
Formal verification of critical PLC programs and
neural network controllers at CERN

Borja Fernández Adiego

Contains joint work of several members and former members of the BE-ICS group at CERN

Roadmap

Critical control and safety
systems at CERN

Verification of PLC programs

Verification of Neural Network
controllers

Conclusions and future work

Context – CERN (European Organization for Nuclear Research)

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Images from cds.cern.ch

LHC
(Large Hadron Collider)

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Images from cds.cern.ch

LHC
(Large Hadron Collider)

Access and
protection

systems

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Cryogenics plants

Images from cds.cern.ch

LHC
(Large Hadron Collider)

Access and
protection

systems

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Cryogenics plants Cooling and ventilation
systems

Images from cds.cern.ch

LHC
(Large Hadron Collider)

Access and
protection

systems

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Cryogenics plants Cooling and ventilation
systems

Images from cds.cern.ch

Superconducting magnet test benches

LHC
(Large Hadron Collider)

Access and
protection

systems

https://cds.cern.ch/

BE-ICS group in a nutshell

https://be-dep-ics.web.cern.ch/

BE-ICS group in a nutshell

• “BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using
standard industrial control solutions” https://be-dep-ics.web.cern.ch

https://be-dep-ics.web.cern.ch/

BE-ICS group in a nutshell

Cryogenics plantsCooling and ventilation
systems Superconducting magnet test benches

• “BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using
standard industrial control solutions” https://be-dep-ics.web.cern.ch

CERN control centre

• BE-ICS is in charge of the design and
development of industrial control and
safety systems

Images from cds.cern.ch

https://be-dep-ics.web.cern.ch/
https://cds.cern.ch/

BE-ICS group in a nutshell

Cryogenics plantsCooling and ventilation
systems Superconducting magnet test benches

• “BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using
standard industrial control solutions” https://be-dep-ics.web.cern.ch

CERN control centre

• BE-ICS is in charge of the design and
development of industrial control and
safety systems

Programmable Logic
Controllers (PLC)

Industrial PCs (FEC)

WinCCOA

Images from cds.cern.ch

https://be-dep-ics.web.cern.ch/
https://cds.cern.ch/

Context – PLCs at CERN

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

sensors actuators

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

Example of PLC program

sensors actuators

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

Example of specification
(ambiguous and incomplete)

Example of PLC program

sensors actuators

if (MMoSt and AuAuMoR) at any time before the end of the PLC cycle,
then AuMoSt should be true at the end of the same PLC cycle

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

Example of specification
(ambiguous and incomplete)

Need to guarantee “complex” properties

Example of PLC program

sensors actuators

if (MMoSt and AuAuMoR) at any time before the end of the PLC cycle,
then AuMoSt should be true at the end of the same PLC cycle

• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

Context – PLCs at CERN

Example of specification
(ambiguous and incomplete)

Need to guarantee “complex” properties

Example of PLC program

sensors actuators

Formal verification
(e.g. model checking)

Roadmap

Critical control and safety
systems at CERN

Verification of PLC programs

Verification of Neural Network
controllers

Conclusions and future work

Input2
Input3
Input4

Output1

Output2
PLC program

Sensors Actuators

Input1

Why formal verification?

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Sensors Actuators

Input1

Why formal verification?

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

▪ for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

▪ for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

▪ Peer reviews and testing can (normally) catch most of the “problems” (e.g. code bugs), but not the corner cases

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

▪ for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

▪ Peer reviews and testing can (normally) catch most of the “problems” (e.g. code bugs), but not the corner cases
▪ E.g. Ariane 5 rocket explosion (more than 500 millions US$ cost due to a software flaw in control software)

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Sensors Actuators

Input1

Why formal verification?

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

▪ for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

▪ Peer reviews and testing can (normally) catch most of the “problems” (e.g. code bugs), but not the corner cases
▪ E.g. Ariane 5 rocket explosion (more than 500 millions US$ cost due to a software flaw in control software)

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Solution: Model checking

Sensors Actuators

Input1

Why formal verification?

