Conference paper Open Access

BigCAB: Distributed Hot Spot Analysis over Big Spatio-temporal Data using Apache Spark (GIS Cup)

Panagiotis Nikitopoulos; Aris-Iakovos Paraskevopoulos; Christos Doulkeridis; Nikos Pelekis; Yannis Theodoridis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20170908083721.0</controlfield>
  <controlfield tag="001">814792</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Aris-Iakovos Paraskevopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Christos Doulkeridis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Nikos Pelekis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Yannis Theodoridis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">284421</subfield>
    <subfield code="z">md5:5621fae4e9d45b478d89bdf6bc33d1c6</subfield>
    <subfield code="u">https://zenodo.org/record/814792/files/BigCAB_GisCup_0.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-11-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_datacron</subfield>
    <subfield code="o">oai:zenodo.org:814792</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Panagiotis Nikitopoulos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">BigCAB: Distributed Hot Spot Analysis over Big Spatio-temporal Data using Apache Spark (GIS Cup)</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_datacron</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Hot spot analysis is the problem of identifying statistically significant spatial clusters from an underlying data set. In this paper, we target the problem of hot spot analysis of massive spatio-temporal data, which raises the need for a parallel and scalable solution that operates on data distributed over a set of nodes. We propose an algorithm, called BigCAB, implemented in Spark, that solves the problem in a parallel and scalable way. Our experiments on real data representing taxi trips demonstrate both the efficiency as well as the nice scaling properties of our algorithm.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.814791</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.814792</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
35
21
views
downloads
All versions This version
Views 3535
Downloads 2121
Data volume 6.0 MB6.0 MB
Unique views 3333
Unique downloads 2020

Share

Cite as