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Abstract

pH is a key parameter for technological and biological processes, intimately re-

lated to biomolecular charge. As such, it controls biomolecular conformation and inter

molecular interactions, for example, protein/RNA stability and folding, enzyme ac-

tivity, regulation through conformational switches,protein-polyelectrolyte association,

and protein-RNA interactions. pH also plays an important role in technological sys-

tems in food, brewing, pharma, bioseparations and biomaterials in general. Predicting
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the structure of large proteins and complexes remains a great challenge, experimen-

tally, industrially, and theoretically, despite the variety of numerical schemes available

ranging from Poisson-Boltzmann approaches to explicit solvent based methods. In this

work we benchmark a fast proton titration scheme against experiment and several the-

oretical methods on the following set of representative proteins: [HP36, BBL, HEWL

(triclinic and orthorhombic), RNase, SNASE (V66K/WT, V66K/PHS, V66K/∆+PHS,

L38D/∆+PHS, L38E/∆+PHS, L38K/∆+PHS), ALAC and OMTKY3] routinely used

in similar tests due to the diversity of their structural features. Our scheme is rooted in

the classical Tanford-Kirkwood model of impenetrable spheres, where salt is treated at

the Debye-Hückel level. Treating salt implicitly dramatically reduces the computation

time, thereby circumventing sampling difficulties faced by other numerical schemes.

In comparison with experimental measurements, our calculated pKa values have the

average, maximum absolute and root-mean-square deviations of [0.4− 0.9], [1.0− 5.2]

and [0.5 − 1.2] pH units, respectively. These values are within the ranges commonly

observed in theoretical models. They are also in the large majority of the cases stud-

ied here more accurate than the NULL model. For BBL, ALAC and OMTKY3, the

predicted pKa are closer to experimental results than other analyzed theoretical data.

Despite the intrinsic approximations of the fast titration scheme, its robustness and

ability to properly describe the main system physics is confirmed.

KEYWORDS: protein titration, Monte Carlo Simulations, Tanford and Kirkwood

model, protein electrostatics.

Introduction

Constant-pH simulations are becoming routine for biological systems.1–6 As a measure of

the concentration of hydrogen ions in the solution, pH indicates the availability of pro-
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tons to go from solution to titratable sites on a biomolecule (when there are H+ available

in the solution, i.e. at lower pH, the acid regime) or from a biomolecule to the solution

(when the solution is lacking H+, i.e. at higher pH, the basic regime). Thus, pH is in-

timately related to biomolecular charge. As such, it controls both intra and inter-protein

interactions. Classical examples of processes controlled by pH include protein/RNA sta-

bility and folding,7–11 enzyme activity,12,13 regulation through conformational switches,14

protein-polyelectrolyte association,15,16 protein-protein complexation17–19 and protein-RNA

interactions.20,21 pH also plays a key rule in technological systems in food, brewing, pharma,

bioseparations and biomaterials in general.22–26

Ideally, a quantum mechanical treatment should be used when studying pH effects, since

it involves the formation and breakage of chemical bonds. However, due to the very large

number of titratable sites, different protein conformations and all other charged species in

an electrolyte solution, the corresponding CPU time costs are typically prohibitive. Instead,

the common procedure to estimate pH-effects in molecular simulations is to assign atomistic

partial charges to titratable sites as a function of pH at the beginning of the calculations

(i.e. the user makes a choice between neutral or protonated amino acids as a function of

pH during the simulation initial setup) and keeps them unchanged during the run. Poisson-

Boltzmann (PB) solvers and empirical methods are frequently used for this purpose.28–31 The

underlying approximation is that dynamical changes of the local protein environment (expo-

sure of the titratable side chains to water, interactions with other proteins, other titratable

groups, other charged species, salt and free counter-ions in the solution) during the molec-

ular dynamics simulation do not affect the protonation process and vice-versa. The strong

protonation-conformation coupling is largely neglected. One consequence of the fact that

charges of these ionization sites are fixed through the course of the simulation is that im-

portant physical mechanisms cannot be modelled, such as the attractive mesoscopic forces

between macromolecules in solution arising from fluctuations in proton charge predicted by

the Kirkwood-Shumaker (KS) theory.32 Proton charge fluctuation is at the origin of the
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Figure 1: Scheme for theoretical titration plot and the prediction of pKas. Input parameters
are the experimental conditions (temperature, pH and salt concentration as described by the
κc parameter). The intrinsic pK0 values of the amino acid model compounds are taken from
experimental data given by Nozaki & Tanford.27 The calculation is repeated from pH 1 to
pH 14 using small intervals (in this work we used 0.1) at a given ionic strength. See the text
for more details.

so called ”charge regulation mechanism”, and is essential to explain protein complexation

particularly at low salt and at pH regimes closer to pI (the isoelectric point).15,18,33,34

Attempts to model the effect of pH on biomolecular structure have been made through

the combination of molecular dynamics (MD) with protonation numerical schemes, a good

example being the work done by Baptista and collaborators,1 combining both titration and

conformational sampling. Their titration scheme is based on a continuum modeling of the

solvent and a mean-field description of the electrolyte solution given by the linear PB equa-

tion. Other recent variants include full flexibility of the titrated molecule and the replacement

4



of the implicit solvent model by full atomistic representations.2,3,6,35–37 The advantage of the

latter, in principle, is a more detailed understanding of proton translocation between the

protein titratable sites and the solvent. While the technical details are different for each

of these methods, on practice they share is that most if not all the force field parameters

obtained at a given set of experimental pH and salt conditions are used for all other explored

pH regimes. Some caution should also be taken when combining different water like-models

used in a mixed way to describe solvent, hydronium, hydroxide and salt properties. For in-

stance, the introduction of titratable water as done in replica-exchange (REX) constant-pH

MD (CpHMD) simulations37 can produce artifacts in the solvent structure and dynamics

which can affect protein conformation, the diffusion of mobile charged species (added salt

and counter-ions) and all their interplay. The parametrization of a good dissociative wa-

ter potentials is per se a complex and independent research field.38 Typically much more

computationally expensive simulations are also necessary for this class of methods (10ns as

reported by Shen and collaborators,37 or 40 ns for a simple dipeptide as quantified by Chen