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

Petri nets, automata, …

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages

Petri net

Automata

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

MACHINE

Switch

SETS

STATE = {closed, open}

VARIABLES

state

INVARIANT

state : STATE

INITIALISATION

state := open

OPERATIONS

toggle =

IF state = open

THEN

state := closed

ELSE

state := open

END ;

END

Petri nets, automata, … B-method, VDM, TLA+,…

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages Textual languages

Petri net

Automata

B-method

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

MACHINE

Switch

SETS

STATE = {closed, open}

VARIABLES

state

INVARIANT

state : STATE

INITIALISATION

state := open

OPERATIONS

toggle =

IF state = open

THEN

state := closed

ELSE

state := open

END ;

END

Petri nets, automata, … Temporal logic,
propositional logic, Z

notation,…

B-method, VDM, TLA+,…

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages Textual languages Mathematical languages

(A → B) ⊢ (¬B → ¬A)

𝐴𝐺((𝑎 ∧ 𝑏) → 𝑐)

Petri net

Automata

B-method

Temporal logic

Propositional logic

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

MACHINE

Switch

SETS

STATE = {closed, open}

VARIABLES

state

INVARIANT

state : STATE

INITIALISATION

state := open

OPERATIONS

toggle =

IF state = open

THEN

state := closed

ELSE

state := open

END ;

END

Petri nets, automata, … Temporal logic,
propositional logic, Z

notation,…

B-method, VDM, TLA+,…

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages Textual languages Mathematical languages

(A → B) ⊢ (¬B → ¬A)

𝐴𝐺((𝑎 ∧ 𝑏) → 𝑐)

Petri net

Automata

B-method

Temporal logic

Propositional logic

What are Formal Methods?

e.g. properties
(model checking)

e.g. system model
(model checking)

Techniques based on mathematics and formal logic (precise semantics)

MACHINE

Switch

SETS

STATE = {closed, open}

VARIABLES

state

INVARIANT

state : STATE

INITIALISATION

state := open

OPERATIONS

toggle =

IF state = open

THEN

state := closed

ELSE

state := open

END ;

END

Petri nets, automata, … Temporal logic,
propositional logic, Z

notation,…

B-method, VDM, TLA+,…

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages Textual languages Mathematical languages

(A → B) ⊢ (¬B → ¬A)

𝐴𝐺((𝑎 ∧ 𝑏) → 𝑐)

Petri net

Automata

B-method

Temporal logic

Propositional logic

What are Formal Methods?

e.g. properties
(model checking)

e.g. system model
(model checking)

They can be used for specification, verification,
simulation, test case generation, etc.

Formal specification Formal verification

Where are Formal Methods being used?

9

Formal specification Formal verification

Using TLA+ to create a clear and concise specification, leading to a subsequent
code reduction https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext

Verification of neural-network-based control systems in non-towered airports
to avoid collisions at landing
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain

Integration of their static analyser INFER into their software development
process https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf

NASA AMES Robust Software Engineering group
https://www.nasa.gov/isd-robust-software-engineering

Use of the model checker SPIN to verify the model of a software
http://spinroot.com/gerard/pdf/spin04.pdf

Use of the formal specification language VDM to specify industrial applications
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox

Formal Verification of Critical Aerospace Software https://hal.archives-ouvertes.fr/hal-01184099/document

Where are Formal Methods being used?

Correctness, Modelling and Performance of Aerospace Systems
http://www.compass-toolset.org

And many
more …

https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain
https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf
https://www.nasa.gov/isd-robust-software-engineering
http://spinroot.com/gerard/pdf/spin04.pdf
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox
https://hal.archives-ouvertes.fr/hal-01184099/document
http://www.compass-toolset.org/

Pros Cons

Unambiguity
(well-defined semantics)

High cost
(time)

Precision
(e.g. software verification)

Limitation of computational models
(state space explosion in model checking)

… Usability

Why aren’t Formal Methods widely used?

Pros Cons

Unambiguity
(well-defined semantics)

High cost
(time)

Precision
(e.g. software verification)

Limitation of computational models
(state space explosion in model checking)

… Usability

• Using formal methods is more “expensive” than traditional alternatives in engineering

• Real-life system models may be too large to be handled by simulators or model checkers

• We should apply them when the cost of a failure is higher than the cost of using them
(tool support)

Why aren’t Formal Methods widely used?

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

▪ several references to model checking. For example from IEC 61511-2:2016 Annex B:

“… specification should be implemented in the graphical language of the model checking workbench
environment...”

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

▪ several references to model checking. For example from IEC 61511-2:2016 Annex B:

“… specification should be implemented in the graphical language of the model checking workbench
environment...”

