

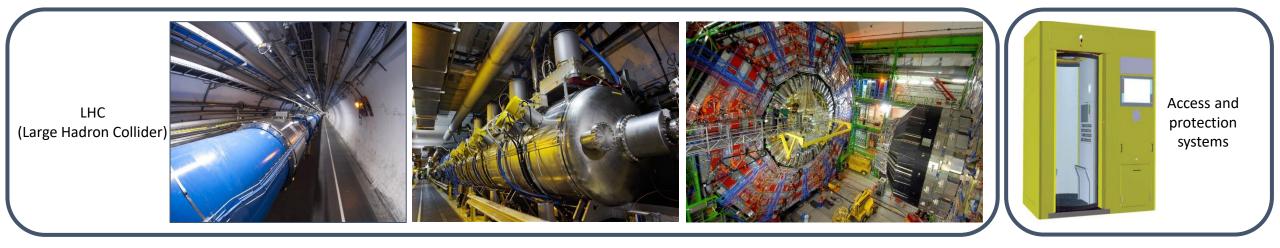
Formal verification of critical PLC programs and neural network controllers at CERN

Borja Fernández Adiego

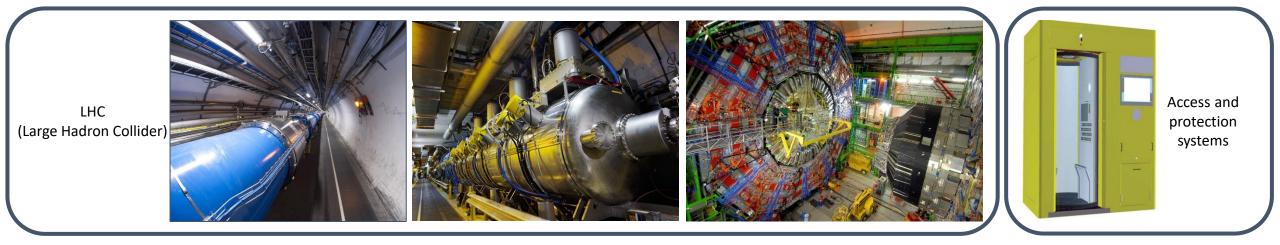
Contains joint work of several members and former members of the **BE-ICS group at CERN**

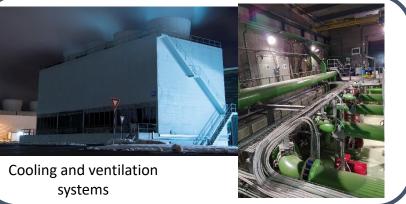
Roadmap

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations


• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

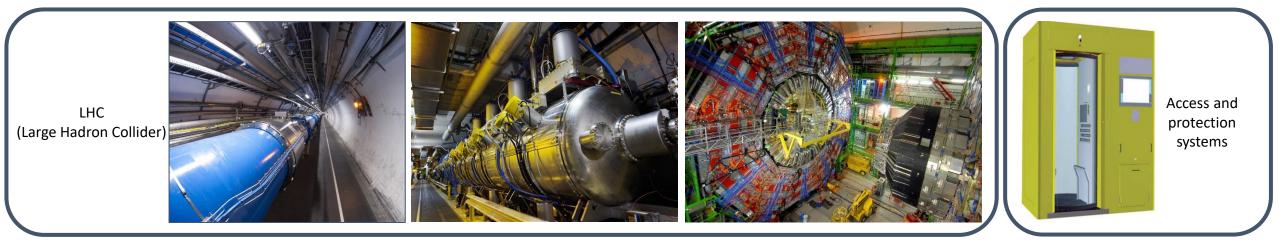
• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

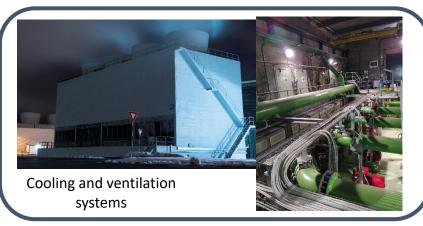

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations



Images from cds.cern.ch

• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations





Images from cds.cern.ch

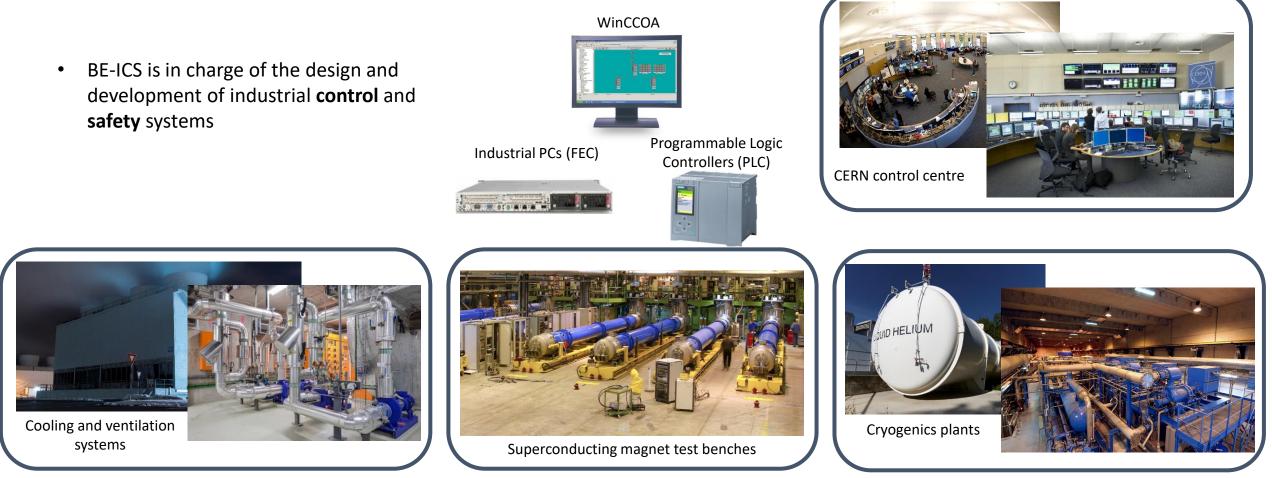
• CERN has the biggest particle accelerator complex in the world and many critical and complex industrial installations

Superconducting magnet test benches

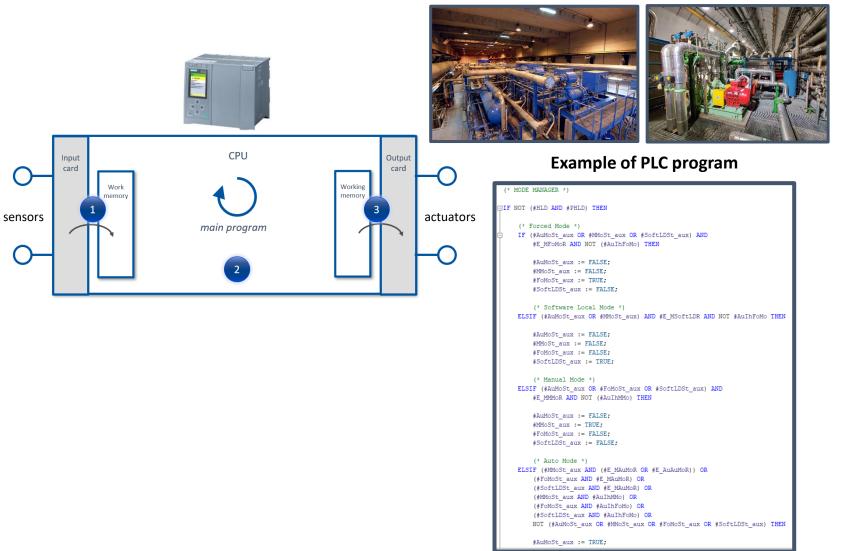
Images from cds.cern.ch

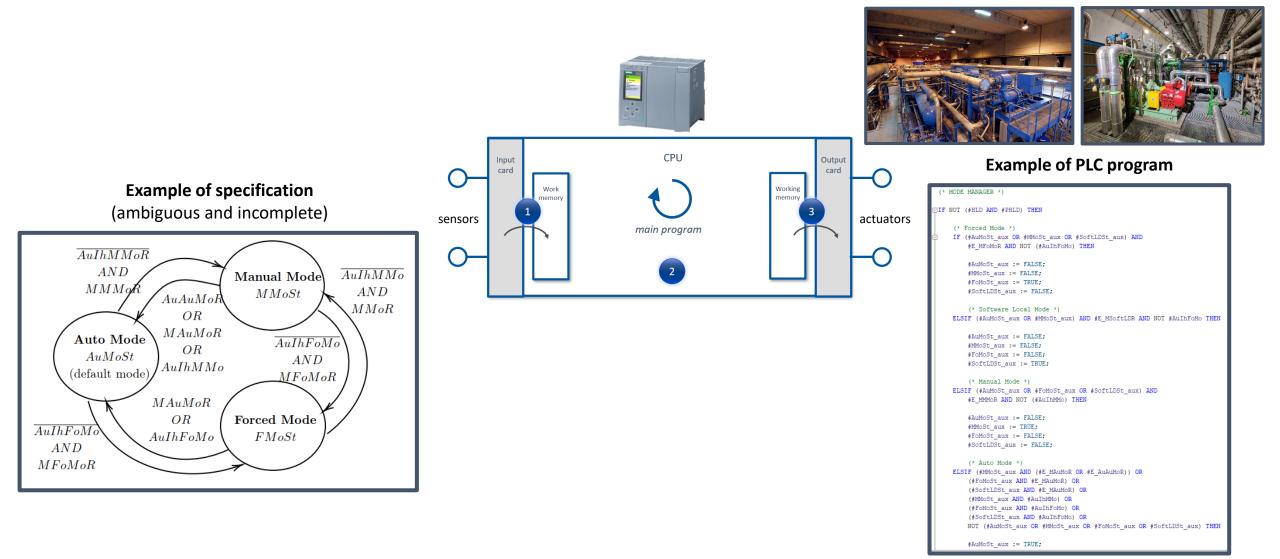
 "BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using standard industrial control solutions" <u>https://be-dep-ics.web.cern.ch</u>

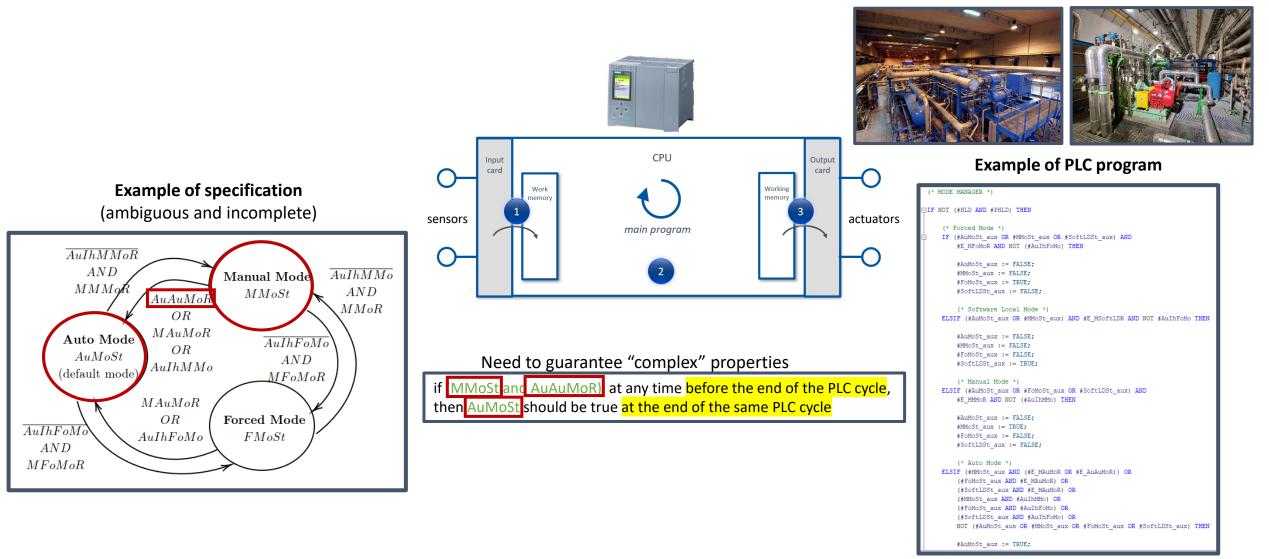
- "BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using standard industrial control solutions" <u>https://be-dep-ics.web.cern.ch</u>
- BE-ICS is in charge of the design and development of industrial control and safety systems