& Roux4), and can result in limited conformational sampling, and insufficient modelling of

charge fluctuations. The slow convergence of detailed molecular solvent explicit models may

explain why more empirical methods such as PROPKA (at negligible CPU cost) seem to

obtain similar outcomes for pKa predictions. In fact, PROPKA results are in general even

more precise and faster than popular PB solvers.39

It is clearly necessary to develop fast titration schemes that do not exhibit slow con-

vergence problems and can be applied on macromolecular systems with multiple titrating

objects each containing several ionizable sites. Simulations at atomistic resolution of large

complexes are virtually impossible today using even massive computational resources. How-

ever, it is also of fundamental importance to be able to correctly describe the main physical

aspects of such systems given their biological and industrial importance. The need to per-

form constant-pH (CpH) simulations for protein-protein systems at several solution pH and

salt regimes motivated us to propose an alternative and faster proton titration scheme for
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this large scale scenario.40 Based on a coarse-grained (CG) description of the system and

rooted in the classical Tanford-Kirkwood model,41,42 we proposed a proton titration scheme

for proteins that could be used to dramatically reduce the computation time by making the

calculation independent of the ionic strength cost and boosting sampling. This model in

combination with the Monte Carlo method has been intensively applied in several biomolec-

ular systems (e.g.19,25,43,44), and we already showed how this method can be successfully

used to study protein-protein interactions.19,25,40 The method was also recently extended to

RNA titration where similar or even better outcomes were observed at much lower compu-

tational costs in comparison with other theoretical approaches including all atom CpHMD

simulations).45

Although this fast proton titration scheme (FPTS) for proteins was not originally de-

signed to improve pKa predictions, recently, we observed25 that our predicted pKa values

are surprisingly within the range of values given by different theoretical models.37,46 For

instance, comparing our pKa results with the theoretical pKa calculations published by Wal-

lace & Schen35 for the N-terminal domain of the Major Ampullate Spidroin 1, the average

and maximum absolute deviations were, respectively, 0.4 and 1.2 pH units for the wild-type

protein.25 This was indeed a good indication that this simple coarse-grained model is able

to capture the main physical features with computationally cheaper simulations, an impor-

tant step forward in the application of CpH methods in larger systems, as is typically the

situation for industrial and nanotech applications.

The present work investigates further the accuracy of FPTS for a larger variety of protein

systems, including comparison with experiment and other theoretical outcomes obtained by

more sophisticated and CPU demanding simulations. In particular, we focus the comparison

on the latest proposed methods for CpHMD simulations in explicit solvent using the pH-

REX method,35,37 another of its variants, the pH-titration MD (pHtMD),5 and the hybrid

nonequilibrium Molecular Dynamics–Monte Carlo (neMDMC) simulation method.4 Proteins

were selected primarily to allow the present FPTS calculations to be compared with results

6



obtained by the methods cited above. Another criterion was the possibility to explore the

accuracy of the different pH methods on proteins having a wide variety of titratable sites:

proteins rich with exposed surface titratable residues accessible to solvents; deeply buried

ones; and more flexible chains. Such comparisons may provide additional physical insights

to improve the accuracy of biomolecular electrostatics methods in general.

This paper is organized as follows. We first review some fundamental basic details of

the FPTS, which is then followed by benchmarking with the other theoretical methods. We

conclude with a summary of the pKa results for all studied protein systems, analyzed both

quantitatively and qualitatively.

Theoretical background

The fast proton titration scheme used here follows a physical chemistry formalism rooted in

the Tanford-Kirkwood (TK) model.41,42 This classical dielectric continuum model assumes

that the protein may be modeled as a hard-sphere inscribing charged sites (the titratable

groups) placed at specific locations and immersed in a medium with high dielectric permi-

tivitty. The salt ions and other charged ligands are not explicitly included in the model.

TK appealed to the construction of an effective interaction, eliminating explicit reference

to the mobile particles and describing them by the Debye-Hückel approach. Therefore, the

model assumed a mean-field approximation, neglecting ion-ion correlation effects. However,

the success of the TK model may be seen by the number of investigations where it has been

invoked to study the interactions between charged ligands and proteins, membranes and

other macromolecules (e.g.47–50).

Let us start reviewing a few key theoretical concepts. Consider the dissociation of a weak

acid (HA),

HA ⇀↽ H+ + A−
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with the corresponding thermodynamic equilibrium constant at a given experimental condi-

tion

Ka =
aH+aA−

aHA

(1)

where the a’s are the activities. For an ideal system, a stoichiometric equilibrium constant

(Ks) is often used

Ks =
cH+cA−

cHA

(2)

where the c’s stand for concentrations. Deviations from the ideal behavior due to molecular

interactions are effectively taken into account by the activity coefficients (γ)

ai = γici (3)

It follows that

Ka = KγKs =
γH+γA−

γHA

×
cH+cA−

cHA

(4)

which can be re-written as

−logKa = −log
(

γH+cH+

)

− log
( γA−

γHA

)

− log
( cA−

cHA

)

By definition, pKa = −logKa and pH = −log(aH+) = −log(γH+cH+) which yields to

pKa = pH − log
( γA−

γHA

)

− log
( cA−

cHA

)

(5)

or,

−ln
(cA−

cHA

)

= −ln
(γHA

γA−

)

−
(

pH − pKa

)

ln10 (6)
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The term −ln
(

cA−

cHA

)

can be identified as the free energy between the protonated and

deprotonated states (β∆AHA→A−), where β = 1/KBT , KB (= 1.3807× 10−23 J.mol−1.K−1)

is the Boltzmann constant and T is the temperature (in Kelvin).

From this physical chemical approach, an effective potential for the protonation/deprotonation

process can be written as

w = ∆E −
(

pH − pKa

)

ln10 (7)

where ∆E should describe all the molecular interactions that produce deviations from ideal

behavior (e.g. interaction with other charged amino acids, counter-ions, added salt, etc.).

The second term accounts for the free energy change of the (de)protonation process for a

single amino acid, not affected by the presence of the rest of the protein, nor by the any

other mobile charged (added salt and counter-ions). pH becomes a simple (input) parameter

in this phenomenological approach.

The term ∆E can be obtained from the TK model. Accordingly to TK,41,42 the electro-

static free energy (Gel) for a protein containing Np ionizable sites with valency zi immersed

in an electrolyte solution in the absence of a dielectric inhomogeneity is given by50

Gel =
e2

8πǫ0

Np
∑

i=1

Np
∑

j=1

zizj(Aij − Cij) , (8)

where e is the elementary charge (e = 1.602×10−19C) and ǫ0 is the the vacuum permittivity

(ǫ0 = 8.854× 10−12 C2/Nm2).

