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Formal specification Formal verification

Using TLA+ to create a clear and concise specification, leading to a subsequent 
code reduction https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext

Verification of neural-network-based control systems in non-towered airports 
to avoid collisions at landing
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain

Integration of their static analyser INFER into their software development 
process https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf

NASA AMES Robust Software Engineering group
https://www.nasa.gov/isd-robust-software-engineering 

Use of the model checker SPIN to verify the model of a software
http://spinroot.com/gerard/pdf/spin04.pdf

Use of the formal specification language VDM to specify industrial applications 
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox

Formal Verification of Critical Aerospace Software  https://hal.archives-ouvertes.fr/hal-01184099/document 

Where are Formal Methods being used?

Correctness, Modelling and Performance of Aerospace Systems 
http://www.compass-toolset.org 

And many 
more … 
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Pros Cons

Unambiguity
(well-defined semantics)

High cost 
(time)

Precision
(e.g. software verification)

Limitation of computational models
(state space explosion in model checking)

… Usability

• Using formal methods is more “expensive” than traditional alternatives in engineering

• Real-life system models may be too large to be handled by simulators or model checkers

• We should apply them when the cost of a failure is higher than the cost of using them 
(tool support)

Why aren’t Formal Methods widely used?
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PLCverif (for users)

The complexity of using formal methods is hidden by the PLCverif

PLCverif references: https://gitlab.com/plcverif-oss and www.cern.ch/plcverif

https://gitlab.com/plcverif-oss
http://www.cern.ch/plcverif
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• There are not commercial tools (yet) for PLC programs, this is why we developed PLCverif

• PLCverif has been applied to many critical PLC programs at CERN and outside CERN

• Still many challenges:

• State space explosion problem (verification performance)

• Properties specification

• Automatic generation of models

• Counterexample analysis (what do we do when we find a problem?)
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Conclusions (2)

1. Important to verify neural networks in critical systems to:
• guarantee properties such as robustness, stability, safety, etc.
• have a better understanding of the behavior of the NN

2. We use simulators (e.g. Siemens PLCSIM advanced) to confirm the property violations (counterexamples)

3. We analyzed different verification tools

4. We have applied to a real case study for industrial controls at CERN

Ignacio D. Lopez-Miguel et al. “Verification of Neural Networks Meets 
PLC Code: An LHC Cooling Tower Control System at CERN”. In EANN 
2023: Engineering Applications of Neural Networks conference
https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35
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NN design

Source code

Executable Runtime verification

NN design verificationFormal specification

Source code

Executable Runtime verification

Code synthesis
Formal verification (model checking)

Compositional verification
Counterexample analysis

Formal specification for PLC programs
Simulation capabilities

Checking some properties

“Traditional” PLC-based controllers NN-based controllers

Code synthesis
Formal verification (model checking)

Compositional verification
Counterexample analysis

Towards reliable and safe control software
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