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Reproducibility Summary

In this reproducibility study, we present our results and experience during replicating
the paper, titled Exact Feature Distribution Matching for Arbitrary Style Transfer and
Domain Generalization [1]. In real‐world scenarios, the feature distributions are mostly
much more complicated than Gaussian, so only mean and standard deviation may not
be fully representative to match them. This paper introduces a novel strategy to exactly
match the histograms of image features via the Sort‐Matching algorithm in a computa‐
tionally feasible way. We were able to reproduce most of the results presented in the
original paper both qualitatively and quantitatively.

Scope of Reproducibility — In the scope of this study, we aim to reproduce all the quali‐
tative and quantitative results on two tasks, namely Arbitrary Style Transfer (AST) and
Domain Generalization (DG). Moreover, we investigate the capability of forming better
style representations by EFDM in another recent study [2].

Methodology —We have conducted all experiments in the original work by using the of‐
ficial repository, which is implemented by PyTorch [3]. For additional experiments, we
have implemented themodular version of EFDM as a layer to replace it with the normal‐
izationmodules. We have used 2 NVIDIA RTX 2080Ti GPUs for both training and testing,
and it took roughly 1 day to complete a single training.

Results —We have reproduced the experiments done on two selected tasks, and com‐
pared their results with the reported results. Although our experimental results are not
identical to the reported ones, we can validate the claims made by the original study
according to these results.

What was easy — The paper is well‐written and easy to follow. The original repository is
well‐organized to run all tests with the data presented in the paper.

What was difficult — The requirements in the repository were not updated, and we had to
manage different versions of Python packages to be able to conduct the experiments.

Copyright © 2023 M. Erkol et al., released under a Creative Commons Attribution 4.0 International license.
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[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization

Communication with original authors —We were in contact with the authors, and asked for
the original results as JPEG files to prepare the figures in this report.

1 Introduction

Feature distribution matching is one of the most challenging learning tasks for visual
inputs. Arbitrary Style Transfer (AST) and Domain Generalization (DG) are the common
tasks in the literature where feature distribution matching can be considered as the so‐
lution. For example, in AST, the style information of input and target images can be
interpreted as feature distributions and style can be transferred by cross‐distribution
feature matching [4, 5, 6, 7, 8, 9, 10]. The first drawback in the previous studies is to
use only the mean and standard deviation to match the feature distributions, which
mainly relies on the assumption of that the feature distributions follow Gaussian. In
real‐world scenarios, the feature distributions are often much more complicated than
Gaussian, thus mean and standard deviation may not be fully representative to exactly
match them. Secondly, although Exact Feature Distribution Matching (EFDM) can be
achieved by directly matching the higher‐order statistics of the image features, it is not
practical for the current application areas due to the intensive computational overhead.
This paper [1] proposes to performEFDM in amore effectiveway by exactlymatching the
empirical Cumulative Distribution Functions (eCDFs) of image features. As mentioned
in the paper, Glivenko–Cantelli theorem [11] states that the empirical Cumulative Distri‐
bution Function (eCDF) asymptotically converges to the Cumulative Distribution Func‐
tion (CDF) when the number of samples approaches infinity. Relying on this theorem,
this study demonstrates that the feature distributions (i.e., mean, standard deviation,
and higher‐order statistics) can be exactly matched by using eCDFs. The authors claim
that this can be achieved by employing a custom Exact Histogram Matching algorithm
that implements Sort‐Matching [12].
In this reproducibility report, we studied EFDM via the Sort‐Matching algorithm on two
tasks related to feature distribution matching. In this study, we aimed to reproduce the
experiments provided in the original paper on AST and DG, and reported the details and
issues we encountered during this process. We have compared the results obtained in
our experiments with the ones reported in the original paper. We have also extended the
experiments to observe how much the performance changes when some hyperparame‐
ters of EFDM or EFDMix are modified. In addition to the experiments in the paper, we
have investigated the EFDM have the capability of forming better style representations
in the cases of modeling the subjects as style.

2 Scope of reproducibility

Themain idea of the paper is to introduce a novel strategy that achieves to exactlymatch
the feature distributions by using eCDFs of the input and target image features. This
strategy is tested on two tasks related to feature distributionmatching, namely Arbitrary
Style Transfer (AST) and Domain Generalization (DG).
The proposed EFDM strategy claims that it shows superior performance to the exist‐
ing state‐of‐the‐art methods of AST and DG in terms of visual quality and quantitative
measures. To validate these claims and further analyze the proposed strategy, we try to
investigate the following questions:

• Does EFDM work stably on AST and also more challenging photo‐realistic style
transfer scenarios?

