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Abstract
Malaria claims millions of lives worldwide each year. While a pro-inflammatory immune response is required
to control parasite replication and promote clearance of infected erythrocytes, considerable disease
pathology is caused by an excessive and dysregulated inflammatory reactivity to blood stage infection.
Clinical symptoms, including fever and chills, correspond to production by CD4+ T helper (Th) lymphocytes of
high levels of pro-inflammatory cytokines including tumour necrosis factor-α, interleukin-12 and interferon-
γ in response to parasite components released upon erythrocyte rupture. Differentiation into specific
effector Th subsets is directed by polarizing cytokines and expression of master transcription factors. From
a perspective of homeostasis, further regulatory Th subsets have been described that secrete specific
cytokines to modulate the effector immune response and thus play a pivotal role in protecting the body from
direct and indirect pathogenic effects of malaria infection. In particular, T regulatory (Treg) lymphocytes
are associated with immune tolerance and play a crucial role in suppressing the host response by inhibiting
the function of effector subsets such as Th1 and Th17. This prevents inflammation produced downstream
by (non-T) effectors cells. Treg lymphocytes, exemplified by CD4+CD25+Foxp3+ cells, gradually increase
in number during infection to achieve and maintain the homeostasis of an otherwise imbalanced T cell
response. This editorial discusses the production of Treg and Th17 lymphocytes and the interrelated roles
played by their signature cytokines during malaria infection and considers the contribution of each to
parasite clearance or progression.
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Introduction
Malaria is caused by protozoan parasites of the genus
Plasmodium which complete a complex life cycle
in vertebrate and mosquito hosts. Globally, up to
three million human deaths per annum are attributed
to malaria infection, principally P. falciparum [1].
Parasites replicate rapidly within erythrocytes and
evade host immune responses, both of which
are major drawbacks to design of an effective
vaccine [2,3]. In murine models, an association has
been demonstrated between T regulatory (Treg)
lymphocytes and increased malaria parasite burden
and, in some cases, a strong correlation between
Treg cells and increased disease severity [4]. While
other immune components like CD4+ T helper (Th)1
cells and gd T cells are major sources of interferon
(IFN)-γ which promotes parasite clearance during
blood stage infection [5], the function of Th17
cells that produce the pro-inflammatory cytokines
interleukin (IL)-17 and IL-22 during malaria remains
to be established [6,7]. Low levels of IL-17-secreting
CD4+ T cells were identified in the spleen of mice
infected with P. chabaudi AS. Neither outcome of
infection nor pathology was affected by a lack

of IL-17 [7]. IL-9 is also secreted by Th17 and
CD4+CD25+Foxp3+ Treg cells[8], but the role of IL-9-
producing T cell subsets in malaria infection is yet
to be investigated. IFN-γ plays both protective and
pathogenic roles in malaria [9], whereas IL-10 is
protective during infection of murine models with
non-lethal strains P. berghei XAT, P. yoelii 17XNL
and P. chabaudi AS [10]. Anti-inflammatory cytokines
transforming growth factor (TGF)-β and IL-10, as
well as pro-inflammatory IFN-γ and IL-17-producing
Foxp3+ T cells, are associated with immune tolerance
and may perform important functions during malaria
infection [11,12]. The discovery of Forkhead box
protein 3 (Foxp3) as a definitive transcription factor
for Treg cells has permitted investigators to identify,
isolate and study the role of these cells in many
immunological systems including infectious diseases
[13].
Role of mesenchymal stem cells
The malaria parasite survives and replicates in the
human host by modulating immunity through an
imbalance of humoral and cellular responses [14].
Levels of immune cells fluctuate with severity of
infection. In a murine model, mesenchymal stem cells
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(MSC) and Treg cells have been shown to increase
in concentration with infection that is non-protective
in nature. While pre-primed MSC are able to protect
from infection by modulating Treg cell responses
[15], multipotent MSC differentiate into adipocytes,
osteoblasts, chondroblasts and chondrocytes under
suitable conditions [16]. MSC have the capacity
to control immune dysfunction in a spectrum of
diseases. For example, in lung disorders MSC control
inflammation [17] and IL-17-producing MSC have
been reported to inhibit the growth in vitro of the
fungus Candida albicans and possess therapeutic
effect in C. albicans-infected mice [18]. MSC regulate
immunity by modulating Treg cell responses and
accumulate in sites of infection [15]. Treg cells inhibit
host protective responses during malaria [19-21],
while Treg function is inhibited by IL-6 secreted by
MSC in response to parasite challenge [15] (Figure 1).
Generation of Th17 cells from naive CD4+ T cells is
induced by IL-6 together with TGF-β and inhibits Treg
cell differentiation [22-24].