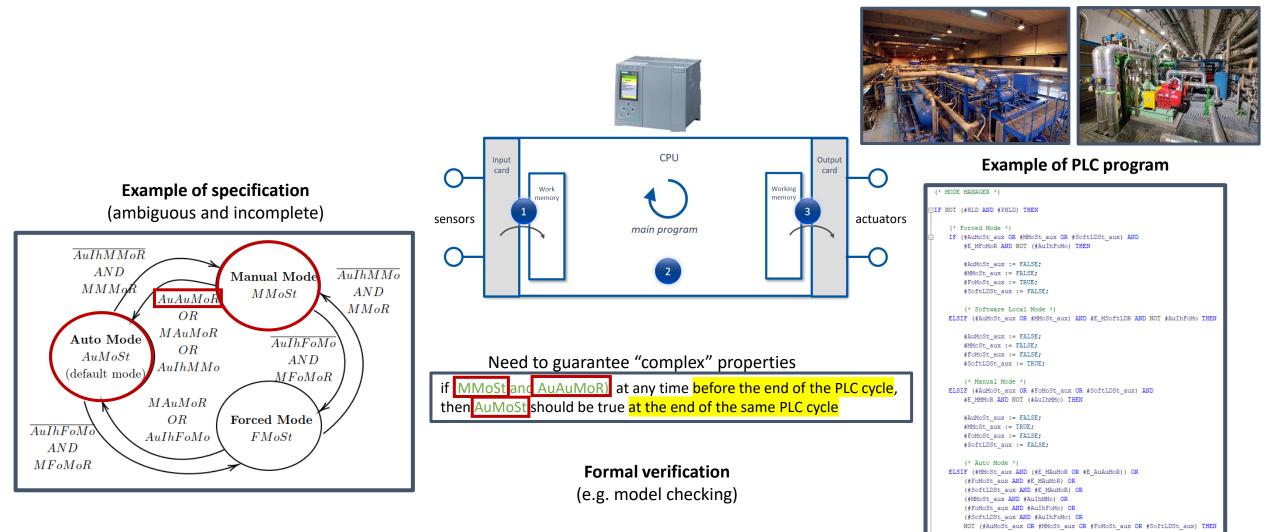
Superconducting magnet test benches

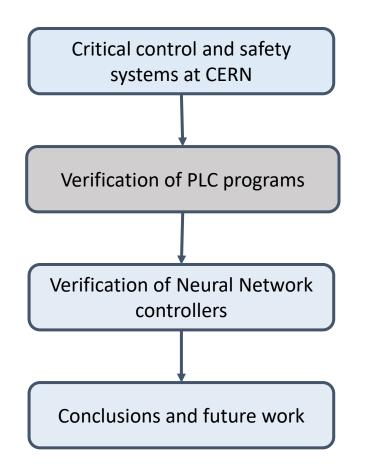

Images from <u>cds.cern.ch</u>

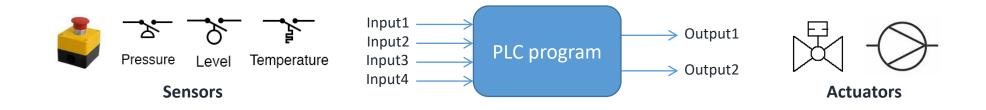

 "BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using standard industrial control solutions" <u>https://be-dep-ics.web.cern.ch</u>

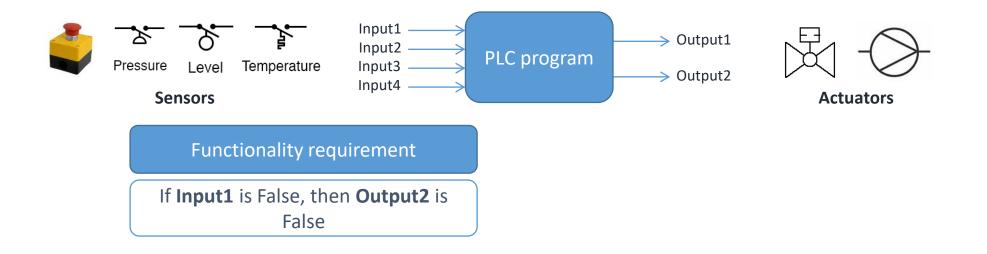


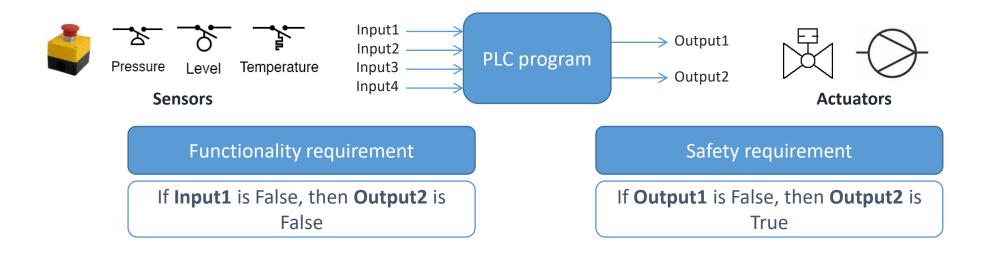
Images from <u>cds.cern.ch</u>

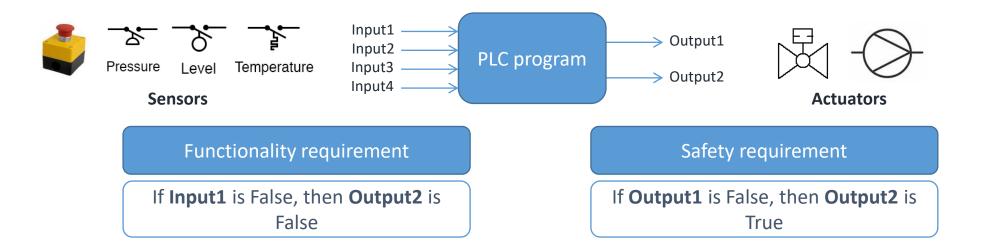


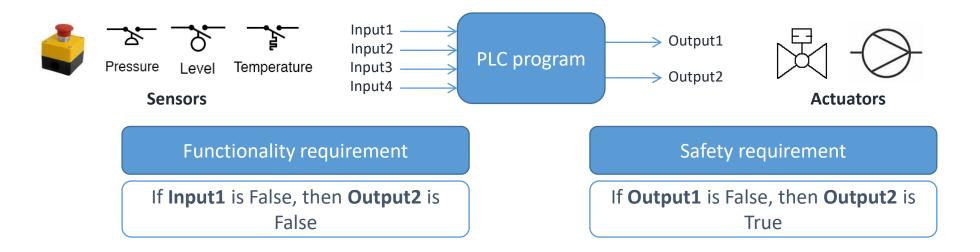



• At CERN, more than 3000 PLCs (Programmable Logic Controllers) are installed to control and/or protect the installations

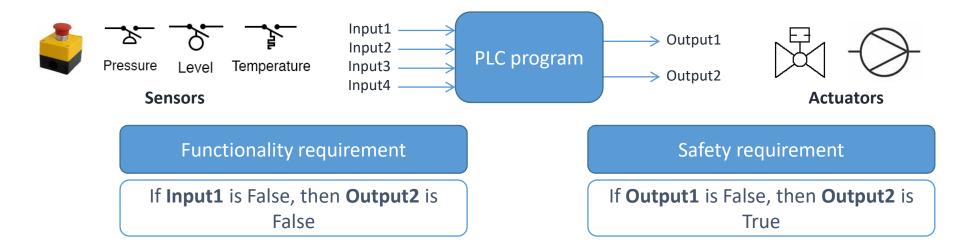


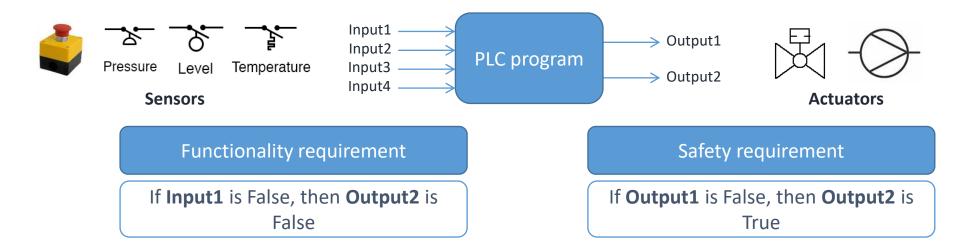

#AuMoSt aux := TRUE;

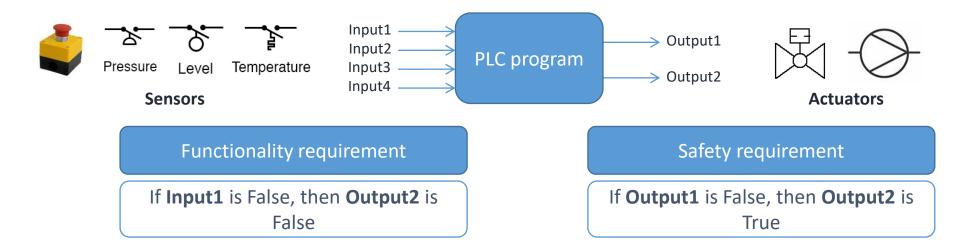

Roadmap





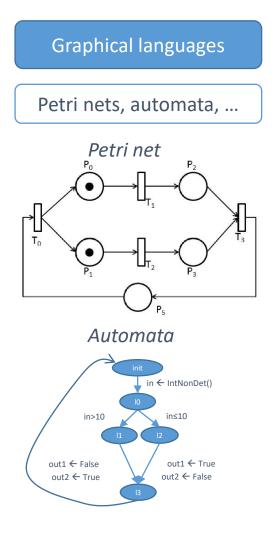

If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations


- If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations
- If they are **INT** (16-bit), then **2**^{16*4} ≈ **1.8***10¹⁹ combinations


- If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations
- If they are **INT** (16-bit), then **2**^{16*4} ≈ **1.8***10¹⁹ combinations
- for large systems (many variables), such requirements **cannot** (practically) **be checked by using testing techniques**

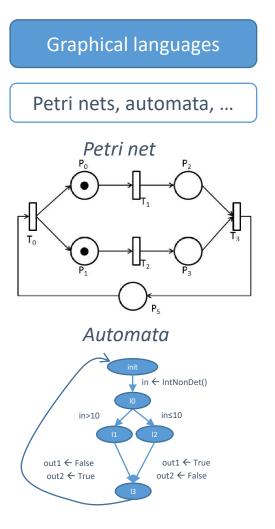
- If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations
- If they are **INT** (16-bit), then **2**^{16*4} ≈ **1.8***10¹⁹ combinations
- for large systems (many variables), such requirements **cannot** (practically) **be checked by using testing techniques**
- Peer reviews and testing can (normally) catch most of the "problems" (e.g. code bugs), but not the CORNER CASES

- If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations
- If they are **INT** (16-bit), then **2**^{16*4} ≈ **1.8***10¹⁹ combinations
- for large systems (many variables), such requirements **cannot** (practically) **be checked by using testing techniques**
- Peer reviews and testing can (normally) catch most of the "problems" (e.g. code bugs), but not the CORNER CASES
 - E.g. Ariane 5 rocket explosion (more than 500 millions US\$ cost due to a software flaw in control software)

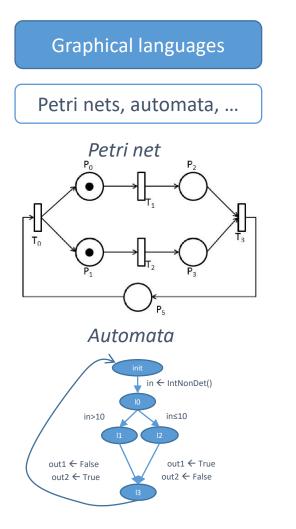


- If "Input1", "Input2", "Input3" and "Input4" are BOOL, then we need to check 2⁴ = 16 combinations
- If they are **INT** (16-bit), then **2**^{16*4} ≈ **1.8***10¹⁹ combinations
- for large systems (many variables), such requirements **cannot** (practically) **be checked by using testing techniques**
- Peer reviews and testing can (normally) catch most of the "problems" (e.g. code bugs), but not the CORNER CASES
 - E.g. Ariane 5 rocket explosion (more than 500 millions US\$ cost due to a software flaw in control software)

Solution: Model checking


Techniques based on mathematics and formal logic (precise semantics)

Techniques based on mathematics and formal logic (precise semantics)


Techniques based on mathematics and formal logic (precise semantics)

Textual languages

B-method, VDM, TLA+,... **B**-method MACHINE Switch **SETS** STATE = {closed, open} VARIABLES state **INVARIANT** state : STATE **INITIALISATION** state := open **OPERATIONS** toggle =IF state = open THEN state := closed ELSE state := open END; END

Techniques based on **mathematics** and **formal logic (precise semantics)**

Textual languages	Mathematical languages
B-method, VDM, TLA+, B-method	Temporal logic, propositional logic, Z notation,
MACHINE Switch SETS STATE = {closed, open} VARIABLES state INVARIANT state : STATE INITIALISATION state := open OPERATIONS toggle = IF state = open THEN state := closed ELSE state := open END ; END	Temporal logic $AG((a \land b) \rightarrow c)$ Propositional logic $(A \rightarrow B) \vdash (\neg B \rightarrow \neg A)$

Graphical languages Textual languages Mathematical languages Temporal logic, Petri nets, automata, ... B-method, VDM, TLA+,... e.g. system model propositional logic, Z (model checking) **B**-method Petri net notation,... MACHINE e.g. properties Switch (model checking) \rightarrow SETS Temporal logic STATE = {closed, open} VARIABLES state $AG((a \land b) \rightarrow c)$ **INVARIANT** state : STATE **INITIALISATION** Automata state := open **OPERATIONS** Propositional logic toggle =in ← IntNonDet() *IF state = open* $(A \rightarrow B) \vdash (\neg B \rightarrow \neg A)$ THEN in>10 in≤10 state := closed ELSE state := open out1 ← False out1 ← True END; out2 ← False out2 ← True END

Techniques based on mathematics and formal logic (precise semantics)

What are Formal Methods?

Textual languages Mathematical languages Graphical languages Temporal logic, Petri nets, automata, ... B-method, VDM, TLA+,... e.g. system model propositional logic, Z (model checking) **B**-method Petri net notation,... MACHINE e.g. properties Switch (model checking) SETS STATE = {closed, open} Temporal logic VARIABLES state $AG((a \land b) \rightarrow c)$ **INVARIANT** state : STATE **INITIALISATION** Automata state := open **OPERATIONS** Propositional logic toggle =in ← IntNonDet() *IF state = open* $(A \rightarrow B) \vdash (\neg B \rightarrow \neg A)$ THEN in>10 in≤10 state := closed ELSE state := open out1 ← False out1 ← True END; out2 ← False out2 ← True They can be used for **specification**, **verification**, END

Techniques based on mathematics and formal logic (precise semantics)

simulation, test case generation, etc.