The direct Coulombic interaction between the charges of the protein is accounted for by

Aij:

Aij =
1

ǫsrij
,

where ǫs and rij are, respectively, the solvent dielectric constant and the spatial separation

distance between charges i and j. This term is independent of the salt concentration. The
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effect of mobile counter-ions and added salt is described by the Cij term. A critical discussion

of these terms can be seen in ref.42

The Cij term can be estimated by the excess chemical potential (µex) for a free charged

hard sphere ion with valency z and radius Rs using the Debye-Hückel (DH) theory of strong

electrolytes,

µex
F = −

κz2e2

8πǫ0ǫskBT (1 + 2κRs)
, (9)

where κ is the inverse DH screening length which is proportional to the square root of the

salt concentration. For a bulk number density of specie k equals to n0,k,
51

κ =

[

e2

ǫ0 ǫs kBT

N
∑

1

n0,k (zk)
2

]
1
2

(10)

where N is the total number of mobile charge species in the system.

The concept of κ as a scaling parameter that measures how effective is the Coulomb

shielding is, has been revisited by different authors in the colloidal literature.52–55 For pro-

tein electrostatics, it was observed that a simple modification of the definition of κ to in-

clude the counter-ions concentration (κc) in the summation of Eqn. (10), as suggested by

Beresford-Smith and coworkers,52 better describes the system.50 Therefore, we followed this

modified definition of κ to κc on the FPTS. As a consequence, κc now depends on the protein

protonation state.

Based on these arguments, it was proposed that the titration process given by Eq. 7 can

be modeled as40

wTK =
e2

4πǫ0 ǫs

[

Np
∑

i>j

zizj
rij

−
Z2

pκc

2(1 + κcb)

]

+ λ(pH − pKa)ln10 (11)

where Zp =
∑Np

i zi, λ equals either −1 (deprotonation) or +1 (protonation) and b is assumed

to equal the radius of a sphere that inscribes the protein (Rs).
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It is worth mentioning possible weaknesses of this scheme: a) assuming a spherical shape

for the biomolecule when calculating its excess chemical potential to describe the salt effect

(see Eqn. 9) might introduce artifacts for more elongated biomolecules although for both

RNA molecules and lactoferrin (an elongated milk protein) studied earlier, only small de-

viations between computed and experimental quantities have been observed.40,45 However,

a well-known side effect is that pI predictions will be unaffected by the ionic strength since

anisotropic-salt interactions are neglected.

b) The intrinsic pKa values are taken from experimental data for “isolated” amino acids

at a given experimental condition, and we only account for the difference in free energy

between the residue in the protein and this reference state for which the pKa was originally

obtained. Doing so, all the interactions (solvation effects, dispersion, polarization, etc.) im-

plicitly included in the pKa measurement are assumed to be the same in both environments.

Of course, this implies that sites deeply buried will probably not be accurately described

(see the discussion below). Yet, as most of the titratable groups of proteins are close to the

surface, this is expected to have only a minor effect on the majority of biomolecules. We

will refer to this equilibrium constant of the amino acid model compounds as pK0. From

hereon, pKa will be used here for the equilibrium constants when the titratable residue is at

a particular protein conformation and salt solution.

c) The mesoscopic description of the amino acids as single beads decreases possible differ-

ences between rotamers. Titratable sites end up at similar positions when the amino acids

are reduced to a spherical object. Although for protein-protein interactions this approxi-

mation will have virtually no effect when calculating free energy of interactions, due to the

long range nature of electrostatic interactions, this has an impact on the precise description

of hydrogen bonds. Specifically for pKa studies, a natural direction to improve the results

could be to combine a less coarse grained description of the amino acids with the formalism

for multiple-site titration proposed by Beroza and co-authors56 together with a proton iso-

merism titration scheme.57
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Choice of pK0 and buried amino acids

As mentioned above, intrinsic pKa values are taken from experimental data for “iso-

lated”amino acids, and this choice has a strong effect on deeply buried residues. Actually,

this is an intrinsic feature of all numerical schemes that invoke a phenomenological approach

as does the FPTS to describe pH effects. From a physical chemistry perspective, it is trivial

to mathematically demonstrate that buried amino acids will always be a difficult case in this

framework:

Consider a dissociation chemical reaction,

H Aprot → H+ + A−

prot ∆G1

where the subscript prot is used to indicate that the amino acid A is located in the protein

interior, and ∆G1 is the free energy associated with the process at this given experimental

condition. From basic physical chemistry, it follows that K1 (∆G1 = −RTlogK1, where R =

8.314J/molK is the gas constant) is dependent of the experimental conditions (temperature,

pressure, ionic strength, solvation, concentration of other species, etc.). Changing any of such

conditions will clearly affect K as often measured by ∆pKs (pK = −logK).

If the reaction takes place in pure water instead, i.e., the amino acid A is not part of the

protein structure, the equivalent reaction is:

H Aw → H+ + A−

w ∆G2

where Aw indicates that A is in pure water, and ∆G2 is the corresponding associated free

energy. Note that the proton binding is just the opposite reaction for both situations.

Essentially, ∆G1 and ∆G2 are measuring the acid-base behaviour of this amino acid

in different environments. Consequentially, ∆G1 6= ∆G2. This is because the binding of

a proton to A−

prot changes the interaction of A−

prot with the surrounding species, which are

different in comparison to the pure water case. As a consequence, one can write that:
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∆G1 = ∆G2 +∆Gc

where ∆Gc reflects the free energy involved in electrostatic and non-electrostatic interac-

tions changes. It is convenient to make a partition between electrostatic (ele) and other

contributions (other), ∆Gc = ∆G
(ele)
c +∆G

(other)
c . When assuming that pKa is the intrinsic

pKvalue taken from experimental data for the isolated amino acid at a given experimental

condition (as done by us), strictly speaking, we are setting ∆G
(other)
c = 0. An approximation

is introduced at this point since this pKa value is rigorously valid only at this particular

special situation. In a different environment, say deeply buried in a protein structure, sol-

vation, for instance, will be very much different than the previous case (when the molecule

was isolated), pK1 = pK2 + pKc. As a result, pK
(other)
1 6= pK

(other)
2 . During the model

derivation, on Eqn. 1, a specific experimental condition is taken for grant (could be either 1

or 2, neglecting the term pK
(other)
c ). Only computing the electrostatic terms means that all

other contributions are assumed to be either the same in both conditions or their difference

is quite small [ ∆pK(other) ≈ 0]. This is far from reality in the buried amino acids situation

(pK
(other)
1 6= pK

(other)
2 ). Conversely, for residues closer to the surface, ∆G

(other)
c , and this

assumption is much less of an approximation (pK
(other)
1 ≈ pK

(other)
2 ).

