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In recent years, AI is experiencing monumental growth. For this reason, researchers and enthusiasts are working on numerous 

aspects of this field. One of these area is computer vision.

The goal of this field is to enable machines to see the world and use knowledge as humans do.
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AI & CV
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OBJECT DETECTION

The problem definition of object detection is to determine where objects are in each image (object 

localization) and which category belongs to each object (object classification)

Kitti dataset
Source: https://www.cvlibs.net/datasets/kitti/

DOTA dataset
Source: https://captain-whu.github.io/DOTA/dataset.html

DocLayNet
Source: https://github.com/DS4SD/DocLayNet



Nowadays, it is difficult to find any research that uses this technology to detect and recognize common 

household objects in realistic environments, even though it is one of the key factors for service robotics.

Computer vision in cooking environments shows that this technology is used for tasks such as cooking state 

recognition, collaborative cooking, and assistive cooking using augmented reality.
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The main objective of this investigation is to develop a model that helps to modify and improve the user 

experience in the use of cooking appliances.

This study will show that by combining artificial vision with deep learning, further improvements in 

cooking automation, safety and energy efficiency can be achieved.

DL IN COOKING ENVS



It is desired to identify situations such as:
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Presence or non-presence of utensils on lit hobs

Fire 

Boiling and smoke

Presence of user manipulating the cookware

Good adjustmentg of the pot/pan size
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Functional mock-up where the experiments have been carried out Schematic diagram of lateral camera positioning
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SET-UP

camera 2camera 1

cooktop with Bluetooth connectivity

kitchenware



Object detection dataset classes: (a) Closed pots; (b) Open pots; (c) Pans; (d) Kitchenware; (e) User; and (f) Others. 
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DATASET

“ The generated dataset must be representative of deployed environment. For real-world use cases we recommend 

images from different times of day, different seasons, different weather, different lighting, different angles, different 

sources (scraped online, collected locally, different cameras) etc.      (source: https://docs.ultralytics.com/yolov5)



Examples of labelled images
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The generated dataset contains more than 7500 labelled images

EXAMPLES



image flipping

random brightness and contrast
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Data augmentation is a technique of artificially increasing the training set by creating modified copies of a 

dataset using existing data.

DATA AUGMENTATION



112nd Basque Conference on Cyber Physical Systems and Artificial Intelligence 2023 Iker Azurmendi

CLASS DISTRIBUTION



Model Params (M) Batch size Precision Recall mAP 0.5 FPS
Inference 

time (ms)

Training 

time (h)

YOLOv5n 1.9 32 0.988 0.992 0.994 84 9.3 5.48

YOLOv6n 4.3 32 0.984 0.990 0.994 43 17.2 6.07

YOLOv5s 7.2 32 0.991 0.993 0.994 80 10.3 5.88

YOLOv6s 17.2 16 0.994 0.990 0.997 42 20.6 9.38

YOLOv5m 21.2 16 0.992 0.995 0.994 73 11.9 10.45

YOLOv6m 34.3 8 0.995 0.990 0.997 39 23.5 20.71

YOLOv7 36.9 16 0.992 0.992 0.997 61 15 15.15

YOLOv5l 46.5 8 0.993 0.996 0.994 61 14.7 17.48
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The results do not vary considerably between the different architectures: the maximum difference 

between all the models is less than 1%

RESULTS



WORKFLOW

Algorithm Initialization Prerequisites

DL model trainingReal time algorithm

Capture and save images

Image labelling

Train and validate the model

Capture images

Object detection

Post object detection algorithm

Send instructions to the cooktop

Detection on/off

Connect BLE

STARTIdentify the centers of 

the heaters

x
x

x

Calibrate the camera 

with cooktop 

+

Cooktop sensing algorithm
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Kitchen BLE connection sequence. (a) Kitchen and BLE off; (b) Kitchen ON and connecting BLE; and (c) Kitchen and BLE ON.
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Automatic detection of kitchen switch-on and Bluetooth connection 

RESULTS



Boiling situation identification. (a) Open pot with maximum power but without boiling; (b) Open pot with boiling; and (c) Open pot without boiling and power has been reduced.
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Pan with oil identification. (a) Normal pan without oil; (b) Identification of pan with oil; and (c) Pan with oil and power has been increased.

Cooking states recognition + automatic cooktop regulation

RESULTS



Example of a recommendation of the best kitchen heater. (a) Both pans can be repositioned; (b) The pan is in the right heater, but its 

position can be improved; and (c) The pans are perfectly placed. 
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Recommendation of the best kitchen heater

RESULTS



User identification. (a) No user; and (b) User manipulating
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User identification

RESULTS



Example of high amount of kitchenware. (a) Good situation; and (b) Identification of high amount of kitchenware. 

182nd Basque Conference on Cyber Physical Systems and Artificial Intelligence 2023 Iker Azurmendi

Recognition of high amount of kitchenware

RESULTS



Example of high amount of kitchenware. (a) Start situation of the example; (b) The algorithm has detected that a heater is ON without cookware; 

(c) The command to switch OFF the heater is sent; and (d) The burner is OFF. 
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Example of detection of a heater with no cookware

RESULTS



Developed algorithm under different light conditions. (a) Wider and lighter framing; (b) Wider framing and less light; 

(c) Wider framing and low light; and (d) Lighter and tighter framing. 
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Testing the algorithm under different light conditions & different image cropping

RESULTS
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CONCLUSIONS

First time DL to automatically control the 

cooktop

YOLOv5 is good and fast for the application

Good performance under different 

scenarios

Future work involves deploying the algorithm 

in a low-cost device (Coral, MCU…) 
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* Some of the images have been generated with Leonardo AI *

https://github.com/ultralytics/yolov5
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