Where are Formal Methods being used?

Formal specification

Formal verification

Where are Formal Methods being used?

Formal specification

Correctness, Modelling and Performance of Aerospace Systems http://www.compass-toolset.org

amazon

Using **TLA+** to create a clear and concise specification, leading to a subsequent code reduction https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext

Use of the formal specification language **VDM** to specify industrial applications https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox Formal verification

FACEBOOK Meta

Integration of their static analyser INFER into their software development

process https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf

NASA AMES Robust Software Engineering group https://www.nasa.gov/isd-robust-software-engineering Use of the model checker SPIN to verify the model of a software http://spinroot.com/gerard/pdf/spin04.pdf

Verification of **neural-network**-based **control** systems in non-towered airports to avoid collisions at landing

https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain

And many more ...

Formal Verification of Critical Aerospace Software <u>https://hal.archives-ouvertes.fr/hal-01184099/document</u>

Why aren't Formal Methods widely used?

Pros	Cons
Unambiguity	High cost
(well-defined semantics)	(time)
<i>Precision</i>	<i>Limitation of computational models</i>
(e.g. software verification)	(state space explosion in model checking)
	Usability

Why aren't Formal Methods widely used?

Pros	Cons
Unambiguity (well-defined semantics)	High cost (time)
<i>Precision</i> (e.g. software verification)	<i>Limitation of computational models</i> (state space explosion in model checking)
	Usability

- Using formal methods is **more "expensive"** than traditional alternatives in engineering
- Real-life system models may be too large to be handled by simulators or model checkers
- We should **apply them when the cost of a failure is higher than the cost of using them** (tool support)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

(S	ee	7.	2)	

Technique/Measure *		Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

(See 7.2)

						1
	Technique/Measure *		SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR
	1b	1a Semi-formal methods 1b Formal methods 2 Forward traceability between the system safety requirements and the software safety requirements 3 Backward traceability between the safety requirements and the perceived safety needs 4 Computer-aided specification tools to support	1a Semi-formal methods Table B.7 1b Formal methods B.2.2, C.2.4 2 Forward traceability between the system safety requirements and the software safety requirements C.2.11 3 Backward traceability between the safety requirements and the perceived safety needs C.2.11 4 Computer-aided specification tools to support B.2.4	1a Semi-formal methods Table B.7 R 1b Formal methods B.2.2, C.2.4 2 Forward traceability between the system safety requirements and the software safety requirements C.2.11 R 3 Backward traceability between the safety requirements and the perceived safety needs C.2.11 R 4 Computer-aided specification tools to support B.2.4 R	1a Semi-formal methods Table B.7 R 1b Formal methods B.2.2, C.2.4 2 Forward traceability between the system safety requirements and the software safety requirements C.2.11 R 3 Backward traceability between the safety requirements and the perceived safety needs C.2.11 R 4 Computer-aided specification tools to support B.2.4 R	1a Semi-formal methods Table B.7 R R HR 1b Formal methods B.2.2, C.2.4 R R 2 Forward traceability between the system safety requirements and the software safety requirements C.2.11 R R HR 3 Backward traceability between the safety requirements and the perceived safety needs C.2.11 R R HR 4 Computer-aided specification tools to support B.2.4 R R HR

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

.2)	
	· <)

Technique/Measure *		Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR
	1b 2 3	1a Semi-formal methods 1b Formal methods 2 Forward traceability between the system safety requirements and the software safety requirements 3 Backward traceability between the safety requirements and the perceived safety needs 4 Computer-aided specification tools to support	1aSemi-formal methodsTable B.71bFormal methodsB.2.2, C.2.42Forward traceability between the system safety requirements and the software safety requirementsC.2.113Backward traceability between the safety requirements and the perceived safety needsC.2.114Computer-aided specification tools to supportB.2.4	1a Semi-formal methods Table B.7 R 1b Formal methods B.2.2, C.2.4 2 Forward traceability between the system safety requirements and the software safety requirements C.2.11 R 3 Backward traceability between the safety requirements and the perceived safety needs C.2.11 R 4 Computer-aided specification tools to support B.2.4 R	1aSemi-formal methodsTable B.7R1bFormal methodsB.2.2, C.2.4R2Forward traceability between the system safety requirements and the software safety requirementsC.2.11RR3Backward traceability between the safety requirements and the perceived safety needsC.2.11RR4Computer-aided specification tools to supportB.2.4RR	1aSemi-formal methodsTable B.7RRHR1bFormal methodsB.2.2, C.2.4RR2Forward traceability between the system safety requirements and the software safety requirementsC.2.11RRHR3Backward traceability between the safety requirements and the perceived safety needsC.2.11RRHR4Computer-aided specification tools to supportB.2.4RRHR

Table A.5 – Software design and development – software module testing and integration

(See 7.4.7 and 7.4.8)

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

(S	ee	7.2)

Technique/Measure *		Ref.	SIL 1	SIL 2	SIL 3	SIL 4	
1a	Semi-formal methods	Table B.7	R	R	HR	HR	
1b	Formal methods	B.2.2, C.2.4		R	R	HR	
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR	
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR	
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR	
	•						£

Table A.5 – Software design and development – software module testing and integration

(See 7.4.7 and 7.4.8)

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

Technique/Measure *		Ref.	SIL 1	SIL 2	SIL 3	SIL 4	
1a	Semi-formal methods	Table B.7	R	R	HR	HR	
1b	Formal methods	B.2.2, C.2.4		R	R	HR	
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR	
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR	
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR	

(See 7.2)

Table A.5 – Software design and development – software module testing and integration

SIL 1 SIL 2 SIL 3 Technique/Measure * SIL 4 Ref. Probabilistic testing C.5.1 ----R R R 2 Dynamic analysis and testing B.6.5 R HR HR HR Table B.2 Data recording and analysis C.5.2 HR HR HR HR 3 Functional and black box testing B.5.1 HR HR HR HR B.5.2 Table B.3 5 Performance testing Table B.6 R R HR HR 6 C.5.27 R R HR HR Model based testing Interface testing C.5.3 R R HR HR C.4.7 R HR HR HR Test management and automation tools 8 9 Forward traceability between the software design specification C.2.11 R R HR HR and the module and integration test specifications 10 Formal verification C.5.12 --------R R

(See 7.4.7 and 7.4.8)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR

(See 7.2)

Table A.5 – Software design and development – software module testing and integration

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

(See 7.4.7 and 7.4.8)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

several references to model checking. For example from IEC 61511-2:2016 Annex B:

"... specification should be implemented in the graphical language of the **model checking** workbench environment..."

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR

(See 7.2)

Table A.5 – Software design and development – software module testing and integration

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

(See 7.4.7 and 7.4.8)

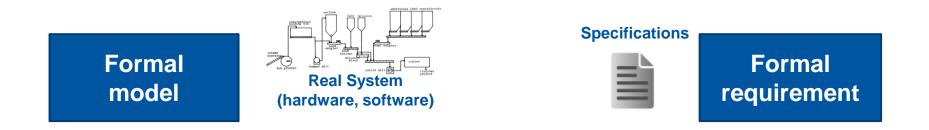
IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

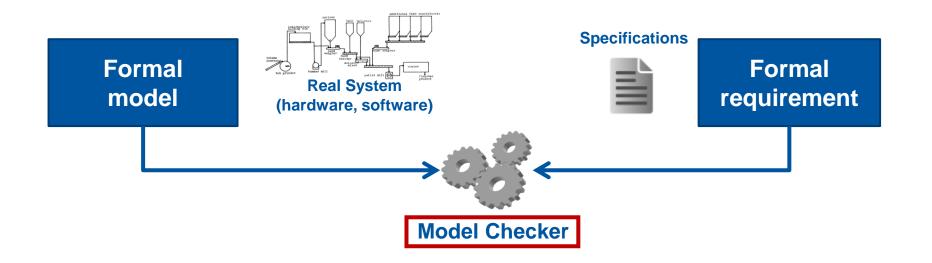
several references to model checking. For example from IEC 61511-2:2016 Annex B:

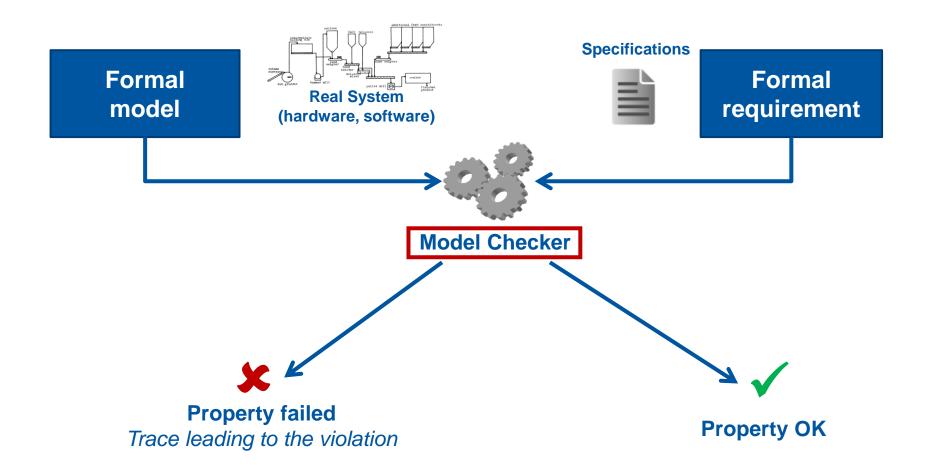
"... specification should be implemented in the graphical language of the **model checking** workbench environment..."

Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

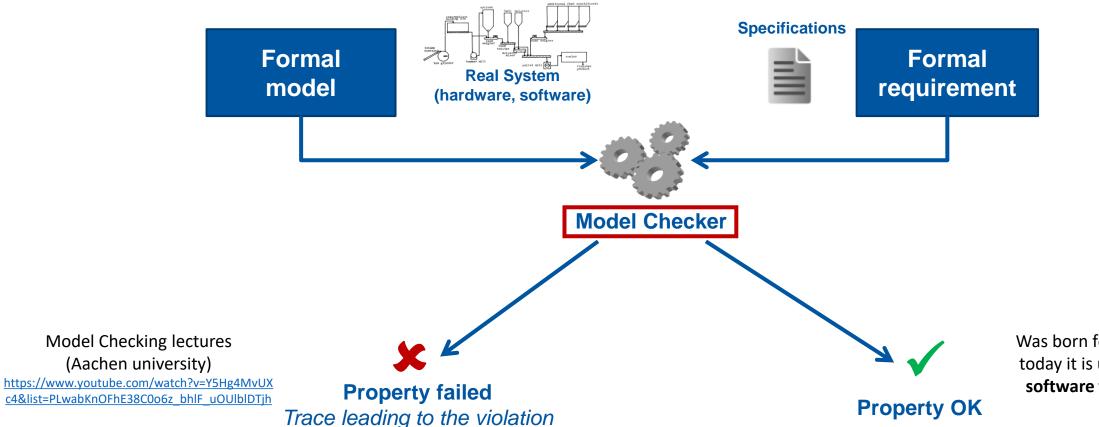
Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property


Clarke and Emerson (1982) and Queille and Sifakis (1982)


Specifications


Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property



Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

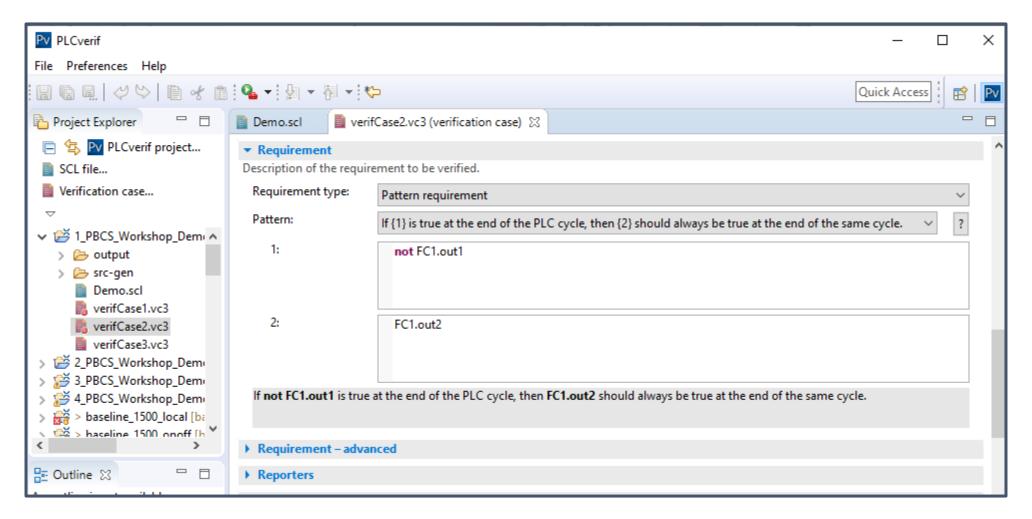
Was born for hardware design, today it is used extensively for software verification as well