Convergence properties of the FPTS

Despite its apparent limitations, the outcomes obtained by the FPTS for other macro-

molecular systems studied before are similar to or even better than many other theoretical

approaches (see also the tables presented below here).25,45 This is achieved at much lower

computational cost. For this reason, the FPTS does offer an optimal compromise between

accuracy and efficiency. It was already demonstrated that charges obtained by the FPTS

converge to their equilibrium values in less than 105 MC steps for systems with strong

interactions between titrating sites.45 This is achieved in very short CPU time, orders of

magnitude smaller even than the typical time observed for PB approaches. For instance,
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Wang and co-authors quoted 9185.2s for the energy runtime in a single AMD Opteron 2356

processor (8 cores and 2.3 GHz) for the large protein 6-phosphogluconate dehydrogenase

(PDB id 2zyg).58 Using the FPTS, the CPU time for 105 MC steps decreases to 96 s in a

personal notebook (Intel i7-3630QM and 2.40 GHz - running ubuntu 12.04). One should

also see that the FPTS has a further advantage in comparison with the PB: contrary to the

PB methods that only provide an averaged value for the titratable sites’ charges at a given

pH, instantaneous charges are directly obtained in a FPTS calculation. Also, due to the MC

protonation/deprotonation process, these charges can fluctuate as a function of the solution

pH. This is of fundamental importance when exploring the charge regulation mechanism

that can be so relevant for protein complexation.15,32,34,59

Model and Methodology

Titration scheme

The fast proton titration scheme (FPTS) for proteins was described in detail in ref.40 Here,

we briefly review it including specific comments for the pKa calculation.

The protein is described at a mesoscopic level where amino acids are represented by

charged van der Waals particles of radii (Ri) and valences zi. For the sake of simplicity,

internal degrees of freedom are neglected (i.e. bond lengths, angles and dihedral angles are

kept fixed). Values for Ri were taken from ref.43

Glutamic acid (GLU), aspartic acid (ASP), tyrosine (TYR), cysteine (CYS) not involved

in SS bridges, lysine (LYS), histidine (HIS), argine (ARG) and the C (CTR) and N (NTR)

terminals have titratable groups. We employed in this work pK0 values given by Nozaki

& Tanford27 for them. Their protonation states were allowed to change according to the

solution pH, salt conditions and other charged amino acids (valences vary between −1 and 0

or 0 and +1, for acid and basic amino acids, respectively). All the other residues are assigned

with a constant zero charge.
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For the protonation/deprotonation process, Eq. 11 is converted into the following MC

protocol:40

1. Titratable sites on the protein are placed at their experimentally determined positions

and kept fixed. The protein crystal and/or NMR structure coordinates as given by RCSB

Protein Data Bank (PDB)60 define their positions.

2. A titratable site is chosen by random.

3. If protonated, try to move the proton charge to the bulk solution (deprotonation process).

If deprotonated, try to move the proton charge from the bulk solution to the site (protonation

process). κc should be updated to reflect the corresponding changes in the number of counter-

ions in the electrolyte solution (see Eq. 10). In an analogous manner, Zp is also updated

for the appropriate protein net charge after the protonation/deprotonation process. 4. This

trial charge movement is accepted with probability

min
(

1, e(−β∆wTK)
)

5. The process is repeated from step 2 until the convergence is reached. Several MC steps

are necessary due to the interplay of multiple titratable sites present in the protein structure.

In the context of the present work, the main outcomes of each MC run are the aver-

age charge of each amino acid (< qaa >=< zaa > e) and the average total protein charge

(< Qtotal >=< Zp > e). Other physical chemical properties such as the average total dipole

moment (< µtotal >) and the average protein charge fluctuation parameter [also known as

protein charge capacitance (< Ctotal >)] can also be directly obtained.40 A scheme of the

simulation protocol can be seen in Fig. 1.

For most of the applications, a proper description of the amino acids charges and their

fluctuations as a function of solution pH is needed. However, for benchmarking theoretical

models, it is often used pKa values which are not directly obtained from the MC run. From

a physical chemical description, the pKa value for each individual titratable amino acid at
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Figure 2: Computed titration plots of the acid amino acid residues ASP (left panel) and
GLU (right panel) of ribonuclease A at 60mM salt concentration. The dashed gray lines
indicate the half of the protonated states which is used to predicted the theoretical pKa.
Data are taken from the titration simulations with the FPTS. The intrinsic pK0 values of
the amino acid model compounds are 4.0 and 4.4, respectively, for ASP and GLU.27

a particular micro-environment (specified by the neighbor charges and salt conditions) is

defined as the pH where this residue is half-protonated (e.g. < zi(pH) >= −0.5, for GLU).

This is measured from a titration plot. Therefore, it is necessary to generate a theoretical

titration plot for each of the ionizable amino acids, to determine in what pH condition the

titratable site is 50% occupied by the proton. This requires a series of simulations varying

solution pH from 1 to 14 using small intervals (in this work we used 0.1) to produce the

theoretical titration plot. From this series of simulations at different pH conditions and given

salt concentration, one obtains a set of average charge numbers for all titratable residues ({<

zi(pH) >}). Observing in this set of charge × pH data when each residue is half-protonated

leads to the prediction of its pKa value, as it is done in wet laboratorial experiments – see

Fig. 1. It is worth mentioning that this association constant is also particularly useful to

quantify how specific micro-environments affects the proton binding reaction. It can be used

to describe several physical events (e.g. protein stability, macromolecular assembly, binding

of ligands, conformational changes, added salt effects, etc.) and their dependency on the

environment.8 Nevertheless, the knowledge of the pKa does not directly give the charge

fluctuation (Ctotal =< Z2
P > − < ZP >2).40
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Proteins

Protein structures were all obtained from the RCSB Protein Data Bank (PDB).60 For the

sake of comparison with other theoretical works, missing residues in their studies were not

included here. All PDB files were edited before the calculations. Water molecules and

hetero atoms were removed. For atoms that had two records included in the PDB file

due to their different occupancies, the higher occupancy case was selected, and the others

deleted. Different sets of proteins were studied here. In the first set, the thermostable

actin binding 36-residue subdomain of chicken villin headpiece – HP36 (PDB id 1VII), the

