewhen trainingmodels. This is often limited bymemorywhen train‐
ing on GPUs but is non the less a crucial hyperparameter and often impacts accuracy.
We tested training batch sizes of 50 and 150, i.e. ±50 from the default train batch size
suggested by Bansal et al. The results of this experiment can be seen in Figure 11; this
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suggests that the batch size can be increased or decreased during training whilst main‐
taining high accuracy when extrapolating. This is a positive result as if the GPU being
used has enoughmemory we can increase the speed of training by increasing the batch
size and if the GPU has limited memory we can decrease the batch size; increasing the
accessibility of the models.
We also changed the batch size during training for maze models. We tested training
batch sizes of 25 and 75, i.e. ±25 from the default train batch size suggested by Bansal et
al. As you can see in Figure 12, themazemodels, whichwe already know to be less stable
than prefix sums, are even less stable when varying the training batch size. The bound
of 0.1, previously found Section 4.2 ‐ Alpha Value Analysis, is broken by themodels with
alpha values of 0.1 failing to gain high accuracy in both cases. However, the default
hyperparameter value of alpha being 0.01 suggested by Bansal et al. still gains high
accuracy in both cases.

Figure 12. Left: Accuracy of maze models with varying alpha values and training batch size of 25.
Right: Accuracy of maze models with varying alpha values and training batch size of 75.

Learning Rate Schedule — For maze models the default learning rate schedule is higher
than the number of epochsmeaning it is never used when training. We trialled learning
rate schedules of [35] and [14,30,45] over the default 50 epochs and varying alpha values.
The results, shown in Figure 13, show that these trials lead to worse accuracy than the
default. Implying any schedule for maze models only decreases the accuracy, as even
models with alpha values above the threshold of 0.1 found in Section 4.2 ‐ Alpha Value
Analysis fail to reach noticeable accuracy in both cases. We also turned the learning rate
throttle to false, when turned on the error is only backpropagated once for the recurrent
module instead of once for each time the recurrentmodule is used. Mazes were the only
one of the three problems to have this hyperparameter set to true by default. This led to
the training process failing to gain any noticeable accuracy, so this result is not shown
graphically.

Figure 13. Left: Accuracy ofmazemodelswith varying alpha values and [35] learning rate schedule.
Right: Accuracy of chess models with varying alpha values and [14,30,45] learning rate scheduler.

Chess Training Range —When discussing the direction of research with Bansal et al. in
a meeting, they mentioned that they did limited testing around which data is used to
train chess models. The default set is [0,600k] of the 1.5 million available examples. We
decided to test values of 400k, 500k, 700k and 800k with the default alpha value of 0.5. In
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Left of Figure 14, we see that in an extrapolation of 100,000 from the training range, the
lower training range values achieve higher accuracy but still only similar to that seen by
the default value. In Right of Figure 14, when testing on [1M, 1.1M] we see the higher
training range values achieve higher accuracy, slightly higher than that of the default
value but this also a smaller extrapolation for those higher training range values, so this
is expected. Overall, we see no evidence to suggest the training range should be changed
from these experiments but are encouraged to see that similar observations hold with
different training ranges.

Figure 14. Left: Accuracy of chess models with train ranges 0 to 400k, 500k, 700k and 800k tested
on the next 100k examples after their train ranges respectively.
Right: Accuracy of chess models with train ranges 0 to 400k, 500k, 700k and 800k tested on
[1M,1.1M].

To conclude, after testing five of the hyperparameters there was no evidence to suggest
that any of the default hyperparameters provided by Bansal et al. should be changed.
However, evidence does suggest that some of these hyperparameters can be varied with‐
out impacting accuracy.
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