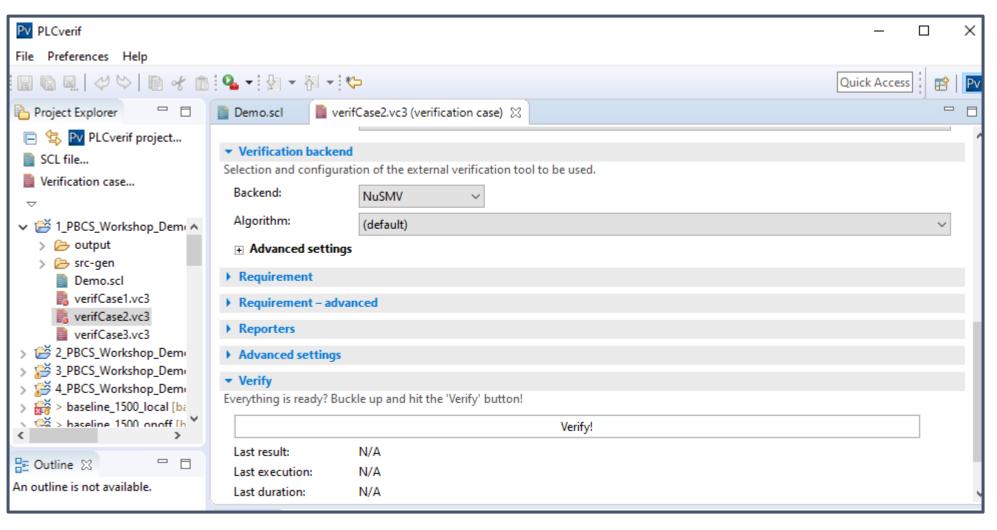
Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

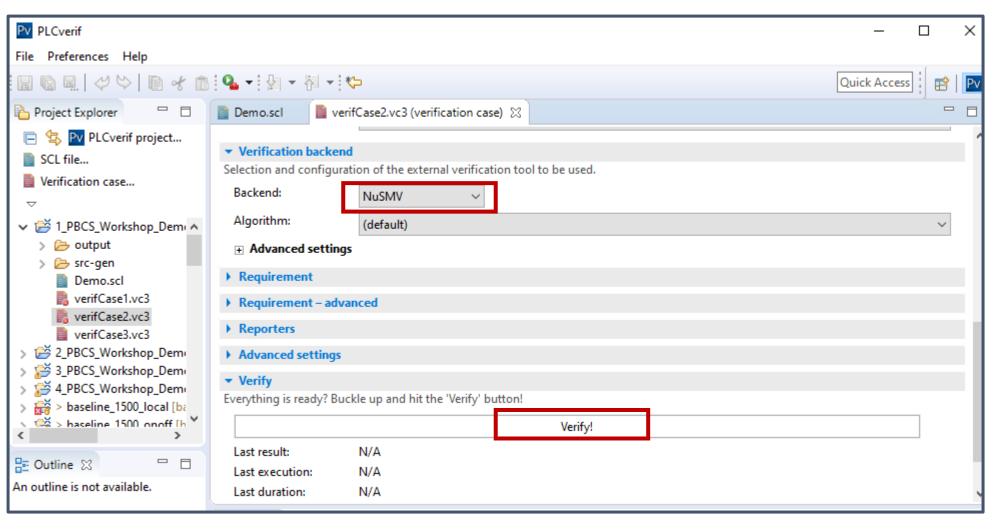
PLCverif (for PLC programs) VAR TNPUT in1 : BOOL in2: BOOL: in3 : BOOL; in4: BOOL; END VAR VAR OUTPUT If **Output1** is FALSE Formal **Formal** out1 : BOOL out2 : BOOL; END VAR then **Output2** is TRUE model requirement logic for out1 IF in1 OR NOT in2 THEM out1 := NOT in3 OR in4 out1 := FALSE; END_IF; // logic for out2 out2 := (in1 OR NOT FUNCTION **Model Checker Model Checking lectures** Was born for hardware design, today it is used extensively for (Aachen university) https://www.youtube.com/watch?v=Y5Hg4MvUX software verification as well **Property failed** c4&list=PLwabKnOFhE38C0o6z bhlF uOUlbIDTih **Property OK** Trace leading to the violation

Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982) **PLCverif** (for PLC programs) VAR TNPUT in1 : BOOL in2: BOOL: in3 : BOOL; in4: BOOL; END VAR VAR OUTPUT If **Output1** is FALSE Formal **Formal** out1 : BOOL out2 : BOOL; END VAR then **Output2** is TRUE model requirement logic for out1 IF in1 OR NOT in2 THEM out1 := NOT in3 OR in4 out1 := FALSE; END_IF; Control-flow // logic for out2 out2 := (in1 OR NOT automaton (CFA) FUNCTION **Model Checker** Model Checking lectures Was born for hardware design, (Aachen university) today it is used extensively for https://www.youtube.com/watch?v=Y5Hg4MvUX software verification as well **Property failed** c4&list=PLwabKnOFhE38C0o6z bhlF uOUlbIDTih **Property OK** Trace leading to the violation


Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property


PLCverif (for PLC programs) VAR TNPUT in1 : BOOL in2: BOOL: in3 : BOOL; in4: BOOL; END VAR VAR OUTPUT If **Output1** is FALSE Formal **Formal** out1 : BOOL out2 : BOOL; END VAR then **Output2** is TRUE model requirement logic for out1 IF in1 OR NOT in2 THEM out1 := NOT in3 OR in4 out1 := FALSE; END_IF; Control-flow // logic for out2 out2 := (in1 OR NOT automaton (CFA) FUNCTION Temporal Logic **Model Checker** $AG (EoC \rightarrow (!Out1 \& Out2))$ Model Checking lectures Was born for hardware design, today it is used extensively for (Aachen university) https://www.youtube.com/watch?v=Y5Hg4MvUX software verification as well **Property failed** c4&list=PLwabKnOFhE38C0o6z bhlF uOUlbIDTih **Property OK** Trace leading to the violation


Given a **global model** of the system and a **formal property**, the **model checking algorithm checks exhaustively** that the model meets the property

PLCverif (for PLC programs) VAR TNPUT in1 : BOOL in2: BOOL: in3 : BOOL; in4: BOOL; END VAR VAR OUTPUT If **Output1** is FALSE Formal **Formal** out1 : BOOL; out2 : BOOL; END VAR then **Output2** is TRUE model requirement // logic for out1 IF in1 OR NOT in2 THEN out1 := NOT in3 OR in4 out1 := FALSE; END_IF; Control-flow // logic for out2 out2 := (in1 OR NOT in2) AND (NOT in3 or in4 automaton (CFA) FUNCTION Temporal Logic **O**theta FC1_in1 : FC1_in2 : FC1 out1 : boolean; -- froze **Model Checker** loc = init_pv & (TRUE) : loop_start; TRUE: loc; $AG (EoC \rightarrow (!Out1 \& Out2))$ it(FC1_in1) := FALSE; CBMC loc = loop start & (TRUE) : (TRUE, FALSE); TRUE : FCl_in1; it(FC1 out1) := FALSE : FC1 out1 Model Checking lectures Was born for hardware design, today it is used extensively for (Aachen university) https://www.youtube.com/watch?v=Y5Hg4MvUX software verification as well **Property failed** c4&list=PLwabKnOFhE38C0o6z bhlF uOUlbIDTih **Property OK** Trace leading to the violation

PV PLCverif File Preferences Help	
□ □ □ ↓ ↓ ↓ □ ↓ □ ↓ □ ↓ • ↓ • ↓ • ↓	4
🔁 Project Explorer 📃 🗖	Demo.scl 🔀
 PLCverif project SCL file Verification case Verification case 1_PBCS_Workshop_DemoSCL >> output >> src-gen Demo.scl verifCase1.vc3 verifCase2.vc3 verifCase3.vc3 verifCase3.vc3 2_PBCS_Workshop_DemoSCL >> 2_PBCS_Workshop_DemoSCL >> 3_PBCS_Workshop_DemoSCL >> 4_PBCS_Workshop_DemoSCL >> baseline_1500_local [baseline_1500_local master] >> baseline_1500_onoff [baseline_1500_onoff master] >> baseline_1500_pco [baseline_1500_pco master] >> BECOproject >>> BESeminar 	<pre>// FUNCTION declaration @ FUNCTION FC1 : VOID @ VAR_INPUT in1 : BOOL; in2: BOOL; in3 : BOOL; in4: BOOL; END_VAR @ VAR_OUTPUT out1 : BOOL; out2 : BOOL; END_VAR BEGIN // logic for out1 @ IF in1 OR NOT in2 THEN out1 := NOT in3 OR in4; ELSE out1 := FALSE; END_IF; // logic for out2 out2 := (in1 OR NOT in2) AND (NOT in3 or in4); END_FUNCTION</pre>

Demo.scl
 verifCase1.vc3
 verifCase2.vc3
 verifCase3.vc3
 2_PBCS_Workshop_DemoSCL
 3_PBCS_Workshop_DemoSCL
 4_PBCS_Workshop_DemoSafety

 BECOproject

 BESeminar

 BESeminar2

> 📂 DemoProject

> 对 DemoSIF1

E Outline

An outline is not available.

> baseline_1500_local [baseline_1500_local master]
 > baseline_1500_onoff [baseline_1500_onoff master]
 > baseline_1500_pco [baseline_1500_pco master]

> 🚰 > demoproject_plcverif [demoproject_plcverif master]

> 🚔 > demo-unicos [demo-unicos master]

> 🚟 > demo1 [demo1 master]

> Z DemoSummerStudent
 > Z DemoTheta
 > Z ESO_Program
 > Z ESO_Program2

Pv PLCverif

File Preferences Help 🔚 🕞 🖳 🛷 🏷 📄 🛷 🛍 💁 📲 🖓 🕶 🏷 Project Explorer verifCase2.vc3 (verification case) verifCase2 verification report 🔀 Demo.scl 📄 🔄 📴 PLCverif project... 📄 SCL file... ■ 🔗 file:///C:/dev/PLCverif/workspace/1_PBCS_Workshop_DemoSCL/output/verifCase2.report.html \sim Verification case... PLCverif — Verification report \bigtriangledown ✓ ↓ 1_PBCS_Workshop_DemoSCL Generated on 2021-12-06 11:50:27 | PLCverif v3.0 | (C) CERN BE-ICS-AP | Show/hide expert details > 🗁 output > 🗁 src-gen

ID:	verifCase2
Name:	
Description:	
Source file(s):	C:\dev\PLCverif\workspace\1 PBCS Workshop DemoSCL\Demo.scl C:\dev\PLCverif\workspace\.builtin Siemens S7-300\builtin.scl
Requirement:	If not FC1.out1 is true at the end of the PLC cycle, then FC1.out2 should always be true at the end of the same cycle.
Result:	Violated
Verification backend:	NusmvBackend (nuxmv-Classic-dynamic-df)
Total run time:	449 ms
Backend run time:	346 ms

Counterexample

v

- -

	Variable	End of Cycle 1
INPUT BOOL	FC1.in1	true
INPUT BOOL	FC1.in2	false
INPUT BOOL	FC1.in3	true
INPUT BOOL	FC1.in4	false
OUTPUT BOOL	FC1.out1	false
OUTPUT BOOL	FC1.out2	false

Pv PLCverif File Preferences Help

> 🚔 > demo-unicos [demo-unicos master]

> 🚰 > demoproject_plcverif [demoproject_plcverif master]

> 📸 > demo1 [demo1 master]

> 📂 DemoSummerStudent > 📂 DemoTheta > 📂 ESO_Program > 📂 ESO_Program2

> 📂 DemoProject

> 对 DemoSIF1

🔪 🖾 FSO Project

An outline is not available.

🔚 Outline 🖾

rite Preferences Help		
🖩 🖷 🖳 🖉 ♡> 🗈 🛷 💼 🂁 ▾ 🖗 ▾ 🏷		
Project Explorer	Demo.scl 📄 verifCas	e2.vc3 (verification case) 💿 verifCase2 verification report 🔀
😑 😫 🔁 PLCverif project 📄 SCL file		lev/PLCverif/workspace/1_PBCS_Workshop_DemoSCL/output/verifCase2.report.html
■ Verification case	PLCverif —	- Verification report
✓		
> 🔁 output > 🔁 src-gen	Generated on 2021-12-06 11:50	27 PLCverif v3.0 (C) CERN BE-ICS-AP <u>Show/hide expert details</u>
Demo.scl	ID:	verifCase2
verifCase1.vc3 verifCase2.vc3	Name:	
verifCase3.vc3	Description:	
 	Source file(s):	<u>C:\dev\PLCverif\workspace\1 PBCS Workshop DemoSCL\Demo.scl</u> <u>C:\dev\PLCverif\workspace\.builtin Siemens S7-300\builtin.scl</u>
> 🚰 4_PBCS_Workshop_DemoSafety	Requirement:	If not FC1.out1 is true at the end of the PLC cycle, then FC1.out2 should always be true at the end of the same cycle.
> baseline_1500_local [baseline_1500_local master] > baseline_1500_onoff [baseline_1500_onoff master]	Result:	Violated
baseline_1500_pto [baseline_1500_pto master]	Verification backend:	NusmvBackend (nuxmv-Classic-dynamic-df)
> 🗃 BECOproject	Total run time:	449 ms
> 🚰 BESeminar > ጅ BESeminar2	Backend run time:	346 ms

Counterexample

v

- -

	Variable	End of Cycle 1
INPUT BOOL	FC1.in1	true
INPUT BOOL	FC1.in2	false
INPUT BOOL	FC1.in3	true
INPUT BOOL	FC1.in4	false
OUTPUT BOOL	FC1.out1	false
OUTPUT BOOL	FC1.out2	false