45-residue binding domain of 2-oxoglutarate dehydrogenase multi-enzyme complex – BBL

(PDB id 1W4H) and the 129-residue hen egg white triclinic lysozyme – HEWL (PDB id

2LZT) were used for the comparison with both the GB and the REX-CpHMD method.37

In another set, simulations were performed with the 124-residue ribonuclease A – RNase

(PDB id 7RSA), the 135-residue staphylococcal nuclease – SNASE (PDB ids 3D6C, 2RKS

and 2SNM), and the 122-residue α-lactalbumin – ALAC (PDB id 1F6S). Calcium ions were

removed from the ALAC structure. This set of proteins is particularly interesting to explore

the effect of the locations of the titratable sites in the protein conformation. In RNase,

the comparison is done for surface residues. SNASE has buried amino acids whose pKas

should be more challenging for the present fast titration scheme to predict (particularly

given the use of the reference pK0). This system was also studied by the pHtMD, and gives

us the opportunity to compare the calculated pKas with another recent developed method.5

ALAC is a good example of an intrinsically flexible protein chain. For the comparison with

the hybrid neMDMC,4 the 56-residue turkey ovumucoid third domain – OMTKY3 (PDB id

1OMU) and the 129-residue hen egg-white orthorhombic lysozyme – HEWL2 (PDB id 1AKI)

were utilized. All low-energy NMR solution structures for OMTKY3 as given by PDB were

used to define its amino acids positions. Each structure was submitted to an independent

simulation run. Results were averaged with a uniform weight.
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This selected set of proteins also offered the possibility to explore a variety of site-site

interactions. The total number of ionizable sites in each protein was quite diverse, ranging

from 12 to 55: (a) HP36 – 12, (b) BBL – 17, (c) HEWL – 40, (d) RNase – 36, (e) SNase –

54 (for PDB id 3D6C), 54 (for PDB id 2RKS) and 55 (for PDB id 2SNM), (f) ALAC – 49,

(g) OMTKY3 – 16, and (h) HEWL2 – 32.

Monte Carlo simulations

We performed standard Metropolis Monte Carlo (MC) simulations61,62 using the titration

scheme above described for all protein sets. The aqueous solution dielectric constant and

temperature were fixed at ǫ = 78.7 and T = 298K, respectively. Solution pH was varied

from 1 to 14. Each system was simulated in a specific salt concentration as given by the

correspondent experimental data: (a) HP36, 150 mM, (b) BBL, 200 mM, (c) HEWL, 50mM,

(d) RNase, 60mM, (e) SNASE, 100mM, (f) ALAC, 150mM, (g) OMTKY3, 10mM, (h)

HEWL2, 100mM. The number of MC steps for production runs was at least 106 steps after

equilibration (105 MC steps). Calculations were performed with the Faunus biomolecular

simulation package,63 where the FPTS was already implemented.40

For the sake of comparisons, additional calculations with PropKa (version 3.1) and de-

fault parameters64 were also carried out. Together with the predicted pKa values, PropKa

provided indicators on how buried amino acids are in the folded protein conformation. Avail-

able published data obtained by the Generalized-Born (GB) method is included too. The

quality of the outcomes from the FPTS and other theoretical methods is finally scrutinized

by means of a comparison with the so-called “NULL model”, where site-site interactions

are altogether neglected.65,66 In this model, any ionizable site titrates as if no other titrat-

able site was present in the system, i.e. one assumes that the pKa of a given amino acid

at any experimental condition is identical to its model compounds given zero pKa shifts

(∆pKa = pKa − pK0 = 0). In the current study, we used for these calculations the pK0’s

given by Nozaki & Tanford27 as done in the MC runs. The accuracy will be discussed in
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Figure 3: The effect of burial of amino acid residues on computed pKa for ribonuclease A.
Experimental and computed pKas by the FPTS in absolute numbers are compared with
the percentage of buried charges. This percentage was predicted with the PropKa software.
Experimental and FPTS are the same ones given in Table 2. The linear regression line has
a coefficient equal to 0.0024362. The correlation coefficient is 0.25.

terms of the maximum absolute deviation (MAX), the averaged absolute deviation (AAD),

the root-mean-square deviation (RMSD) and the linear correlation coefficient (r) between the

experimental and computed pKas. Bold numbers in the tables indicate the cases where ex-

perimental and theoretical data have pKa shifts in opposite directions (e.g. pKa,exp−pK0 > 0

and pKa,theoretical − pK0 < 0, or the contrary) and/or no shift is observed with respect to

the isolated behavior (e.g. pKa,exp − pK0 > 0 and pKa,theoretical − pK0 = 0). This is used to

indicate if the model is able to correctly predict the protonation state. For practical use, the

general trends are the results that matter most, that is, if the model suggests protonation

for an amino acid that is actually found protonated in a given structure and vice versa.

Results and discussion

pKa calculation for HP36, BBL and HEWL

Predicting precise pKa values of proteins is a lively research field.67 Our comparisons here are

focused on the validation process of the fast protonation scheme aimed for including proton

equilibria in multiscale simulations with many ionizable macromolecules. The FPTS was
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Table 1: Calculated and experimental pKa values of HP36, BBL and HEWL proteins. Salt
concentrations were 150 mM for for HP36, 200 mM for BBL, and 50mM for HEWL. a Data
taken from ref.37 b Sampling was based on 1 ns. c The 10ns trajectory was broken in two
halves (0-5 and 5-10ns). MAX, AAD, RMSD and r mean the maximum absolute, the average
absolute and the root-mean-square (RMS) deviations and the linear correlation coefficient
between the experimental and computed pKas, respectively, in this table and the next ones.