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Formal methods and the standards (e.g. functional safety)

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Real System

(hardware, software)

Specifications

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement
Real System

(hardware, software)

Specifications

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

Real System

(hardware, software)

Specifications

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

Real System

(hardware, software)

Specifications

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

Real System

(hardware, software)

Specifications

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s
https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

PLCverif (for PLC programs)

If Output1 is FALSE
then Output2 is TRUE

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s
https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

PLCverif (for PLC programs)

If Output1 is FALSE
then Output2 is TRUE

Control-flow

automaton (CFA)

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s
https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

PLCverif (for PLC programs)

If Output1 is FALSE
then Output2 is TRUE

Control-flow

automaton (CFA) Temporal Logic

AG (EoC → (!Out1 & Out2))

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s
https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

PLCverif (for PLC programs)

If Output1 is FALSE
then Output2 is TRUE

Control-flow

automaton (CFA) Temporal Logic

AG (EoC → (!Out1 & Out2))

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s
https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

PLCverif (for users)

PLCverif (for users)

PLCverif (for users)

PLCverif (for users)

PLCverif (for users)

PLCverif (for users)

PLCverif (for users)

The complexity of using formal methods is hidden by the PLCverif

PLCverif references: https://gitlab.com/plcverif-oss and www.cern.ch/plcverif

https://gitlab.com/plcverif-oss
http://www.cern.ch/plcverif

Some references

Some references

B. Fernandez et al. “Cause-and-Effect Matrix specifications for safety critical
systems at CERN” in Proc. of the 17th ICALEPCS
https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf

B. Fernandez et al. “Applying model checking to critical PLC applications : An ITER
case study” in Proc. of the 17th ICALEPCS
https://cds.cern.ch/record/2305319/files/thpha161.pdf

B. Fernandez et al. “Applying model checking to highly-configurable safety critical
software: The SPS-PPS PLC program” in Proc. of the 18th ICALEPCS
https://cds.cern.ch/record/2809709/files/document.pdf

Real case studies

B. Fernández et al. “Applying model checking to industrial-sized PLC programs”. In
IEEE Transactions on Industrial Informatics
https://ieeexplore.ieee.org/document/7295624

https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf
https://cds.cern.ch/record/2305319/files/thpha161.pdf
https://cds.cern.ch/record/2809709/files/document.pdf
https://ieeexplore.ieee.org/document/7295624

Some references

D. Darvas et al. “A formal specification method for PLC-based applications” in Proc. of the 15th ICALEPCS https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepgf091.pdf

Ignacio D. Lopez-Miguel et al. “Simplification of numeric variables for PLC model checking”. In Proc. of the
MEMOCODE '21 https://dl.acm.org/doi/abs/10.1145/3487212.3487334

Milán Mondok. “Evaluating compositional verification options for PLCverif”. In CERN internal note
https://cds.cern.ch/record/2780057/files/compositional_verification.pdf

Mihály Dobos-Kovács. “Counterexample analysis of formal verification methods”. In CERN internal note
https://cds.cern.ch/record/2779411/files/MihalyDobosKovacs_report.pdf

Zsófia Ádám et al. “From Natural Language Requirements
to the Verification of Programmable Logic Controllers:
Integrating FRET into PLCverif”. In NASA Formal Methods
Symposium https://link.springer.com/chapter/10.1007/978-
3-031-33170-1_21

B. Fernandez et al. “Cause-and-Effect Matrix specifications for safety critical
systems at CERN” in Proc. of the 17th ICALEPCS
https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf

B. Fernandez et al. “Applying model checking to critical PLC applications : An ITER
case study” in Proc. of the 17th ICALEPCS
https://cds.cern.ch/record/2305319/files/thpha161.pdf

B. Fernandez et al. “Applying model checking to highly-configurable safety critical
software: The SPS-PPS PLC program” in Proc. of the 18th ICALEPCS
https://cds.cern.ch/record/2809709/files/document.pdf

Real case studies

Research activities

B. Fernández et al. “Applying model checking to industrial-sized PLC programs”. In
IEEE Transactions on Industrial Informatics
https://ieeexplore.ieee.org/document/7295624

B. Fernández et al. “Modelling and formal verification of timing aspects in large PLC programs”. In Proc. of IFAC World Congress’14 http://cds.cern.ch/record/1956687/files/CERN-
ACC-2014-0226.pdf

https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepgf091.pdf
https://dl.acm.org/doi/abs/10.1145/3487212.3487334
https://cds.cern.ch/record/2780057/files/compositional_verification.pdf
https://cds.cern.ch/record/2779411/files/MihalyDobosKovacs_report.pdf
https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf
https://cds.cern.ch/record/2305319/files/thpha161.pdf
https://cds.cern.ch/record/2809709/files/document.pdf
https://ieeexplore.ieee.org/document/7295624
http://cds.cern.ch/record/1956687/files/CERN-ACC-2014-0226.pdf
http://cds.cern.ch/record/1956687/files/CERN-ACC-2014-0226.pdf