PLCverif references: <u>https://gitlab.com/plcverif-oss</u> and <u>www.cern.ch/plcverif</u>

Some references

Some references

Real case studies

B. Fernández et al. "**Applying model checking to industrial-sized PLC programs"**. In IEEE Transactions on Industrial Informatics https://ieeexplore.ieee.org/document/7295624

B. Fernandez et al. "Applying model checking to critical PLC applications : An ITER case study" in Proc. of the 17th ICALEPCS https://cds.cern.ch/record/2305319/files/thpha161.pdf

B. Fernandez et al. "Applying model checking to highly-configurable safety critical software: The SPS-PPS PLC program" in Proc. of the 18th ICALEPCS <u>https://cds.cern.ch/record/2809709/files/document.pdf</u>

-	_7/	۵
-	_//	/
12		
	-	

 B. Fernandez et al. "Cause-and-Effect Matrix specifications for safety critical systems at CERN" in Proc. of the 17th ICALEPCS <u>https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf</u>

Some references

Real case studies

B. Fernández et al. "Applying model checking to industrial-sized PLC programs". In **IEEE Transactions on Industrial Informatics** https://ieeexplore.ieee.org/document/7295624

B. Fernandez et al. "Applying model checking to critical PLC applications : An ITER case study" in Proc. of the 17th ICALEPCS https://cds.cern.ch/record/2305319/files/thpha161.pdf

B. Fernandez et al. "Applying model checking to highly-configurable safety critical software: The SPS-PPS PLC program" in Proc. of the 18th ICALEPCS https://cds.cern.ch/record/2809709/files/document.pdf

End of

Cvcle 2

R EDGE inline

R_EDGE_inlined_1.RET_VAL false

End of

Cvcle 3

false false

false

false true true

B. Fernandez et al. "Cause-and-Effect Matrix specifications for safety critical systems at CERN" in Proc. of the 17th ICALEPCS https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf

> TRUE instan

TRUE FRET_R

Research activities

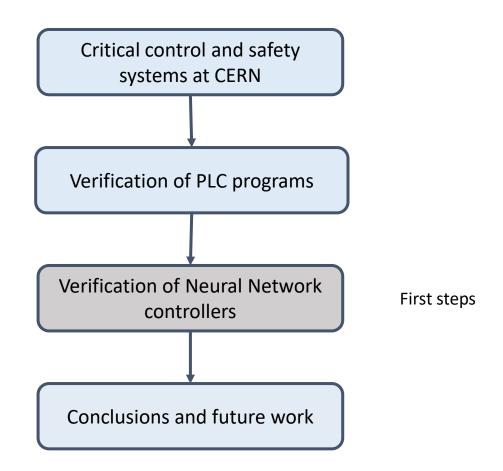
Ignacio D. Lopez-Miguel et al. "Simplification of numeric variables for PLC model checking". In Proc. of the MEMOCODE '21 https://dl.acm.org/doi/abs/10.1145/3487212.3487334

Milán Mondok. "Evaluating compositional verification options for PLCverif". In CERN internal note https://cds.cern.ch/record/2780057/files/compositional verification.pdf

B. Fernández et al. "Modelling and formal verification of timing aspects in large PLC programs". In Proc. of IFAC World Congress'14 http://cds.cern.ch/record/1956687/files/CERN-ACC-2014-0226.pdf

D. Darvas et al. "A formal specification method for PLC-based applications" in Proc. of the 15th ICALEPCS https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepqf091.pdf

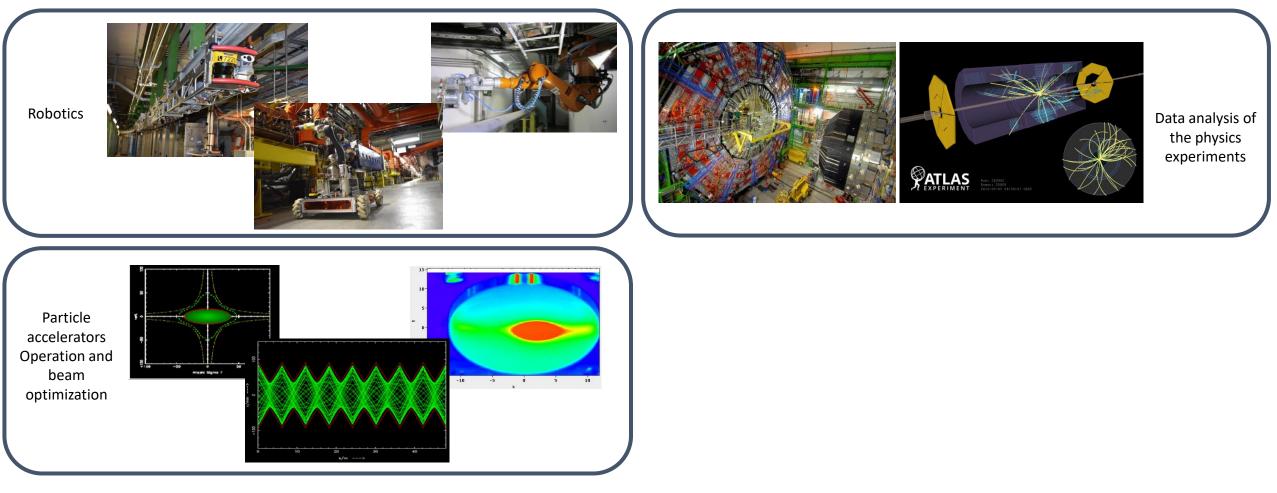
_		-		
~		٦ĸ	i	
		C	ì.	
- ا	-		1	
12		-		

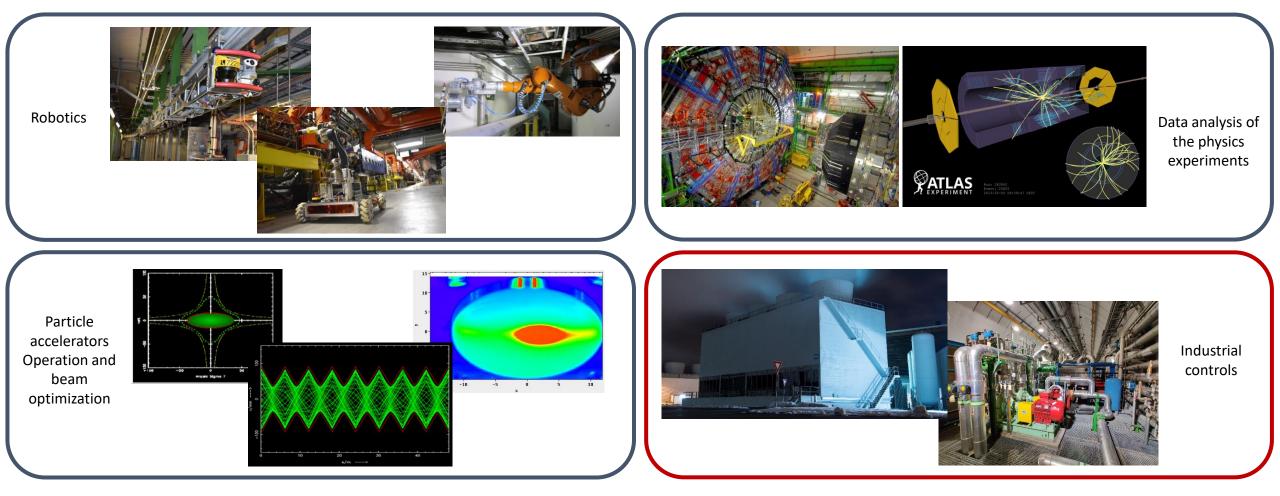

Zsófia Ádám et al. "From Natural Language Requirements to the Verification of Programmable Logic Controllers: Integrating FRET into PLCverif". In NASA Formal Methods Symposium https://link.springer.com/chapter/10.1007/978-3-031-33170-1 21

	LTLSIM	Countor	ovamplo	
		Counter	Counterexample	
SCOPE CONDITIONS COMPONENT* SHALL* TIMING (RESPONSES*)	Requirements in FRETish		Variable	
	·	bool	R_EDGE_inl	
		bool	R_EDGE_in	
	0 1	bool	R_EDGE_in	
the CPC_FB_OnOff shall always satisfy if (instance.MMoSt & instance.AuAuMoR	TRUE	bool	R_EDGE_in	
& PLC_END) then at the next occurrence of PLC_END, instance.AuMoSt	instan FALSE •	bool	R_EDGE_in	
		INPUT BOOL	instance.Au	
	instan	LOCAL BOOL	instance.Au	
	FALSE •	INPLIT BOOL	instance Au	

Mihály Dobos-Kovács. "Counterexample analysis of formal verification methods". In CERN internal note https://cds.cern.ch/record/2779411/files/MihalyDobosKovacs_report.pdf

Roadmap




Many applications of machine learning at CERN

٠

Why NN-based controllers?

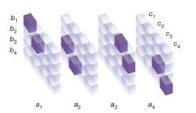
Why NN-based controllers?

Tasks hard to specify

• Autonomous driving

Several rule exceptions

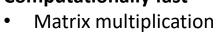
Why NN-based controllers?


Tasks hard to specify

Computationally fast

- Autonomous driving
- Matrix multiplication

Several rule exceptions

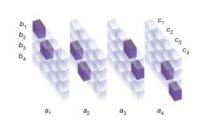


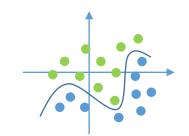
Why NN-based controllers?

Tasks hard to specify

Computationally fast

• Autonomous driving




Versatile

- Non-linearities
- No need to linearize

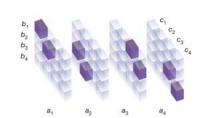
Several rule exceptions

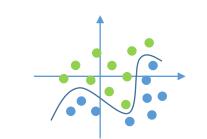
Why NN-based controllers?

Tasks hard to specify

• Autonomous driving

Computationally fast

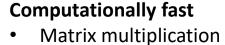

• Matrix multiplication


Versatile

- Non-linearities
- No need to linearize

Several rule exceptions

Only data needed


- No physical modelling required
- Collect data

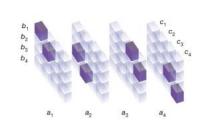
Why NN-based controllers?

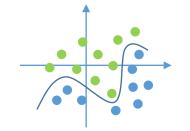
Tasks hard to specify

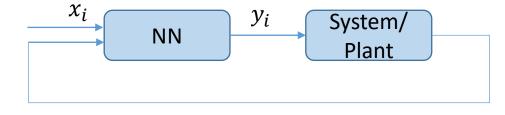
• Autonomous driving

Versatile

- Non-linearities
- No need to linearize


Only data needed


- No physical modelling required
- Collect data



Several rule exceptions

Why NN-based controllers?

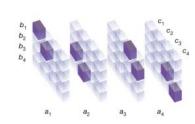
Tasks hard to specify

• Autonomous driving

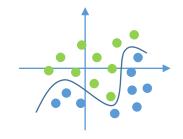
Several rule exceptions

Computationally fast

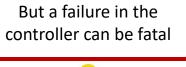
• Matrix multiplication


Versatile

- Non-linearities
- No need to linearize


Only data needed

- No physical modelling required
- Collect data

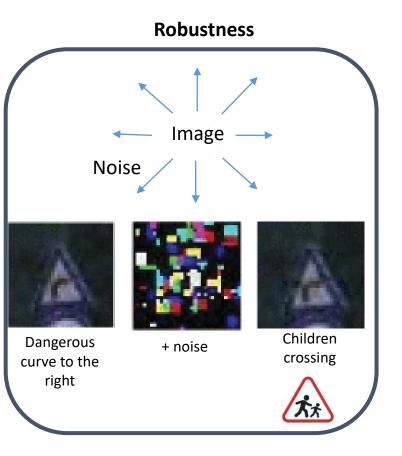


 x_i

System/

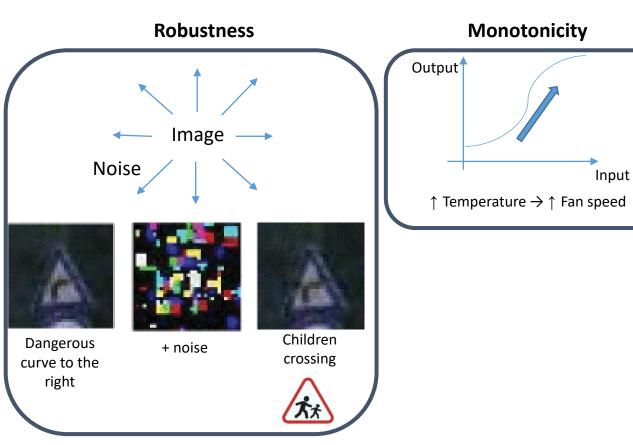
Plant

[2] Pisarov, Jelena & Mester, Gyula. (2020). The Future of Autonomous Vehicles. FME Transactions. 49. 29-35. 10.5937/fme2101029P.

