Conference paper Open Access

Adaptive Schedulers for Deadline-Constrained Content Upload from Mobile Multihomed Vehicles

ali safari khatouni; Marco G Ajmone Marsan; Marco Mellia; Reza Rejaie


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Adaptive scheduler, Mobile network, Public transport, Smart city</subfield>
  </datafield>
  <controlfield tag="005">20200120171446.0</controlfield>
  <controlfield tag="001">814858</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">12-14 June 2017</subfield>
    <subfield code="g">LANMAN</subfield>
    <subfield code="a">23th IEEE International Symposium on Local and Metropolitan Area Networks</subfield>
    <subfield code="c">Osaka, Japan</subfield>
    <subfield code="n">Session 1: Mobile and Edge Computing</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Torino &amp; IMDEA Networks</subfield>
    <subfield code="a">Marco G Ajmone Marsan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Torino</subfield>
    <subfield code="a">Marco Mellia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Oregon</subfield>
    <subfield code="a">Reza Rejaie</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">380883</subfield>
    <subfield code="z">md5:edfa5ac6b49048b8e59e3fa455d6e22f</subfield>
    <subfield code="u">https://zenodo.org/record/814858/files/LANMAN_2017(2).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://lanman2017.ieee-lanman.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_monroe</subfield>
    <subfield code="o">oai:zenodo.org:814858</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Torino</subfield>
    <subfield code="a">ali safari khatouni</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Adaptive Schedulers for Deadline-Constrained Content Upload from Mobile Multihomed Vehicles</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_monroe</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">644399</subfield>
    <subfield code="a">Measuring Mobile Broadband Networks in Europe</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We consider the practical problem of video surveillance in public transport systems, where security videos are stored onboard, and a central operator occasionally needs to access portions of the recordings. When this happens, the video portion must be uploaded within a deadline, possibly using multiple parallel wireless interfaces. Interfaces have different associated costs, related to tariffs charged by Mobile Network Operators (MNOs), energy consumption, data quotas, system load. Our goal is to choose which interfaces to use, and when, so as to minimize the cost of the upload while meeting the deadline, despite the unknown short-term variations in throughput. To achieve this goal, we first collected real traces of mobile uploads for different MNOs from vehicles. Examination of these traces confirms the unpredictability of the short-term throughput of wireless connections, and motivates the adoption of adaptive schedulers with very limited a-priori knowledge of the system status. To effectively solve our problem, we devised a family of adaptive algorithms, that we thoroughly evaluated using a trace-driven approach. Results show that our adaptive approach can effectively leverage the fundamental tradeoff between the total cost and the delivery time of content upload, despite unknown short-term variations in throughput.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.814857</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.814858</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
62
36
views
downloads
All versions This version
Views 6262
Downloads 3636
Data volume 13.7 MB13.7 MB
Unique views 6161
Unique downloads 3636

Share

Cite as