Residue Experimenta GB a All-atom REX-CpHMD a,c PropKa FPTS NULL
0-1b 0-5 5-10 0-10

HP36

Asp44 3.10(1) 3.2(1) 2.0 3.0 2.6(5) 3.78 3.7 4.0
Glu45 3.95(1) 3.5(1) 4.3 4.5 4.4(1) 4.57 4.5 4.4
Asp46 3.45(12) 3.5(1) 2.4 3.7 3.1(6) 4.08 3.8 4.0
Glu72 4.37(3) 3.5(1) 4.4 4.4 4.4(0) 4.43 3.5 4.4

MAX 0.9 1.1 0.6 0.5 0.7 0.9 0.9
AAD 0.4 0.6 0.2 0.3 0.5 0.6 0.5

RMSD 0.5 0.8 0.3 0.4 0.6 0.6 0.6

BBL

Asp129 3.88(2) 3.2(0) 2.2 3.2 2.7(5) 3.68 3.7 4.0
Glu141 4.46(4) 4.3(0) 4.0 4.4 4.2(2) 4.51 3.8 4.4
His142 6.47(4) 7.1(0) 5.9 5.8 5.8(0) 6.37 6.5 6.3
Asp145 3.65(4) 2.8(2) 3.0 3.1 3.1(0) 3.76 3.7 4.0
Glu161 3.72(5) 3.6(3) 4.2 3.9 4.0(2) 4.59 4.1 4.4
Asp162 3.18(4) 3.4(3) 2.9 3.5 3.2(3) 2.32 3.2 4.0
Glu164 4.50(3) 4.5(1) 5.7 4.6 5.2(6) 4.54 3.8 4.4
His166 5.39(2) 5.4(1) 4.4 4.4 4.4(0) 5.78 6.0 6.3

MAX 0.9 1.7 1.0 1.2 0.9 0.7 0.9
AAD 0.3 0.8 0.4 0.6 0.3 0.3 0.4

RMSD 0.5 0.9 0.5 0.7 0.5 0.4 0.5

HEWL

Glu7 2.6(2) 2.6(1) 3.6 3.4 3.5(1) 3.98 3.3 4.4
His15 5.5(2) 5.3(5) 5.1 5.1 5.1(0) 6.71 5.6 6.3
Asp18 2.8(3) 2.9(0) 2.5 3.3 2.9(4) 3.41 2.8 4.0
Glu35 6.1(4) 4.4(2) 8.5 8.7 8.6(1) 6.51 3.5 4.4
Asp48 1.4(2) 2.8(2) 0.1 1.1 0.6(6) 1.81 3.4 4.0
Asp52 3.6(3) 4.6(0) 5.4 5.6 5.5(1) 3.83 3.3 4.0
Asp66 1.2(2) 1.2(4) 0.6 0.8 0.3(7) 1.85 3.0 4.0
Asp87 2.2(1) 2.0(1) 0.8 2.1 1.5(7) 3.27 3.2 4.0
Asp101 4.5(1) 3.3(3) 6.1 5.7 5.9(2) 3.92 2.9 4.0
Asp119 3.5(3) 2.5(1) 3.0 3.3 3.2(1) 3.58 3.2 4.0

MAX 1.7 2.4 2.6 2.5 1.4 2.6 2.8
AAD 0.5 1.3 0.9 1.0 0.7 1.0 1.4

RMSD 0.9 1.4 1.2 1.2 0.8 1.4 1.6

For these

three proteins

MAX 1.7 2.4 2.6 2.5 1.4 2.6 2.8
AAD 0.5 1.0 0.6 0.7 0.5 0.7 0.9

RMSD 0.7 1.2 0.9 0.9 0.6 1.0 1.2
r 0.86 0.87 0.86 0.87 0.92 0.67 0.67
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compared with several other recent theoretical calculations (GB, REX-CpHMD, PropKa),

the NULL model and available experimental data. Proteins are grouped here as a function of

the available data found in the references. In table 1, we present the results for the compar-

ison with published GB and REX-CpHMD data. PropKa predictions and the NULL model

data are also included in this table. For these three proteins, PropKa is able to reproduce

the experimental results with the smallest deviations followed by the GB method. Both the

maximum absolute and root-mean-square (RMS) deviations are in line with previous ob-

servations.39 The FPTS achieved similar performance in terms of the RMS deviations with

these two methods while the observed maximum absolute deviation is compatible with the

REX-CpHMD results. Each method shows relatively better agreement with the experimen-

tal data for a specific protein system. This will be illustrated on the following comparisons

too. The smallest MAX, AAD and RMSD values for BBL was achieved with the FPTS.

All theoretical methods based on molecular simulations have difficulties to reproduce well

the HEWL-Glu35 experimental data due to the manner in which the pH is taken into ac-

count. This particular amino acid (Glu35) is deeply buried in the protein structure (66%

according to PropKa) where the common approximation assumed for Eqn. 6 is to adopt

pK0 to describe the reference pKa. The more deeply buried is the residue, the less reliable is

this approximation. The reference (fully solvated environment) and the final configuration

(poorly solvent exposed environment) states clearly have different microenvironments.

Following ref.,2 the linear correlation coefficients between the experimental and computed

pKas were calculated and are given in the tables. The r results are strongly dependent on

the protein system, as can be seen comparing data reported in all tables. For the sake

of improving statistics, the three proteins (HP36, BBL and HEWL) are grouped together.

Analyzing them (22 experimental points) as a single set, the empirical predictor PropKa gives

the best r value (0.92). Both the CPHMD and the GB methods show r ≈ 0.86 while both the

FPTS and the NULL model give 0.67. A common argument for the discrepancy observed for

rigid models like FPTS given is the lack of conformational changes that should accompany
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Table 2: Calculated and experimental pKa values of ribonuclease A. Salt concentrations
was 60 mM. na = data not available. a Data taken from ref.68 For deviations, only residues
with available experimental data were used.

Residue Experimenta All-atom REX-CpHMD a propKa FPTS NULL

Asp14 1.8 3.4 0.3 2.8 4.0
Asp38 2.1 3.0 2.7 2.3 4.0
Asp53 3.7 4.0 3.4 3.8 4.0
Asp83 3.3 3.2 3.9 2.7 4.0
Asp121 3.0 2.7 0.0 2.6 4.0
Glu2 2.6 3.6 0.6 3.0 4.4
Glu9 na 3.8 2.2 3.4 4.4
Glu49 4.3 3.3 2.1 4.0 4.4
Glu86 4.0 4.5 1.1 3.3 4.4
Glu111 na 3.4 2.4 4.0 4.4
His12 6.0 5.8 3.8 5.9 6.3
His48 6.1 4.9 5.4 7.0 6.3
His105 6.5 6.4 6.9 6.3 6.3
His119 6.5 5.6 7.6 6.4 6.3

MAX 1.6 3.0 1.0 2.2
AAD 0.7 1.5 0.4 1.1

RMSD 0.8 1.7 0.5 1.1
r 0.88 0.83 0.95 0.93
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the changes in ionization states.10 In fact, partially introducing the conformational effect

via different configurations extracted from a MD trajectory generated with fixed charges

improves the r values for RNA systems.45

It is well known that is a challenge for theoretical models is to beat the NULL model

predictions,69 making such comparison a real critical test in benchmark studies. For HP36,

results obtained by the FPTS and GB are equivalent to the NULL model. The REX-CpHMD

performs better in this respect than the other methods if all the trajectory (0-10ns) is used.