Figure 1 Cytokine interleukin (IL)-6 plays a central role in immune
regulation to prevent disease progression during malaria infection.
Epithelial cells, monocytes, T lymphocytes and mesenchymal stem cells
are sources of IL-6 production. IL-6 inhibits development of Treg cells
while also enhancing IL17-producing Th17 cell differentiation.

IL-6 versus Th17 lymphocytes
IL-17-producing Th17 cells represent another subset
of pro-inflammatory Th cell that differs from
Th1 and Th2 cells in development and functions.
Th17 cells secrete IL-17 family cytokines [25]. IL-17
induces synthesis of pro-inflammatory cytokines
and chemokines as well as being involved in
immunity against bacteria through the recruitment
and activation of neutrophils and macrophages
[25-27]. Elevated levels of IL-17 cytokines have
been detected in serum and tissues of patients
suffering with various autoimmune diseases [28,29].
Blockade of IL-17 and regulation of differentiation
of Th17 cells provides preventive and effective
treatments against development of autoimmune

disorders [30-32]. Differentiation of Th17 cells
requires the combined effects of IL-6, TGF-β, IL-21
and expression of the transcription factor retinoid-
related orphan receptor (ROR)γt. TGF-β singularly is
sufficient to induce development of Treg cells [33].
While the functions of IL-17- and IL-22-producing
Th17 cells during malaria infection have not been
investigated, in a macaque model of AIDS and
malaria co-infection they exhibit a protective role via
inhibition of the Th1 response [34]. IL-6 is required
for Th17 cell differentiation from naive CD4+ T
cells (Figure 1), while post-differentiation it does
not show any functional property to maintain Th17
cells [35]. Pro-inflammatory cytokines secreted by
Th17 cells show functional properties in autoimmune
diseases [28,29]. In contrast, during blood stage
malaria infection a protective role has yet to be
reported. It is tempting to speculate that transfer of
agonists of IL-17 and IL-22 in order to prevent disease
progression may provide a viable novel approach for
the treatment of malaria infection. 
IL-6 versus Treg lymphocytes
IL-6 is induced by TNF [36,37] and functions as a
pleiotropic cytokine secreted by various cell types
[38,39] (Figure 1). It inhibits TGF-β-induced Treg
cells [22-24]. CD4+CD25+Foxp3+ Treg cells play an
important role in disease control and IL-2, retinoic
acid and TGF-β serve to maintain Treg functions [40].
For various diseases Treg cells have been reported
as an immunosuppressor that maintains homeostasis
of the immune system during infection [41,42]. IL-6
alone is able to enhance RORγt expression in Th17
cell whereas the addition of TGF-β further elevates
RORγt expression [43,44]. The inhibitory effects of
IL-6 on Foxp3 are dependent on signal transducer and
activator of transcription 3 (STAT3), a transcription
factor that regulates RORγt expression in Th17 cells
[40].

Conclusions
Studies from a variety of infectious and autoimmune
diseases suggest that Treg cells and Th17 cells
are mutually antagonistic in the immune response
[45,46]. Clinically, this is manifested as a Treg/Th17
ratio imbalance, which may be linked to disease
progression and to continuity of infection [47,48].
Appreciable research has been performed in various
murine experimental systems in order to identify
a role for IL-17-producing Th17 cells [49]. While
IL-17 was originally implicated in the pathogenesis
of several autoimmune diseases [30-32], and tumour
development [50], induction of Th17 cells has also
been described in infections of Toxoplasma gondii and
Leishmania donovani [51,52], suggesting that they
may function in protection or immunopathology of
parasitic diseases. Moreover, IL-17-producing MSC
play a central part in resistance to fungal infection
[18]. The mechanism(s) by which IL-17 alters immune
responses, and affects the Treg/Th17 balance, in
blood stage malaria is still to be explored in a murine
model. It may be approached by administering IL17-
producing stem cells during organ dysfunctions
as well as by direct transfer of ex vivo-generated
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IL17-producing Th17 cells. The use of Treg cells
is regarded as a potentially attractive therapeutic
approach for autoimmune diseases but given the
less clear picture of immune regulation in parasitic
diseases that is emerging, caution here is advised.
In this contest, dissection of the interplay between
Treg and Th17 cells to the pathogenic stages of
Plasmodium would be a welcome advance in our
understanding of modulation of immunity to this
important human pathogen.
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