• How can the style information ofmultiple images, which is extracted by EFDM, be
interpolated in the feature space?
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Figure 1. Overall training scheme of the proposed strategy in AST, including the EFDMof the image
features. Obtained from the presentation of [1].

• Does the proposed feature augmentationmethod via EFDM (i.e., EFDMix) improve
the generalization capability on category classification and cross‐domain instance
retrieval?

• Does the performance of the proposed strategy change by modifying the weight
of the style loss term used in the training of EFDM and the instance‐wise mixing
weight used for EFDMix?

• Does EFDM have the capability of forming better style representations (e.g., mod‐
eling the lighting as style [2])?

3 Methodology

The paper proposes a novel feature distribution matching strategy, namely EFDM via
the Sort‐Matching algorithm. We mainly focused on implementing the functionality of
EFDM within the details described in the paper. For reproducing the results presented
in the original paper, we have used the functional version of EFDM and the training
pipelines of both AST and DG, as given in the official GitHub repository. The overall
training scheme of AST and the usage of EFDM instead of the common normalization
methods (e.g., AdaIN [4]) can be seen in Figure 1. For our additional experiments on
forming style representations by EFDM, we have implemented the modular version of
EFDM as a layer to replace it with the common normalization modules.
We found that the paper is well‐written and easy to follow. With the details given as sup‐
plementary material, the paper contains the important details required to reproduce all
qualitative and quantitative results. However, the scripts provided in the official reposi‐
tory for t‐SNE visualizations of higher‐order statistics in the feature space does not work
properly, and we could not achieve to fix it.
In this section, we introduce the implementation details of EFDM and further proposed
feature augmentation strategy, namely EFDMix. Wepresent the important points for the
reproduction of this study, the hyperparameters we used, and our experimental setup.

3.1 Proposed Strategy
This study proposes to apply EFDM to tasks of AST and DG by exactly matching eCDFs
with exact histogrammatching via the Sort‐Matching algorithm in feature space. Given
the input vector X ∈ RB×C×HW and the style vector Y ∈ RB×C×HW , EFDM can be
applied by exact histogrammatching in a channel‐wise manner where B,C,H,W refer
to the batch size, number of channels, height, and width, respectively. First, the values

ReScience C 9.2 (#2) – Erkol et al. 2023 3

https://rescience.github.io/


[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization

Algorithm 1 PyTorch‐like pseudo‐code for EFDM.
X: input vector, Y: target vector
_, IndexX = torch.sort(X)
SortedY, _ = torch.sort(Y)
InverseIndex = IndexX.argsort(−1)
return X+ SortedY.gather(−1, InverseIndex) −X.detach()

in X and Y are sorted in ascending order. To obtain the required output, the sorted
values of X are replaced with the values of sorted Y in corresponding positions, then
it returns the unsorted values of X whose elements are replaced with the values of Y.
In this way, the output will share the identical feature distribution to Y. Note that it
requires applying the stop‐gradient operation [13] to the style features, as practiced in
the previous studies [4, 9], to ensure the flow of the gradients during back‐propagation
in deep models. The steps applied in practice are presented in Algorithm 1.
The proposed strategy does not introduce any additional parameters and can be used in
a plug‐and‐play manner with few lines of code andminimal cost. It is important to note
that the Sort‐Matching algorithm assumes that two vectors (i.e., X and Y) should have
the same number of dimensions in order to be directly applicable to this algorithm.
To extend this strategy for feature augmentation in DG, the authors introduce a style
mixing method in feature space by interpolating the sorted vectors used in EFDM. This
method is named as Exact Feature DistributionMixing (EFDMix) in the paper. Themain
difference between EFDM and EFDMix is described in the following equation.

O = Xu + (1− λ)Ys − (1− λ)Xd (1)

whereO stands for the required output,Xu is an unsorted input vector,Ys is a sorted style
vector, Xd refers to the gradient‐stop operation applied to Xu, and λ is the instance‐wise
mixing coefficient, which is sampled from Beta(α, α) where α ∈ (0,∞).

3.2 Architecture Design
A lightweight encoder‐decoder architecture is employed for AST task where the encoder
f is composed of the first 4 blocks of a pre‐trained VGG‐19 [14]. The decoder part is
designed as a custom convolutional network that contains 4 convolutional blocks fol‐
lowing ReLU activations [15]. Given the content images Ic and the style images Is, both
images are encoded into the feature space by using f . Note that the weights of f are
fixed, and not trained during the experiments. EFDM is applied to these features in or‐
der to extract a new feature vector of the content images whose distribution is matched
to the distribution of the style images. To summarize, the content features from the
distribution of the style features S can be extracted by Equation 2.