For the initial 5ns, the REX-CpHMD demonstrates difficulties to come closer to the NULL

model accuracy. Conversely, for the BBL system, the expensive REX-CpHMD has the worst

accuracy when compared with NULL model, while the FPTS data indicate higher precision.

All descriptors (MAX, AAD and RMSD) are smaller for the FPTS. An intermediate situation

is observed for the HEWL system. Analyzing all the three proteins together, one can observe

that the FPTS is able to predict pKa’s with a higher accuracy than the NULL model.

In terms of the correlation between the protonation states observed in the calculations

and in the experiments, GB revealed the best agreement, followed by both the FPTS and

REX-CpHMD methods. PropKa fails to predict the correct direction of the pKa’s trends

in six cases (see the bold numbers in the table). Although good results were observed for

propKa in terms of MAX, AAD and RMSD, it predicts three pKa’s in the opposite direction

for HP36. For instance, the pKa for Glu45 is shifted from 4.4 to 3.95 (∆pK = +0.45) in the

experiments while propKa predicts a shift in the opposite direction 4.57 (∆pK = −0.17).

For these three proteins, from the 22 possible values for comparison, propKa has a mistake

in 6 of them (72.7% of success). Conversely, for the same set of data, 17 have the correct

pKa shifts signal predicted by the FPTS (77.3% of success).

pKa calculation for ribonuclease A

Ribonuclease A was investigated before by the all-atom REX-CpHMD method.68 This is

an example of a protein system where MD based methods are in closer agreement with
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experimental data then PropKa. This enzyme is interesting for benchmark studies because

it has several surface amino acids with strongly shifted pKas. Accordingly to Wallace &

Shen,68 it is an excellent system for testing the theoretical methods particularly in respect

with the description of local electrostatic interactions. Three amino acids (GLU-2, ASP-

14 and ASP-38) are known to exhibit the largest experimental pKa shifts with respect to

the ideal case (i.e. pKa − pK0 is larger than what is observed for other titratable groups)

being critical to be reproduced by theoretical methods. This can be observed in the typical

titration plots for the acid amino acids shown in Figure 2. Such graphics measure the degree

of protonation, and are equivalent to the unprotonated fractions plots commonly reported

in the literature.68 Particularly, ASP-38 is highlighted in the literature due to its strong

interaction with LYS-1, LYS-41 and ARG-10. All these residues GLU-2, ASP-14 and ASP-

38 behavior are well reproduced by the FPTS as seen in table 2. Experimental pKas are

2.6, 1.8 and 2.1, respectively, for GLU-2, ASP-14 and ASP-38. Computed pKas for the same

amino acids are overestimated, 3.6(−1.0), 3.4 (−1.6) and 3.0(−0.9), by the all-atom REX-

CpHMD method, and, 3.0(−0.4), 2.8 (−1.0) and 2.3 (−0.2), by the FPTS. The differences

between the experimental and theoretical results, given between the parenthesis, indicate

that the FPTS is able to capture the experimental shifts of the critical ASP-38 (0% buried).

The outcome is also good for GLU-2, another superficial amino acid (10%). All methods

(including PropKa) have more difficulty to simulate ASP-14 (50% buried). In general, there

is a tendency for the worst pKa predictions to be for buried amino acids. This can be seen

in Figure 3 where the difference between experimental and computed pKa by the FPTS is

compared with the the percentage of buried charges in the protein structure. Of course,

other effects due to the assumed approximations in the model may affect the results too.

For this particular system, FPTS gives the smallest MAX (1.0), AAD (0.4) and RMSD

(0.5) than any other method – see table 2. The linear correlation coefficient (0.95), based

on the 12 experimental available points reported in this table, confirms the ability of the

method to quantitatively describe the experimental data. All these descriptors are also much
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Table 3: Calculated and experimental pKa values of buried amino acids of staphylococcal
nuclease. Salt concentrations was 100 mM. ∆REX−CpHMD, ∆FPTS and ∆NULL are defined
as the difference between the theoretical model (REX-CpHMD, FPTS and NULL) and the
experimental data.
a Data taken from ref.68 b Original PDB file (3D6C) was modified with the mutation L38D.
c Original PDB file (2SNM) was modified with the three mutations, P117G, H124L, and
S128A. d Same as c with two additional modifications: substitutions of G50F and V51N and
deletion of residues 44–49.

PDB id Protein Residue Experimenta All-atom REX-CpHMD a ∆REX−CpHMD FPTS ∆FPTS NULL ∆NULL

3D6C L38D/∆+PHS b Asp38 7.2 6.6 -0.6 3.2 -4.0 4.0 -3.2
3D6C L38E/∆+PHS Glu38 7.0 6.9 -0.1 3.9 -3.1 4.4 -2.6
2RKS L38K/∆+PHS Lys38 10.4 9.3 -1.1 11.4 1.0 10.4 0.0
2SNM V66K/WT Lys66 6.4 7.5 1.1 11.0 4.6 10.4 +4.0
2SNM V66K/PHSc Lys66 6.35 6.9 0.55 11.0 4.6 10.4 +4.1

2SNM V66K/∆+PHSd Lys66 5.8 7.0 1.2 11.0 5.2 10.4 +4.6

smaller than the values of 2.2, 1.1 and 1.1 given by the NULL model, respectively, for MAX,

AAD and RMSD. PropKa fails in this respect for this particular system, while it predicts the

proper pKa shift trend. The FPTS results for HIS48 and HIS105 are in opposite directions

in relation to the experimentally observed shifts (−0.2 x +0.7 for HIS48 and +0.2 x 0.0 for

HIS105). The all-atom REX-CpHMD method has difficulties with three residues (ASP53,

HIS105 and HIS119).

pKa calculation for SNASE

The general protocol observed in the literature to investigate the reliability of a given method

is its application to proteins of different structural characteristics.46,67,68 Methods for pre-

dicting pKa values in biomolecules based on the differences between the the residue in the

protein and the reference state for which pK0 is originally obtained have a strong tendency

to fail to compute pKa for buried amino acids. This was already observed in Figure 3, and

is primarily due to the desolvation energy that is not account in this approximation.