Roadmap

Critical control and safety
systems at CERN

Verification of PLC programs

Verification of Neural Network
controllers

Conclusions and future work

First steps

Context – CERN (European Organization for Nuclear Research)

• Many applications of machine learning at CERN

Context – CERN (European Organization for Nuclear Research)

• Many applications of machine learning at CERN

Images from cds.cern.ch

Robotics

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• Many applications of machine learning at CERN

Images from cds.cern.ch

Robotics Data analysis of
the physics

experiments

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• Many applications of machine learning at CERN

Images from cds.cern.ch

Robotics Data analysis of
the physics

experiments

Particle
accelerators

Operation and
beam

optimization

https://cds.cern.ch/

Context – CERN (European Organization for Nuclear Research)

• Many applications of machine learning at CERN

Images from cds.cern.ch

Robotics Data analysis of
the physics

experiments

Particle
accelerators

Operation and
beam

optimization

Industrial
controls

https://cds.cern.ch/

Context – Neural-network-based controllers

Why NN-based controllers?

Context – Neural-network-based controllers

Why NN-based controllers?

Context – Neural-network-based controllers

Tasks hard to specify
• Autonomous driving

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

Why NN-based controllers?

Context – Neural-network-based controllers

Tasks hard to specify
• Autonomous driving

Computationally fast
• Matrix multiplication

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

Why NN-based controllers?

Context – Neural-network-based controllers

Tasks hard to specify
• Autonomous driving

Computationally fast
• Matrix multiplication

Versatile
• Non-linearities
• No need to linearize

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

Why NN-based controllers?

Context – Neural-network-based controllers

Tasks hard to specify
• Autonomous driving

Computationally fast
• Matrix multiplication

Versatile
• Non-linearities
• No need to linearize

Only data needed
• No physical modelling

required
• Collect data

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

Why NN-based controllers?

Context – Neural-network-based controllers

NN
System/

Plant

𝑥𝑖 𝑦𝑖

Tasks hard to specify
• Autonomous driving

Computationally fast
• Matrix multiplication

Versatile
• Non-linearities
• No need to linearize

Only data needed
• No physical modelling

required
• Collect data

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

Why NN-based controllers?

Context – Neural-network-based controllers

NN
System/

Plant

𝑥𝑖 𝑦𝑖

Tasks hard to specify
• Autonomous driving

Computationally fast
• Matrix multiplication

Versatile
• Non-linearities
• No need to linearize

Only data needed
• No physical modelling

required
• Collect data

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

[2]

Several rule exceptions

But a failure in the
controller can be fatal

Why verification of NNs?

Context – Verification of neural-network-based controllers

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

Robustness

Image

Noise

Dangerous
curve to the

right

+ noise
Children
crossing

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

MonotonicityRobustness

Image

Noise

↑ Temperature → ↑ Fan speed

Dangerous
curve to the

right

+ noise
Children
crossing

Input

Output

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

MonotonicityRobustness

Image

Noise

↑ Temperature → ↑ Fan speed

Dangerous
curve to the

right

+ noise
Children
crossing

Reachability

Time

System’s
output

Input

Output

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

Monotonicity SafetyRobustness

Input

Output

Safe region
Image

Noise

↑ Temperature → ↑ Fan speed

Dangerous
curve to the

right

+ noise
Children
crossing

Reachability

Time

System’s
output

Input

Output

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

Monotonicity SafetyRobustness

Input

Output

Safe region
Image

Noise

↑ Temperature → ↑ Fan speed

Dangerous
curve to the

right

+ noise
Children
crossing

Reachability

Time

System’s
output

Input

Output

Stability

Time

System’s
output

Why verification of NNs?

• Guaranteeing properties

Context – Verification of neural-network-based controllers

Monotonicity SafetyRobustness

Input

Output

Safe region
Image

Noise

↑ Temperature → ↑ Fan speed

• Is it possible that a given
situation ever occurs?

• Is there a combination of
inputs that leads to a given
output?

• Explainability

Dangerous
curve to the

right

+ noise
Children
crossing

Reachability

Time

System’s
output

Input

Output

Stability

Time

System’s
output

Case study – LHC cooling towers controller

Case study – LHC cooling towers controller

• Induced draft cooling towers (IDCTs)
• Provide cold water for different LHC subsystems (e.g.

cryogenics, chillers, air handling units, etc.)