S = EFDM(f(Ic), f(Is)) (2)

Decoder network g is responsible for projecting new stylized features S into the image
space. The final output Io can be generated by Equation 3.

Io = g(S) (3)

During the optimization of the weights of g, as a common practice in AST literature, the
weighted combination of the content loss Lc and the style loss Ls is used, as shown in
Equation 4.

L = Lc + ωLs (4)

Where ω is the balancing term for two components. The content loss refers to a simple
Euclidean distance between the content images Ic and the final output Io. The style loss

ReScience C 9.2 (#2) – Erkol et al. 2023 4

https://rescience.github.io/


[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization

Figure 2. Visual comparison of the reported and our produced results on standard [4] (the first two
rows) and photo‐realistic [17] (the last two rows) style transfer.

calculates the distribution divergence between VGG features of the style images Is and
the final output Io.
For DG task, the original paper follows the prior work [9], and the only difference is to
change the feature augmentation method used during training (i.e., using EFDMix, in‐
stead of MixStyle [9]). ResNet‐18 and ResNet‐50 [16] are picked as a backbone network,
and started to train these networks with pre‐trained weights. There are two different
settings in DG. The first is the leave‐one‐domain‐out setting that trains the model on
three domains and tests on the remaining one, and the latter is the single source gener‐
alization training on a single domain and testing on the remaining three domains.

3.3 Datasets
During our reproduction study, we used the same datasets and the same settings as
mentioned in the original paper. The AST task is trained with the training set of MS‐
COCO [18] for the content images andWikiArt [19] for the style images. The training set
of MS‐COCO dataset contains 118K unique images, while WikiArt contains 42K images
for training and 10K images for testing, collected from the artworks of 195 artists. For
DG task, PACS dataset [20] is employed for domain generalization performance on im‐
age classification. This dataset contains images from four different domains (i.e., Art
Painting with 1.670 samples, Cartoon with 2.048 samples, Sketch with 2.344 samples,
and Photo with 3.929 samples) with 7 shared categories. Moreover, Market1501 [21] and
GRID [22] datasets are used for domain generalization on instance retrieval.

3.4 Hyperparameters
In our reproduction study, we used Adam optimizer [23] during training with an initial
learning rate of 1e−4, decay of 5e−5, and the batch size of 8. The details for optimization
are not available in the paper, and we have decided to use the default values as given in
the official repository. In AST training, ω is set to 10 to adjust the content and style
trade‐off in the objective function. For DG task, α is the parameter for Beta distribution
sampling, and is set to 0.1 during the experiments.
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Figure 3. Illustration of style interpolation between a single content image and four style images.

Table 1. Average running time of prior methods and proposed strategy used in AST on a 512px
image. Note that the compared methods run on a single Tesla V100, while our measurement has
been done on a single RTX 2080Ti.

Method Gatys et al. [24] CMD [10] HM AdaIN [4] EFDM [1] EFDM (ours)
Time (s) 25.61 19.84 0.33 0.0038 0.0039 0.0043

3.5 Experimental setup and code
Wehave followed the same protocol described in the original paper for both AST andDG.
For any missing information in the paper, we abided by the default values given in the
official repository. We present a qualitative comparison to evaluate the performance of
EFDMonAST. Following the original paper forDG task, the classification accuracy of the
proposed strategy is reported in two specified settings (i.e., leave‐one‐out generalization
and single source generalization) and also the retrieval accuracy in the cross‐dataset
setting. For the additional experiments on modeling the lighting as the style, which is
extracted byEFDM,wehave followed the same training pipeline as introduced in [2], just
replacing AdaIN layers with EFDM layers. Our implementation and the trained weights
are available at the link1.

3.6 Computational requirements
The experiments have been conducted on a single NVIDIA RTX 2080Ti GPU. A single
training for AST task took approximately 12 hours, while all experiments for DG task has
been completed in a single day. These experiments do not require any other significant
resources, but GPU memory (i.e., ∼6GB for training of both tasks with the batch size of
8). The average running time of different methods used in AST to process a 512px image
is shown in Table 1.

4 Results

We have conducted all experiments by following the descriptions given in the paper.
In general, we were mostly able to reproduce the qualitative results on AST and photo‐
realistic style transfer, and quantitative results on DG. Reproduced results for both tasks

1https://anonymous.4open.science/r/efdm-pytorch-767F
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Figure 4. Illustration of the content‐style trade‐off with different λ values in Equation 1.