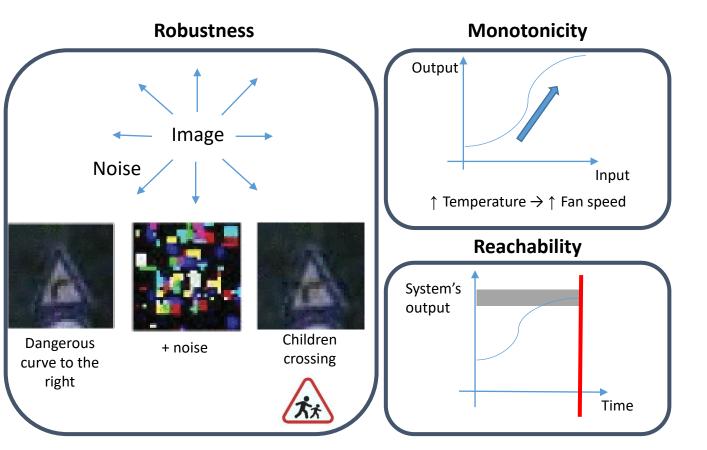

NN

 y_i

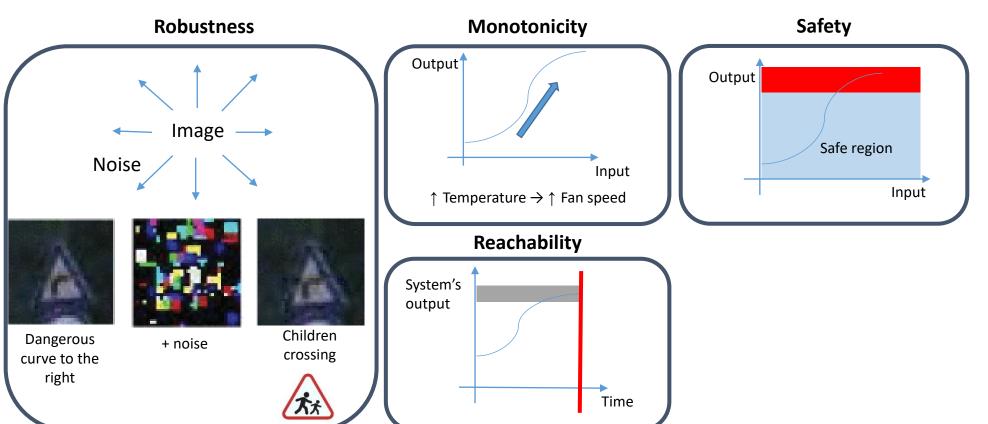
Why verification of NNs?


Why verification of NNs?

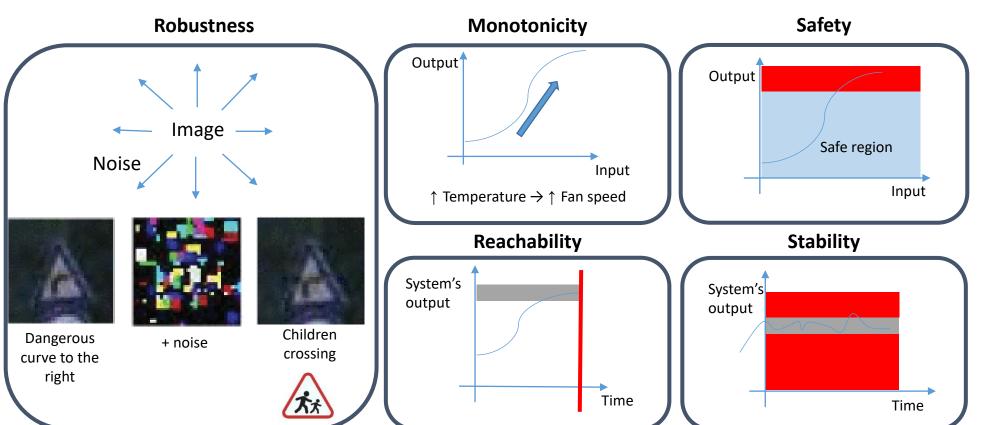
Why verification of NNs?


Why verification of NNs?

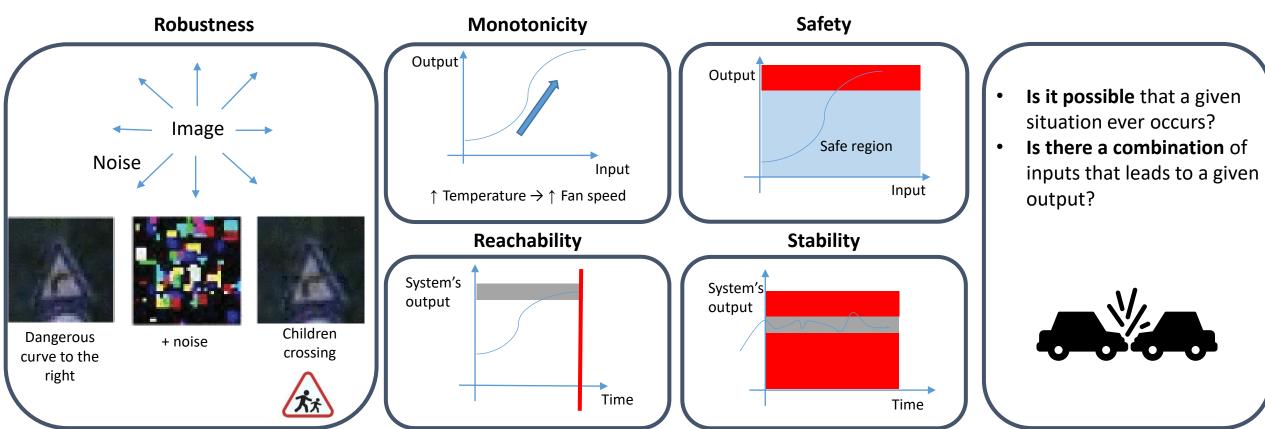
Why verification of NNs?



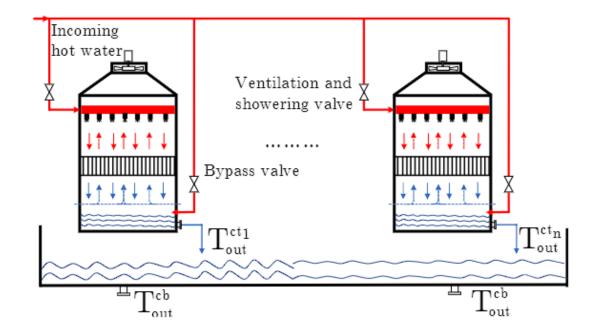
Why verification of NNs?

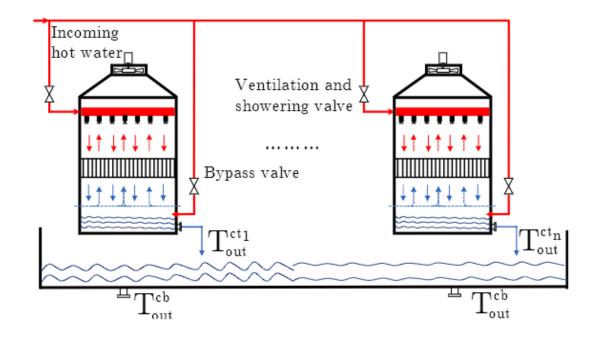


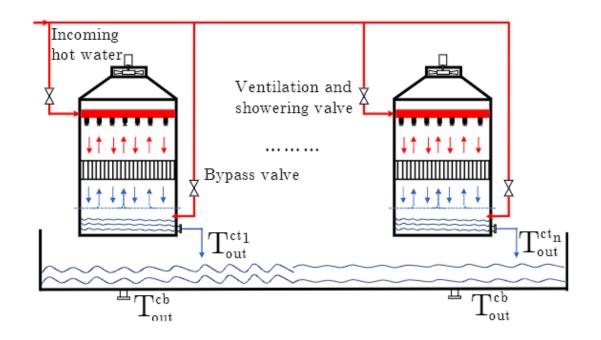
Why verification of NNs?

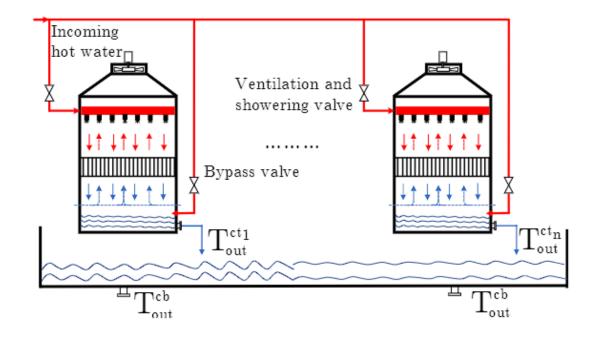

Why verification of NNs?

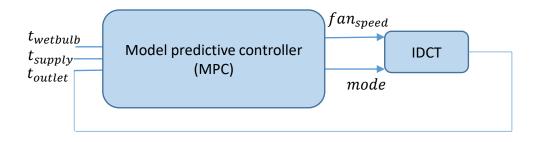
• Guaranteeing properties



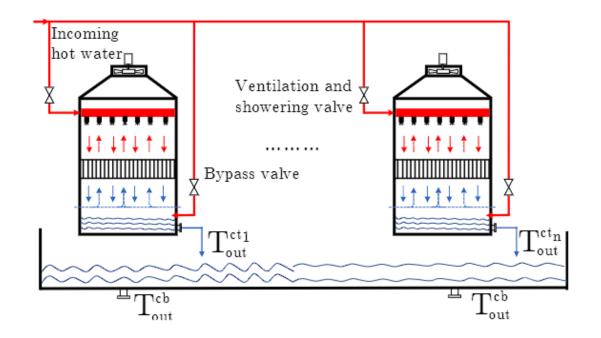

• Explainability

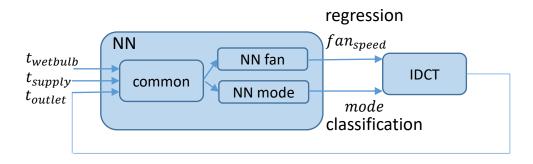

- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)

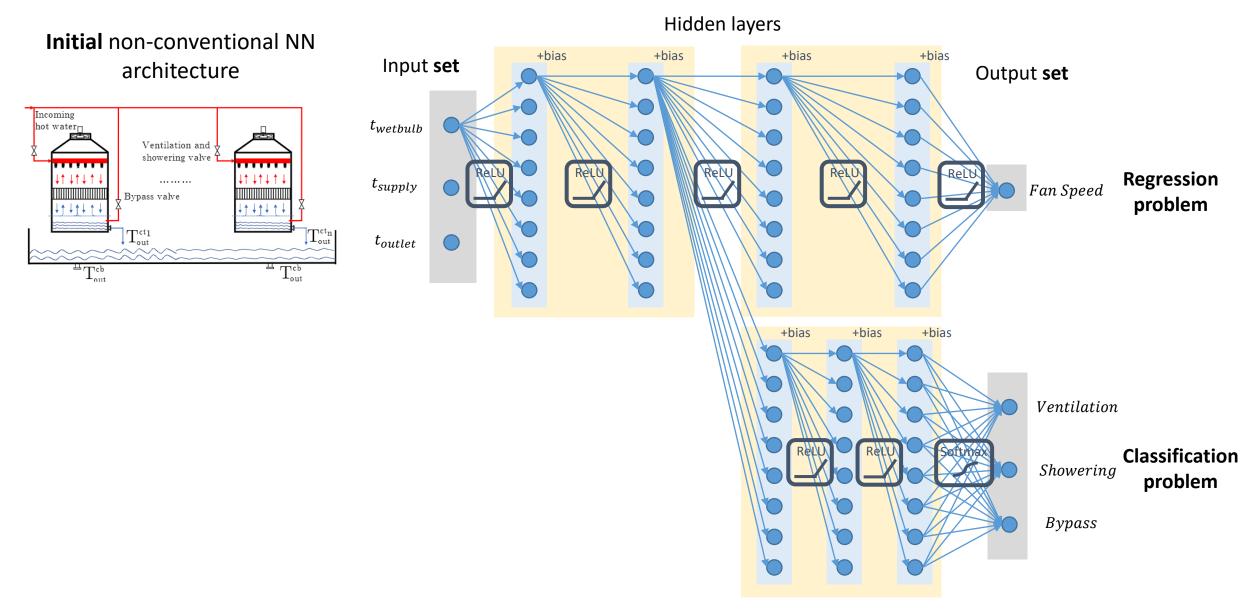

- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)
- Control actions:
 - Mode selection:
 - 1. Ventilation
 - 2. Showering
 - 3. Bypass
 - Fan speed

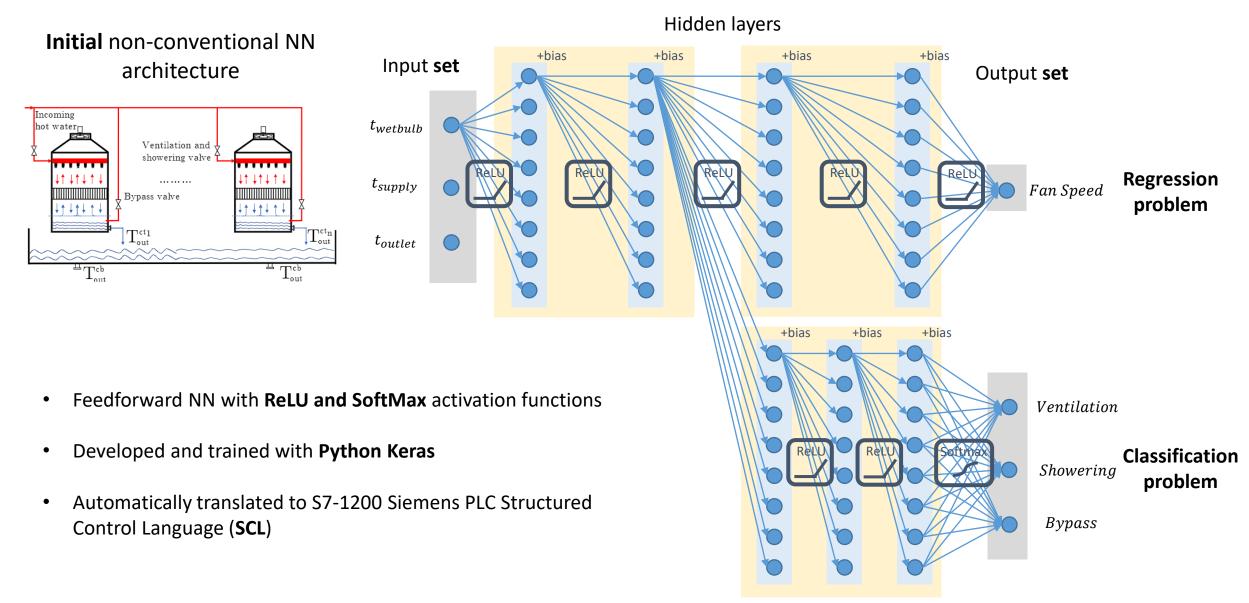


- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)
- Control actions:
 - Mode selection:
 - 1. Ventilation
 - 2. Showering
 - 3. Bypass
 - Fan speed
- Control objective:
 - Keep outlet water temperature within strict limits
 - Utilize minimum amount of energy