Case study – LHC cooling towers controller

• Induced draft cooling towers (IDCTs)
• Provide cold water for different LHC subsystems (e.g.

cryogenics, chillers, air handling units, etc.)
• Control actions:

• Mode selection:
1. Ventilation
2. Showering
3. Bypass

• Fan speed

Case study – LHC cooling towers controller

• Induced draft cooling towers (IDCTs)
• Provide cold water for different LHC subsystems (e.g.

cryogenics, chillers, air handling units, etc.)
• Control actions:

• Mode selection:
1. Ventilation
2. Showering
3. Bypass

• Fan speed
• Control objective:

• Keep outlet water temperature within strict limits
• Utilize minimum amount of energy

Case study – LHC cooling towers controller

• Induced draft cooling towers (IDCTs)
• Provide cold water for different LHC subsystems (e.g.

cryogenics, chillers, air handling units, etc.)
• Control actions:

• Mode selection:
1. Ventilation
2. Showering
3. Bypass

• Fan speed
• Control objective:

• Keep outlet water temperature within strict limits
• Utilize minimum amount of energy

𝑡𝑤𝑒𝑡𝑏𝑢𝑙𝑏

𝑡𝑠𝑢𝑝𝑝𝑙𝑦

𝑡𝑜𝑢𝑡𝑙𝑒𝑡

𝑓𝑎𝑛𝑠𝑝𝑒𝑒𝑑

𝑚𝑜𝑑𝑒

IDCTModel predictive controller
(MPC)

Case study – LHC cooling towers controller

• Induced draft cooling towers (IDCTs)
• Provide cold water for different LHC subsystems (e.g.

cryogenics, chillers, air handling units, etc.)
• Control actions:

• Mode selection:
1. Ventilation
2. Showering
3. Bypass

• Fan speed
• Control objective:

• Keep outlet water temperature within strict limits
• Utilize minimum amount of energy

𝑡𝑤𝑒𝑡𝑏𝑢𝑙𝑏

𝑡𝑠𝑢𝑝𝑝𝑙𝑦

𝑡𝑜𝑢𝑡𝑙𝑒𝑡

𝑓𝑎𝑛𝑠𝑝𝑒𝑒𝑑

𝑚𝑜𝑑𝑒

NN fan

NN mode
common

classification

regression

IDCT

NN

Case study – NN description

Case study – NN description

Input set

𝑡𝑤𝑒𝑡𝑏𝑢𝑙𝑏

𝐹𝑎𝑛 𝑆𝑝𝑒𝑒𝑑

Output set

Regression
problem

Classification
problem

𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑦𝑝𝑎𝑠𝑠

𝑡𝑠𝑢𝑝𝑝𝑙𝑦

𝑡𝑜𝑢𝑡𝑙𝑒𝑡

𝑆ℎ𝑜𝑤𝑒𝑟𝑖𝑛𝑔

Hidden layers
Initial non-conventional NN

architecture

ReLU ReLU ReLU

ReLU ReLU

ReLU

Softmax

+bias +bias +bias +bias

ReLU

+bias +bias +bias

Case study – NN description

Input set

𝑡𝑤𝑒𝑡𝑏𝑢𝑙𝑏

𝐹𝑎𝑛 𝑆𝑝𝑒𝑒𝑑

Output set

Regression
problem

Classification
problem

𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑦𝑝𝑎𝑠𝑠

• Feedforward NN with ReLU and SoftMax activation functions

• Developed and trained with Python Keras

• Automatically translated to S7-1200 Siemens PLC Structured
Control Language (SCL)

𝑡𝑠𝑢𝑝𝑝𝑙𝑦

𝑡𝑜𝑢𝑡𝑙𝑒𝑡

𝑆ℎ𝑜𝑤𝑒𝑟𝑖𝑛𝑔

Hidden layers
Initial non-conventional NN

architecture

ReLU ReLU ReLU

ReLU ReLU

ReLU

Softmax

+bias +bias +bias +bias

ReLU

+bias +bias +bias

Case study

Case study

Properties to be verified

Case study

Properties to be verified

Operational modes reachability

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Monotonicity

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Temperature

Fan speed

𝑡0 𝑡1

𝑠0
𝑠1

Do 𝑡0 < 𝑡1exist such
that 𝑠0 > 𝑠1?