Figure 5. Comparison of reproduced results of different feature distribution matching strategies
applied in the original paper.

support the claimsmade in the original paper. We can state that the overall performance
seems robust to the changes in different hyper‐parameters used for EFDM and EFDMix.
Lastly, EFDM has the capacity to better represent the style information in the cases of
modeling the lighting as style.

4.1 Results reproducing original paper

Qualitative comparison on AST — As shown in Figure 2, we were able to reproduce the AST
(the first two rows) and photo‐realistic style transfer (the last two rows) results of AdaIN
and EFDM reported in the original study. Although there could be minor differences
in the corresponding outputs, depending on the optimization process, our reproduced
models have similar behaviors on the same stylistic changes. Therefore, we can validate
our first claim, EFDM works stably on AST and photo‐realistic style transfer scenarios.

Mixing multiple styles — Figure 3 demonstrates the validation of our second claim. It is
possible to blend more than one style information, instead of matching to a single one,
to obtain novel styles by linearly combining their feature distributions.

Partial utilization of style information — The paper points out that the formula of EFDMix,
given in Equation 1, enables adjusting the amount of style information utilized during
style transfer. Figure 4 illustrates that we were able to reproduce the content‐style trade‐
off experiment conducted in the original study.

EFDM versus different order of statistics — Following the ablation on AST in the original
study, we present our reproduced results in Figure 5, where different feature distribu‐
tionmatching strategies are employed during AST training. AdaMeanmatches the dom‐
inant color scheme, while AdaStd tends to preserve the global structuremore, instead of
the stylistic details. AdaIN, by definition, can combine the behaviors of AdaMean and

ReScience C 9.2 (#2) – Erkol et al. 2023 7

https://rescience.github.io/


[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization

Table 2. DG results of category classification on PACS. (R) refers to our reproduced results.

Method Art Cartoon Photo Sketch Average
Leave‐one‐domain‐out generalization

R‐18 w/ MixStyle [9] 83.1±0.8 78.6±0.9 95.9±0.4 74.2±2.7 82.9
R‐18 w/ EFDMix [1] 83.9±0.4 79.4±0.7 96.8±0.4 75.0±0.7 83.9
R‐18 w/ EFDMix (R) 80.6±1.5 78.1±0.6 94.1±0.9 72.3±1.2 81.3
R‐18 w/ EFDMix (R) α = 0.5 80.7±1.8 78.2±1.0 94.2±1.3 71.4±1.9 81.3
R‐18 w/ EFDMix (R) α = 1.0 80.9±1.4 78.1±0.9 94.1±1.3 71.4±2.1 81.1
R‐50 w/ MixStyle [9] 90.3±0.3 82.3±0.7 97.7±0.4 74.7±0.7 86.2
R‐50 w/ EFDMix [1] 90.6±0.3 82.5±0.7 98.1±0.2 76.4±1.2 86.9
R‐50 w/ EFDMix (R) 87.4±1.6 81.8±1.6 94.3±2.2 73.7±1.7 84.3
R‐50 w/ EFDMix (R) α = 0.5 87.6±1.7 81.1±1.3 94.5±1.7 73.9±1.5 84.3
R‐50 w/ EFDMix (R) α = 1.0 87.4±2.1 81.6±1.4 94.7±1.6 74.3±1.6 84.5

Single source generalization
R‐18 w/ MixStyle [9] 61.9±2.2 71.5±0.8 41.2±1.8 32.2±4.1 51.7
R‐18 w/ EFDMix [1] 63.2±2.3 73.9±0.7 42.5±1.8 38.1±3.7 54.4
R‐18 w/ EFDMix (R) 63.5±3.4 72.9±1.2 41.9±1.4 36.3±3.1 53.7
R‐18 w/ EFDMix (R) α = 0.5 63.8±2.4 73.2±0.9 42.5±1.6 37.1±3.0 54.2
R‐18 w/ EFDMix (R) α = 1.0 63.7±3.4 73.2±0.9 41.9±1.8 36.3±2.4 53.7
R‐50 w/ MixStyle [9] 73.2±1.1 74.8±1.1 46.0±2.0 40.6±2.0 58.6
R‐50 w/ EFDMix [1] 75.3±0.9 77.4±0.8 48.0±0.9 44.2±2.4 61.2
R‐50 w/ EFDMix (R) 73.0±2.2 77.2±0.9 48.3±1.2 47.7±2.7 61.6
R‐50 w/ EFDMix (R) α = 0.5 73.8±1.6 77.6±1.3 47.9±1.2 46.7±3.2 61.5
R‐50 w/ EFDMix (R) α = 1.0 73.7±1.2 77.8±0.4 47.9±0.7 46.0±4.2 61.4

Table 3. DG results on person re‐ID task. (R) refers to our reproduced results.