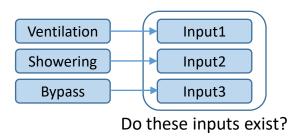

- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)
- Control actions:
 - Mode selection:
 - 1. Ventilation
 - 2. Showering
 - 3. Bypass
 - Fan speed
- Control objective:
 - Keep outlet water temperature within strict limits
 - Utilize minimum amount of energy

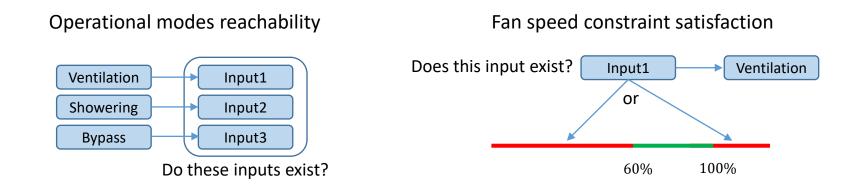

- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)
- Control actions:
 - Mode selection:
 - 1. Ventilation
 - 2. Showering
 - 3. Bypass
 - Fan speed
- Control objective:
 - Keep outlet water temperature within strict limits
 - Utilize minimum amount of energy

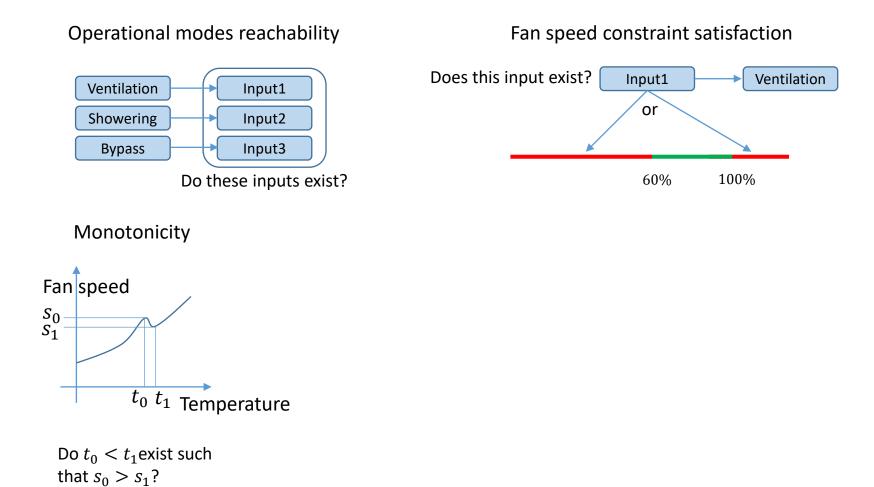


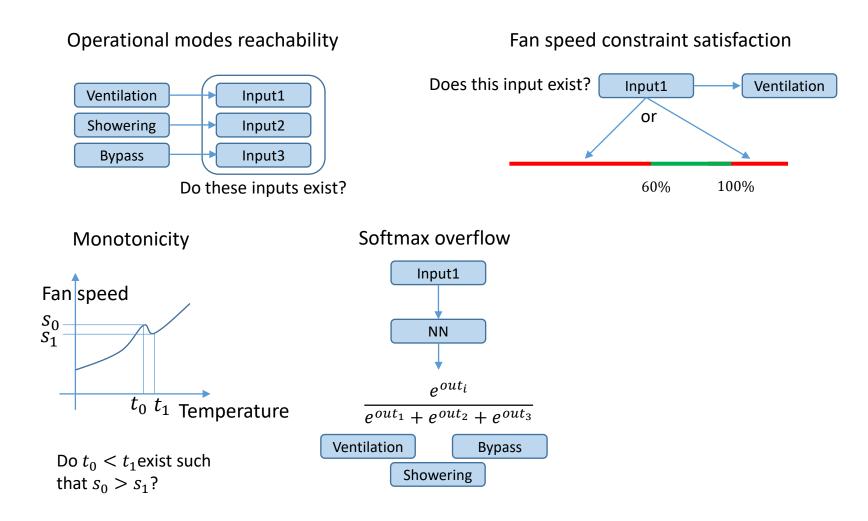
Case study – NN description

Case study – NN description

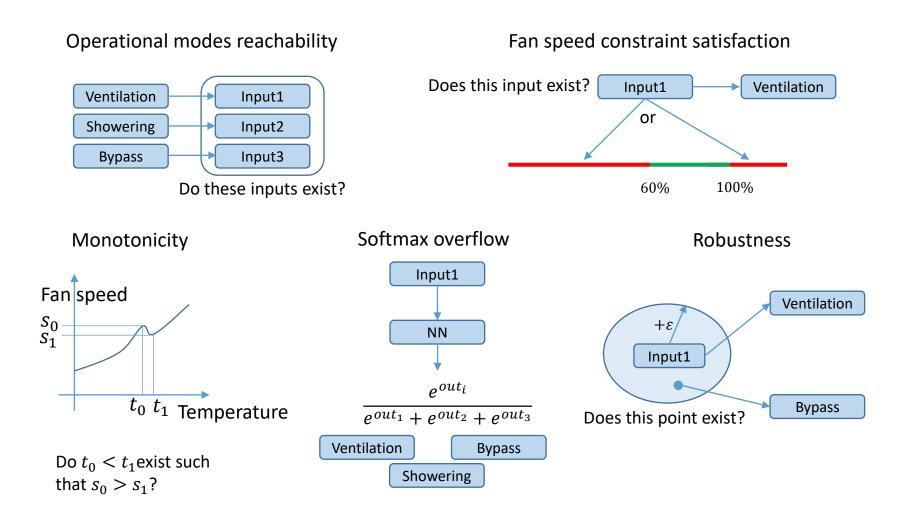


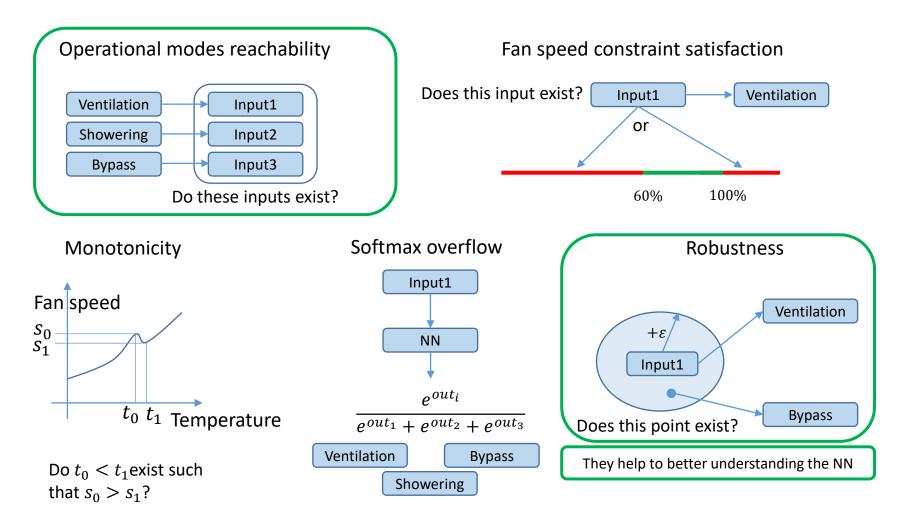

Case study – NN description



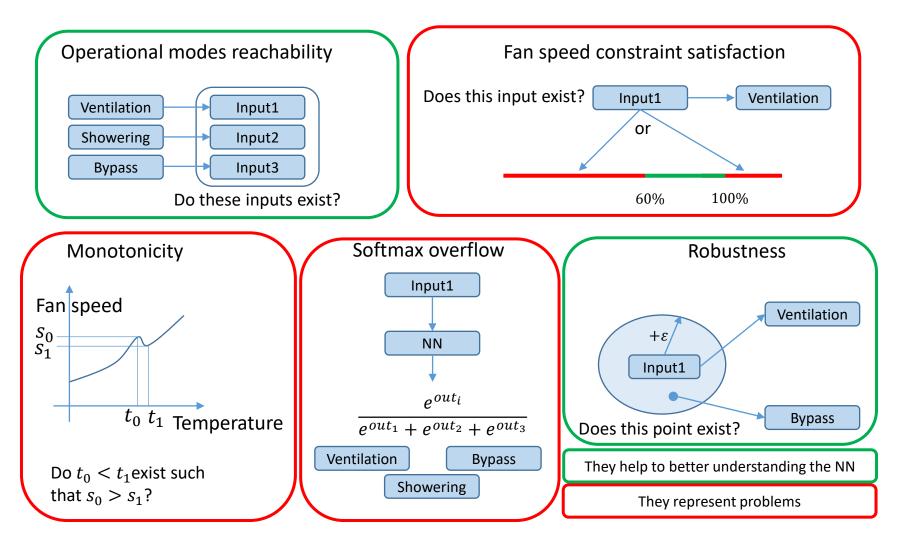

Properties to be verified

Operational modes reachability




Case study

Properties to be verified


Case study

Properties to be verified

Case study

Properties to be verified

NN design

PLC source code

Different methods were applied and compared:

PLC source code

Different methods were applied and compared:

 nnenum: an open-source NN verification tool for ReLU NNs from Stony Brook University <u>https://github.com/stanleybak/nnenum</u>

K Keras	NN design
K Keras	NN design

PLC source code

nnenum

Different methods were applied and compared:

- nnenum: an open-source NN verification tool for ReLU NNs from Stony Brook University <u>https://github.com/stanleybak/nnenum</u>
- 2. PLCverif: an open-source formal verification tool for PLC programs from CERN <u>https://gitlab.com/plcverif-oss</u>

	nnenum
K Keras	NN design
TIAN TANK TANK TANK TANK TANK TANK TANK TA	PLC source code

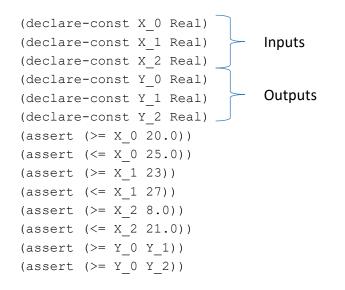
Different methods were applied and compared:

- nnenum: an open-source NN verification tool for ReLU NNs from Stony Brook University <u>https://github.com/stanleybak/nnenum</u>
- 2. PLCverif: an open-source formal verification tool for PLC programs from CERN <u>https://gitlab.com/plcverif-oss</u>
- **3. Z3**: an open-source **theorem prover** from Microsoft Research <u>https://github.com/Z3Prover/z3</u>
- 4. Testing: traditional testing techniques

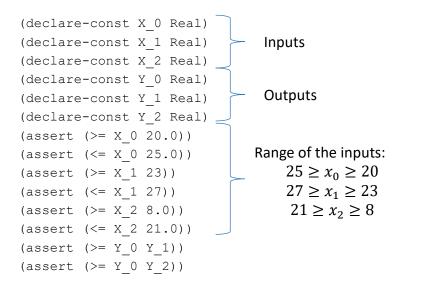
Ignacio D. Lopez-Miguel et al. "Verification of Neural Networks Meets PLC Code: An LHC Cooling Tower Control System at CERN". In EANN 2023: Engineering Applications of Neural Networks conference https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

	menu
K Keras	NN design
TIA TIA TIA TIA TIA TIA V17	PLC source code
	Executable

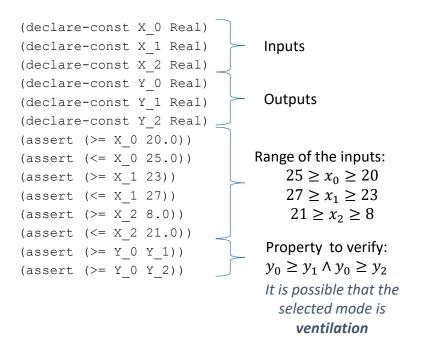
nnon

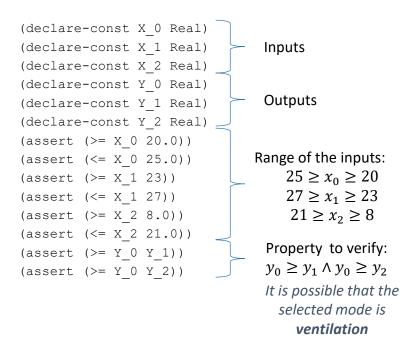


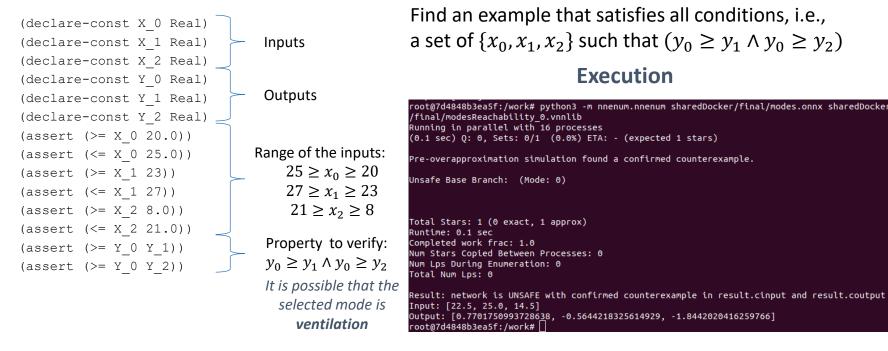
- (declare-const X_0 Real)
 (declare-const X 1 Real)
- (declare-const X_2 Real)
- (declare-const Y_0 Real)
- (declare-const Y_1 Real)
- (declare-const Y_2 Real)
- $(assert (>= X_0 20.0))$
- (assert (<= X_0 25.0))
- (assert (>= X_1 23))
- (assert (<= X_1 27))
- $(assert (>= X_2 8.0))$
- (assert (<= X_2 21.0))
- (assert (>= Y_0 Y_1))
- (assert (>= Y_0 Y_2))