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Monotonicity Softmax overflow

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Temperature

Fan speed

𝑡0 𝑡1

𝑠0
𝑠1

Do 𝑡0 < 𝑡1exist such
that 𝑠0 > 𝑠1?

𝑒𝑜𝑢𝑡𝑖

𝑒𝑜𝑢𝑡1 + 𝑒𝑜𝑢𝑡2 + 𝑒𝑜𝑢𝑡3

Input1

NN

Ventilation

Showering

Bypass

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Monotonicity Softmax overflow Robustness

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Temperature

Fan speed

𝑡0 𝑡1

𝑠0
𝑠1

Do 𝑡0 < 𝑡1exist such
that 𝑠0 > 𝑠1?

𝑒𝑜𝑢𝑡𝑖

𝑒𝑜𝑢𝑡1 + 𝑒𝑜𝑢𝑡2 + 𝑒𝑜𝑢𝑡3

Input1

NN

Ventilation

Showering

Bypass

Input1

Ventilation

Bypass

+𝜀

Does this point exist?

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Monotonicity Softmax overflow Robustness

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Temperature

Fan speed

𝑡0 𝑡1

𝑠0
𝑠1

Do 𝑡0 < 𝑡1exist such
that 𝑠0 > 𝑠1?

𝑒𝑜𝑢𝑡𝑖

𝑒𝑜𝑢𝑡1 + 𝑒𝑜𝑢𝑡2 + 𝑒𝑜𝑢𝑡3

Input1

NN

Ventilation

Showering

Bypass

Input1

Ventilation

Bypass

+𝜀

Does this point exist?

They help to better understanding the NN

Case study

Properties to be verified

Operational modes reachability Fan speed constraint satisfaction

Monotonicity Softmax overflow Robustness

Ventilation

Showering

Bypass

Input1

Input2

Input3

Do these inputs exist?

Input1 Ventilation

60% 100%

Does this input exist?

or

Temperature

Fan speed

𝑡0 𝑡1

𝑠0
𝑠1

Do 𝑡0 < 𝑡1exist such
that 𝑠0 > 𝑠1?

𝑒𝑜𝑢𝑡𝑖

𝑒𝑜𝑢𝑡1 + 𝑒𝑜𝑢𝑡2 + 𝑒𝑜𝑢𝑡3

Input1

NN

Ventilation

Showering

Bypass

Input1

Ventilation

Bypass

+𝜀

Does this point exist?

They help to better understanding the NN

They represent problems

Approaches to verify these properties

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3

Approaches to verify these properties

NN design

PLC source code

Executable

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3

Approaches to verify these properties

Different methods were applied and compared:

NN design

PLC source code

Executable

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3

Approaches to verify these properties

Different methods were applied and compared:

1. nnenum: an open-source NN verification tool for ReLU
NNs from Stony Brook University
https://github.com/stanleybak/nnenum

NN design

PLC source code

Executable

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3

Approaches to verify these properties

Different methods were applied and compared:

1. nnenum: an open-source NN verification tool for ReLU
NNs from Stony Brook University
https://github.com/stanleybak/nnenum

2. PLCverif: an open-source formal verification tool for PLC
programs from CERN https://gitlab.com/plcverif-oss

NN design

PLC source code

Executable

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3

Approaches to verify these properties

Different methods were applied and compared:

1. nnenum: an open-source NN verification tool for ReLU
NNs from Stony Brook University
https://github.com/stanleybak/nnenum

2. PLCverif: an open-source formal verification tool for PLC
programs from CERN https://gitlab.com/plcverif-oss

3. Z3: an open-source theorem prover from Microsoft
Research https://github.com/Z3Prover/z3

4. Testing: traditional testing techniques

NN design

PLC source code

Executable

Ignacio D. Lopez-Miguel et al. “Verification of Neural Networks Meets PLC Code: An LHC Cooling Tower Control
System at CERN”. In EANN 2023: Engineering Applications of Neural Networks conference
https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

https://github.com/stanleybak/nnenum
https://gitlab.com/plcverif-oss
https://github.com/Z3Prover/z3
https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Property encoding (vnnlib)

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Property encoding (vnnlib)

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Property encoding (vnnlib)

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property encoding (vnnlib)

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property to verify:
𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2

Property encoding (vnnlib)

It is possible that the
selected mode is

ventilation

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property to verify:
𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2

Goal

Find an example that satisfies all conditions, i.e.,
a set of {𝑥0, 𝑥1, 𝑥2} such that (𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2)

Property encoding (vnnlib)