Methods MarKet1501→ GRID GRID→MarKet1501
mAP R1 R5 R10 mAP R1 R5 R10

OSNet + MixStyle 33.8±0.9 24.89±1.6 43.7±2.0 53.1±1.6 4.9±0.2 15.4±1.2 28.4±1.3 35.7±0.9
OSNet + EFDMix 35.5±1.8 26.7±3.3 44.4±0.8 53.6±2.0 6.4±0.2 19.9±0.6 34.4±1.0 42.2±0.8
OSNet + EFDMix (R) 35.0±2.6 25.1±2.3 45.6±4.1 52.0±2.9 6.2±0.7 18.8±1.8 33.6±2.7 41.4±2.9

AdaStd. EFDM can effectively preserve the content details with the help of higher‐order
feature statistics.

Feature augmentation method via EFDM on DG —We present the domain generalization re‐
sults of category classification in Table 2 and cross‐domain instance retrieval in Table 3.
We only report the results of the latest state‐of‐the‐art [9], the original study [1], and our
reproduction. We were able to reproduce the reported results of single source general‐
ization experiments, while we could partially achieve to reproduce the reported results
on the leave‐one‐domain‐out generalization. Moreover, the original study claims that
EFDMix outperforms the latest feature augmentation strategy for DG on cross‐domain
person re‐identification, and our reproduced results can validate this claim.

4.2 Results beyond original paper

Trade-off between content and style loss terms —We investigate howmuch EFDM is robust to
the weighting of two components in the objective function. As previously induced for
AdaIN [4], the model inevitably starts to vanish the content details when the weight of
style loss term is increased.

Modifying the instance-wise mixing coefficient — As shown in Table 2, the range parameters
α of the distribution of the mixing coefficient in EFDMix does not have significant im‐
pact on DG results of category classification. This was expected since the method still
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Figure 6. Ablation on the trade‐off between content and style loss terms.

Table 4. White‐balance correction results of the recent methods [2] and its variant with EFDM on
mixed‐illuminant evaluation set [25].

Method MSE ↓ ∆E 2000↓
Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

StyleWB [2] 822.77 572.52 840.67 1025.26 11.65 10.63 11.86 13.02
SR + AdaIN 818.99 527.34 875.56 1049.03 11.01 8.64 11.41 12.31
SR + EFDM 761.05 513.96 818.39 969.33 10.16 8.75 9.81 11.69

mixes the distributions, and intuitively modifying its coefficient just makes it another
distribution to be matched.

Forming better style representation —We further investigate the impact of using EFDM in‐
stead of AdaIN on a different domain. The approach [2] proposes tomodel the lighting as
style to providewhite‐balance correction. This approach assumes that the illuminations
in the scene basically stands for the additional style information injected to the scene,
and tries to normalize this information in adaptive manner. In practice, we replaced
AdaIN layers in this method with EFDM layers, which are implemented by us, and re‐
peated the same experiment on mixed‐illuminant evaluation set [25], as described in
[2]. Table 4 demonstrates that EFDM forms better style representations to be utilized by
proposed style removal model to remove the illumination.

5 Discussion

We can clearly say that the paper was well‐written. Although there are some parts that
we struggled in the official repository, we were able to run all necessary experiments
requiring to reproduce this study. Overall, the reproduced results are similar to the
reported results in the paper. As an exception, we could partially achieve to obtain
comparable results on DG for category classification. In addition to this, we present the
performance of the proposedmethodwhen some essential hyperparameters are slightly
modified. Lastly, we extend the experiments to a different task in order to observe the
impact of EFDM on forming style representations.

5.1 What was easy
The given code in the original repository was easy to follow, and it was well‐written in
general. The authors designed the documentation and the source code in a way that
anyone who has fundamental knowledge of Python could run the experiments, or even
generate their own stylized image from any content.

5.2 What was difficult
We would like to add the reproduced outputs by Histogram Matching (HM) along with
the others, however the training of HM was based on CPU and the estimated time to
complete a single training was around 15 days in our setup. Consequently, we could not
include the reproduced outputs by HM to this report. Moreover, it could not be possible
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to add t‐SNE visualizations to this report, as in the original paper, due to the lack of
clarity in the documentation of its script.

5.3 Communication with original authors
We were in contact with the authors, and asked for the original results as JPEG files to
prepare the figures in this report.
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