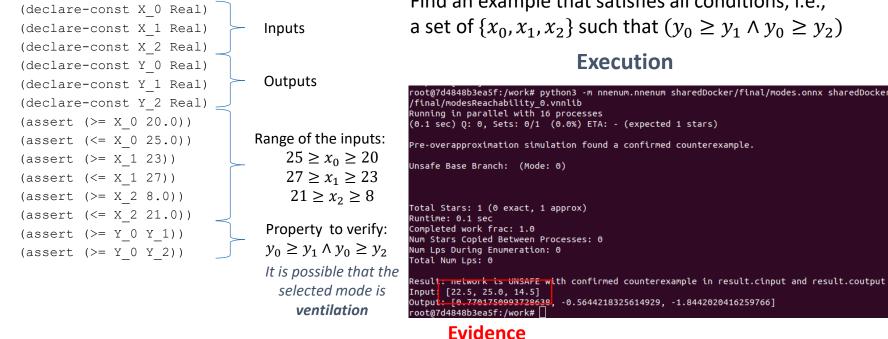
(declare-const X_0 Real) (declare-const X_1 Real) (declare-const X_2 Real) (declare-const Y_0 Real) (declare-const Y_1 Real) (declare-const Y_2 Real) (declare-const Y_2 Real) (declare-const Y_2 Real) (assert (>= X_0 20.0)) (assert (<= X_0 25.0)) (assert (<= X_1 23)) (assert (<= X_1 27)) (assert (>= X_2 8.0)) (assert (>= X_2 21.0)) (assert (>= Y_0 Y_1)) (assert (>= Y_0 Y_2))



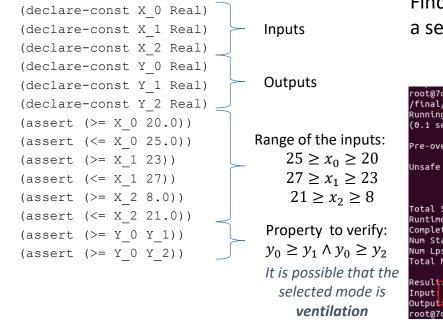




Goal

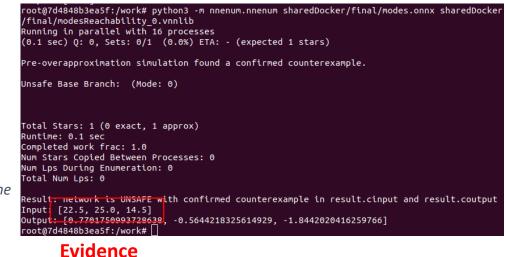

Find an example that satisfies all conditions, i.e., a set of $\{x_0, x_1, x_2\}$ such that $(y_0 \ge y_1 \land y_0 \ge y_2)$

Goal



Goal

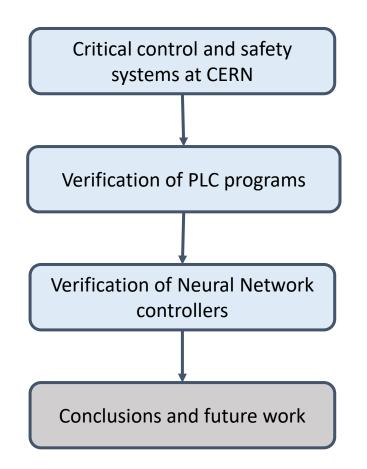
Find an example that satisfies all conditions, i.e., a set of $\{x_0, x_1, x_2\}$ such that $(y_0 \ge y_1 \land y_0 \ge y_2)$



Goal

Find an example that satisfies all conditions, i.e., a set of $\{x_0, x_1, x_2\}$ such that $(y_0 \ge y_1 \land y_0 \ge y_2)$

Execution


Pros:

- Very efficient
- Scalable

Cons:

- Limited to certain architectures
- No loops
- No complex properties

Roadmap

- Formal verification (e.g. model checking) can be used to verify critical software (critical PLC programs)
- There are not commercial tools (yet) for PLC programs, this is why we developed **PLCverif**

• **PLCverif has been applied to many critical PLC programs** at CERN and outside CERN

- Formal verification (e.g. model checking) can be used to verify critical software (critical PLC programs)
- There are not commercial tools (yet) for PLC programs, this is why we developed **PLCverif**

- PLCverif has been applied to many critical PLC programs at CERN and outside CERN
- Still many challenges:
 - State space explosion problem (verification performance)
 - Properties specification
 - Automatic generation of models
 - **Counterexample analysis** (what do we do when we find a problem?)

- **1.** Important to verify neural networks in critical systems to:
 - guarantee properties such as robustness, stability, safety, etc.
 - have a **better understanding** of the behavior of the NN

- **1.** Important to verify neural networks in critical systems to:
 - guarantee properties such as robustness, stability, safety, etc.
 - have a **better understanding** of the behavior of the NN

"Simulation".input1	Floating-point nu	21.3	21.3	M 📥
"Simulation".input2	Floating-point nu	23.0	23.0	M 🚹
Simulation.input3	Floating-point nu	8.0	8.0	
"NN_Result_DB".fan_speed	Floating-point nu	0.00262890317651313		
"NN_Result_DB".modes[0]	Floating-point nu	6.01462636744791E-08		
"NN_Result_DB".modes[1]	Floating-point nu	0.00348845387816139		
"NN_Result_DB".modes[2]	Floating-point nu	0.996511485975575		

2. We use **simulators** (e.g. Siemens PLCSIM advanced) **to confirm the property violations** (counterexamples)

- **1.** Important to verify neural networks in critical systems to:
 - guarantee properties such as robustness, stability, safety, etc.
 - have a **better understanding** of the behavior of the NN

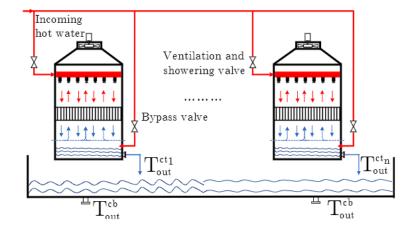
"Simulation".input1	Floating-point nu	21.3	21.3	M 🔺
"Simulation".input2	Floating-point nu	23.0	23.0	M 📥
"Simulation".input3	Floating-point nu	8.0	8.0	
"NN_Result_DB".fan_speed	Floating-point nu	0.00262890317651313		
"NN_Result_DB".modes[0]	Floating-point nu	6.01462636744791E-08		
"NN_Result_DB".modes[1]	Floating-point nu	0.00348845387816139		
"NN_Result_DB".modes[2]	Floating-point nu	0.996511485975575		

- 2. We use **simulators** (e.g. Siemens PLCSIM advanced) **to confirm the property violations** (counterexamples)
- 3. We analyzed **different verification tools**

	performance	$\operatorname{scalability}$	expressiveness	same types?	plug-and-play?
PLCverif	low	low	high	\mathbf{yes}	yes
nnenum	very high	\mathbf{high}	low	no	no
$\mathbf{Z3}$	medium	medium	low	no	no
Testing	high	very low	medium	no	no

- 1. Important to verify neural networks in critical systems to:
 - guarantee properties such as robustness, stability, safety, etc.
 - have a **better understanding** of the behavior of the NN

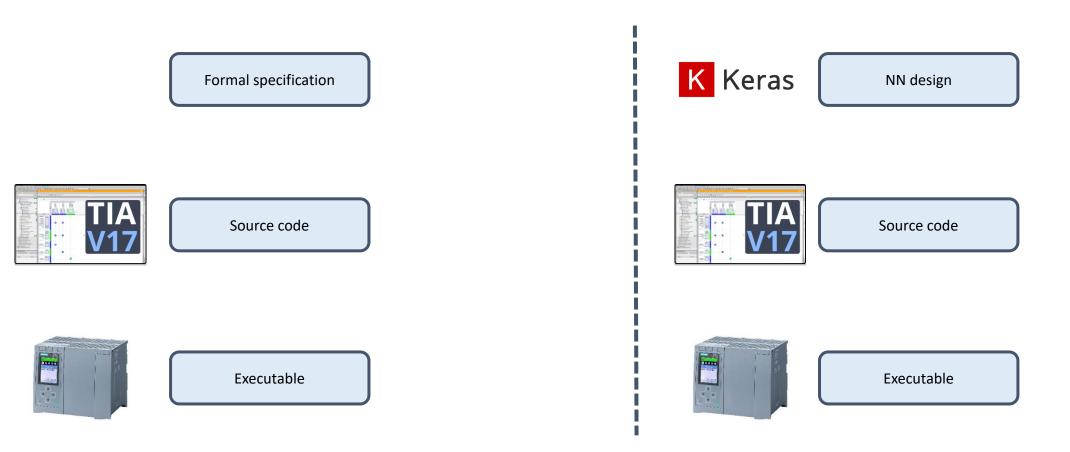
Simulation".input1	Floating-point nu	21.3	21.3	
Simulation".input2	Floating-point nu	23.0	23.0	
Simulation".input3	Floating-point nu	8.0	8.0	
"NN_Result_DB".fan_speed	Floating-point nu	0.00262890317651313		
NN_Result_DB".modes[0]	Floating-point nu	6.01462636744791E-08		
"NN_Result_DB".modes[1]	Floating-point nu	0.00348845387816139		
"NN_Result_DB".modes[2]	Floating-point nu	0.996511485975575		


- 2. We use simulators (e.g. Siemens PLCSIM advanced) to confirm the property violations (counterexamples)
- 3. We analyzed different verification tools

	performance	scalability	expressiveness	same types?	plug-and-play?
PLCverif	low	low	high	\mathbf{yes}	yes
nnenum	very high	\mathbf{high}	low	no	no
$\mathbf{Z3}$	medium	medium	low	no	no
Testing	high	very low	medium	no	no

Ignacio D. Lopez-Miguel et al. "Verification of Neural Networks Meets PLC Code: An LHC Cooling Tower Control System at CERN". In EANN 2023: Engineering Applications of Neural Networks conference https://link.springer.com/chapter/10.1007/978-3-031-34204-2_35

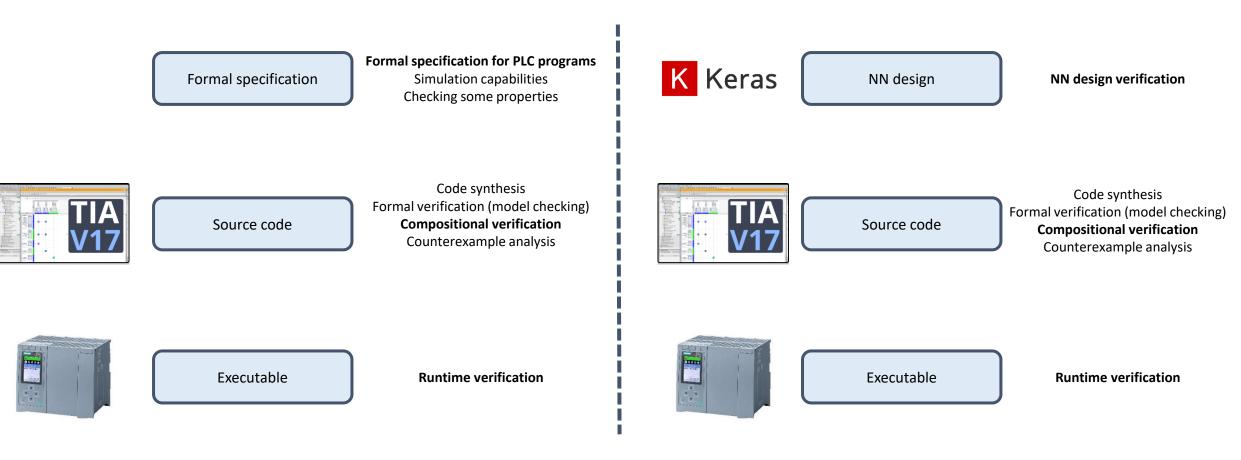
4. We have applied to a real case study for industrial controls at CERN


"Traditional" PLC-based controllers

NN-based controllers

Towards reliable and safe control software

"Traditional" PLC-based controllers


NN-based controllers

Towards reliable and safe control software

"Traditional" PLC-based controllers

NN-based controllers

Towards reliable and safe control software