It is possible that the
selected mode is

ventilation

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property to verify:
𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2

Goal

Find an example that satisfies all conditions, i.e.,
a set of {𝑥0, 𝑥1, 𝑥2} such that (𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2)

Property encoding (vnnlib)

Execution

It is possible that the
selected mode is

ventilation

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property to verify:
𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2

Goal

Find an example that satisfies all conditions, i.e.,
a set of {𝑥0, 𝑥1, 𝑥2} such that (𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2)

Property encoding (vnnlib)

Execution

Evidence

It is possible that the
selected mode is

ventilation

nnenum
nnenum

keras2onnxNN in
Python h5

onnx
Properties in

natural language
Assertions
in vnnlib

Manually

(declare-const X_0 Real)

(declare-const X_1 Real)

(declare-const X_2 Real)

(declare-const Y_0 Real)

(declare-const Y_1 Real)

(declare-const Y_2 Real)

(assert (>= X_0 20.0))

(assert (<= X_0 25.0))

(assert (>= X_1 23))

(assert (<= X_1 27))

(assert (>= X_2 8.0))

(assert (<= X_2 21.0))

(assert (>= Y_0 Y_1))

(assert (>= Y_0 Y_2))

Inputs

Outputs

Range of the inputs:
25 ≥ 𝑥0 ≥ 20
27 ≥ 𝑥1 ≥ 23
21 ≥ 𝑥2 ≥ 8

Property to verify:
𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2

Goal

Find an example that satisfies all conditions, i.e.,
a set of {𝑥0, 𝑥1, 𝑥2} such that (𝑦0 ≥ 𝑦1 ∧ 𝑦0 ≥ 𝑦2)

Property encoding (vnnlib)

Execution

Evidence

It is possible that the
selected mode is

ventilation

Pros:

• Very efficient
• Scalable

Cons:

• Limited to certain architectures
• No loops
• No complex properties

Roadmap

Critical control and safety
systems at CERN

Verification of PLC programs

Verification of Neural Network
controllers

Conclusions and future work

Conclusions (1)

• Formal verification (e.g. model checking) can be used to verify critical software (critical PLC programs)

• There are not commercial tools (yet) for PLC programs, this is why we developed PLCverif

• PLCverif has been applied to many critical PLC programs at CERN and outside CERN

Conclusions (1)

• Formal verification (e.g. model checking) can be used to verify critical software (critical PLC programs)

• There are not commercial tools (yet) for PLC programs, this is why we developed PLCverif

• PLCverif has been applied to many critical PLC programs at CERN and outside CERN

• Still many challenges:

• State space explosion problem (verification performance)

• Properties specification

• Automatic generation of models

• Counterexample analysis (what do we do when we find a problem?)

Conclusions (1)

Conclusions (2)

Conclusions (2)

1. Important to verify neural networks in critical systems to:
• guarantee properties such as robustness, stability, safety, etc.
• have a better understanding of the behavior of the NN

Conclusions (2)

1. Important to verify neural networks in critical systems to:
• guarantee properties such as robustness, stability, safety, etc.
• have a better understanding of the behavior of the NN

2. We use simulators (e.g. Siemens PLCSIM advanced) to confirm the property violations (counterexamples)

Conclusions (2)

1. Important to verify neural networks in critical systems to:
• guarantee properties such as robustness, stability, safety, etc.
• have a better understanding of the behavior of the NN

2. We use simulators (e.g. Siemens PLCSIM advanced) to confirm the property violations (counterexamples)

3. We analyzed different verification tools

Conclusions (2)

1. Important to verify neural networks in critical systems to:
• guarantee properties such as robustness, stability, safety, etc.
• have a better understanding of the behavior of the NN

2. We use simulators (e.g. Siemens PLCSIM advanced) to confirm the property violations (counterexamples)

3. We analyzed different verification tools

4. We have applied to a real case study for industrial controls at CERN

Ignacio D. Lopez-Miguel et al. “Verification of Neural Networks Meets
PLC Code: An LHC Cooling Tower Control System at CERN”. In EANN
2023: Engineering Applications of Neural Networks conference
https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

Future work

Future work

“Traditional” PLC-based controllers NN-based controllers

Towards reliable and safe control software

Future work

NN design

Source code

Executable

Formal specification

Source code

Executable

“Traditional” PLC-based controllers NN-based controllers

Towards reliable and safe control software

Future work

NN design

Source code

Executable Runtime verification

NN design verificationFormal specification

Source code

Executable Runtime verification

Code synthesis
Formal verification (model checking)

Compositional verification
Counterexample analysis

Formal specification for PLC programs
Simulation capabilities

Checking some properties

“Traditional” PLC-based controllers NN-based controllers

Code synthesis
Formal verification (model checking)

Compositional verification
Counterexample analysis

Towards reliable and safe control software

	Slide 1: Formal verification of critical PLC programs and neural network controllers at CERN
	Slide 2: Roadmap
	Slide 3: Context – CERN (European Organization for Nuclear Research)
	Slide 4: Context – CERN (European Organization for Nuclear Research)
	Slide 5: Context – CERN (European Organization for Nuclear Research)
	Slide 6: Context – CERN (European Organization for Nuclear Research)
	Slide 7: Context – CERN (European Organization for Nuclear Research)
	Slide 8: Context – CERN (European Organization for Nuclear Research)
	Slide 9: Context – CERN (European Organization for Nuclear Research)
	Slide 10: BE-ICS group in a nutshell
	Slide 11: BE-ICS group in a nutshell
	Slide 12: BE-ICS group in a nutshell
	Slide 13: BE-ICS group in a nutshell
	Slide 14: Context – PLCs at CERN
	Slide 15: Context – PLCs at CERN
	Slide 16: Context – PLCs at CERN
	Slide 17: Context – PLCs at CERN
	Slide 18: Context – PLCs at CERN
	Slide 19: Context – PLCs at CERN
	Slide 20: Context – PLCs at CERN
	Slide 21: Roadmap
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Some references
	Slide 70: Some references
	Slide 71: Some references
	Slide 72: Roadmap
	Slide 73: Context – CERN (European Organization for Nuclear Research)
	Slide 74: Context – CERN (European Organization for Nuclear Research)
	Slide 75: Context – CERN (European Organization for Nuclear Research)
	Slide 76: Context – CERN (European Organization for Nuclear Research)
	Slide 77: Context – CERN (European Organization for Nuclear Research)
	Slide 78: Context – Neural-network-based controllers
	Slide 79: Context – Neural-network-based controllers
	Slide 80: Context – Neural-network-based controllers
	Slide 81: Context – Neural-network-based controllers
	Slide 82: Context – Neural-network-based controllers
	Slide 83: Context – Neural-network-based controllers
	Slide 84: Context – Neural-network-based controllers
	Slide 85: Context – Neural-network-based controllers
	Slide 86: Context – Verification of neural-network-based controllers
	Slide 87: Context – Verification of neural-network-based controllers
	Slide 88: Context – Verification of neural-network-based controllers
	Slide 89: Context – Verification of neural-network-based controllers
	Slide 90: Context – Verification of neural-network-based controllers
	Slide 91: Context – Verification of neural-network-based controllers
	Slide 92: Context – Verification of neural-network-based controllers
	Slide 93: Context – Verification of neural-network-based controllers
	Slide 94: Case study – LHC cooling towers controller
	Slide 95: Case study – LHC cooling towers controller
	Slide 96: Case study – LHC cooling towers controller
	Slide 97: Case study – LHC cooling towers controller
	Slide 98: Case study – LHC cooling towers controller
	Slide 99: Case study – LHC cooling towers controller
	Slide 100: Case study – NN description
	Slide 101: Case study – NN description
	Slide 102: Case study – NN description
	Slide 103: Case study
	Slide 104: Case study
	Slide 105: Case study
	Slide 106: Case study
	Slide 107: Case study
	Slide 108: Case study
	Slide 109: Case study
	Slide 110: Case study
	Slide 111: Case study
	Slide 112: Approaches to verify these properties
	Slide 113: Approaches to verify these properties
	Slide 114: Approaches to verify these properties
	Slide 115: Approaches to verify these properties
	Slide 116: Approaches to verify these properties
	Slide 117: Approaches to verify these properties
	Slide 118: nnenum
	Slide 119: nnenum
	Slide 120: nnenum
	Slide 121: nnenum
	Slide 122: nnenum
	Slide 123: nnenum
	Slide 124: nnenum
	Slide 125: nnenum
	Slide 126: nnenum
	Slide 127: nnenum
	Slide 128: Roadmap
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Conclusions (2)
	Slide 133: Conclusions (2)
	Slide 134: Conclusions (2)
	Slide 135: Conclusions (2)
	Slide 136: Conclusions (2)
	Slide 137: Future work
	Slide 138: Future work
	Slide 139: Future work
	Slide 140: Future work