Staphylococcal nuclease contains buried groups, and as such is often used in benchmark

studies. Deeply buried groups used before to test the sensibility of the all-atom REX-

CpHMD method were employed here. Results are seen in table 3 for some mutants. The

differences between the theoretical model (REX-CpHMD and FPTS) and the experimental

data are in the same direction although the limitation of the FPTS for these amino acids
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is evident. However, FPTS performs poorly for these specific amino acids. The accuracy of

the FPTS is worst than the NULL model for these specific amino acids. Based on this data,

the FPTS can only qualitatively predict these experimental shifts. The errors (up to 5 pH

units) are the highest ones observed in all pKa calculations done with the FPTS. Similar high

MAX numbers (5.2 pKa units) were reported before for the PropKa method.46 Nevertheless,

the FPTS can still be utilized to provide insight into the physical mechanisms of biological

processes (e.g. the understanding of the functions of enzymes with buried charged amino

acids), and describe the charge fluctuations entailed in the KS complexation mechanism.

A more complete investigation of the accuracy of the FPTS for SNASE is done in Table

4 where the available experimental data for other residues are used to benchmark some

theoretical pKa predictors. This analysis includes the data from the NULL model and the

pH-titration MD (pHtMD) scheme, another variation of the CpHMD methods based on the

performance of a consecutive series of MD simulations with small pH changes.5 As can be

seen, the results obtained by the FPTS are comparable with the other methods in terms of

the usual observed deviations. As a matter of fact, the outcomes are slightly better than

the PropKa data for both MAX (4.3 x 3.4), AAD (0.9 x 0.7) and RMSD (1.3 x 1.0). In

this case, the r values revealed a good correlation for the computed pKas by the FPTS.

Considering only the same residues employed to analyse the pHtMD method (r = 0.85), the

best correlation coefficient is observed for the FPTS data (r = 0.88). r also improves from

0.33 to 0.53 for PropKa. In fact, excluding ASP-19, ASP-21 and ASP-40 from the deviation

analysis decreases the FPTS MAX, AAD and RMSD to 1.2, 0.5 and 0.5, respectively. These

three amino acids are deeply buried in the protein interior and gives the highest deviations

[ASP-19 is 76% (1.4), ASP-21 is 98% (3.4), and ASP-40 is 67% (0.6)]. Once more, this

finding corroborates the previous trend for buried charges.

In terms of RMSD and AAD, the accuracy of the FPTS for this system (RMSD=1.0 and

AAD=0.7) is slightly better than the NULL model (RMSD=1.1 and AAD=0.9) and at least

equivalent to the REX-CpHMD pKa data (RMSD=1.0 and AAD=0.8). The pHtMD method
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Table 4: Calculated and experimental pKa values of staphylococcal nuclease (SNase
∆+PHS). Salt concentrations was 100 mM. Calculations were done with the PDB structure
3BDC. For deviations and the linear correlation coefficients, only residues with available
experimental data were used (ASP-77 and ASP-83 were not included due to their uncertain-
ties). The number of experimental points utilized for the r calculations are given between
parenthesis. na = data not available. a Data taken from ref.5 b This analysis was carried
out only with the smaller number of experimental points (14) used for the r calculation
for the pHtMD method (ASP-19, ASP-21 and ASP-40 were removed from the correlation
calculation).

Residue Experimenta pHtMDa REX-CpHMDa PROPKAa FPTS NULL

Asp19 2.21 na 4.1 4.22 3.61 4.0
Asp21 6.54 na na 2.29 3.17 4.0
Asp40 3.87 na 3.1 4.04 3.3 4.0
Asp77 < 2.2 2.64 3.6 2.25 2.61 4.0
Asp83 < 2.2 na na 2.72 2.55 4.0
Asp95 2.16 3.23 3.6 2.69 2.67 4.0
Glu10 2.82 3.83 4.4 3.7 3.46 4.4
Glu43 4.32 4.03 na 4.96 4.69 4.4
Glu52 3.93 3.77 4.3 3.87 4.3 4.4
Glu57 3.49 3.74 4.3 4.41 4.06 4.4
Glu67 3.76 3.84 4.39 3.61 3.33 4.4
Glu73 3.31 3.84 4.2 4.51 3.31 4.4
Glu75 3.26 4.16 4.0 3.65 3.44 4.4
Glu101 3.81 3.69 3.5 5.25 3.54 4.4
Glu122 3.89 3.27 3.8 3.83 3.51 4.4
Glu129 3.75 3.76 4.28 4.48 2.95 4.4
Glu135 3.76 3.58 4.2 3.27 3.22 4.4
His8 6.50 6.08 na 6.29 6.37 6.3
His121 5.25 5.89 na 6.43 6.49 6.3

MAX 1.1 1.9 4.3 3.4 2.5
AAD 0.4 0.8 0.9 0.7 0.9

RMSD 0.6 1.0 1.3 1.0 1.1
r 0.85 (14) -0.03 (13) 0.33 (17) 0.59 (17) 0.58 (17)

0.53 (14)b 0.88 (14)b 0.87 (14)b
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Table 5: Calculated and experimental pKa values of α-lactalbumin. Salt concentrations was
150 mM. a Data taken from ref.68 For deviations and the linear correlation coefficients, only
residues with available experimental data were used (GLU-1, ASP-78, ASP-82 and ASP-88
were not included). The number of experimental points utilized for the r calculations is 15.

Residue Experimenta All-atom REX-CpHMD a PROPKA FPTS NULL
25oC 43oC 25oC 43oC

Glu1 na 3.8 3.8 4.6 4.9 4.9 4.4
Glu7 4.9 4.8 4.6 3.6 4.2 4.1 4.4
Glu11 4.7 4.6 4.6 4.8 4.3 4.3 4.4
Asp14 3.5 2.9 2.9 3.8 3.2 3.2 4.0
Glu25 4.9 3.9 4.0 2.3 3.9 3.9 4.4
Asp37 4.2 3.7 3.8 2.3 4.1 4.1 4.0
Asp46 3.8 2.7 2.6 2.5 3.8 3.8 4.0
Glu49 4.0 5.0 4.9 4.9 4.4 4.4 4.4
Asp63 4.5 4.4 4.3 1.8 3.7 3.7 4.0
Asp64 4.1 3.0 2.9 3.8 4.1 4.1 4.0
Asp78 na 2.3 2.7 2.9 3.6 3.6 4.0
Asp82 na 4.6 4.7 3.5 4.4 4.5 4.0
Asp83 4.5 3.3 3.1 4.0 4.5 4.6 4.0
Asp84 4.1 2.5 2.4 2.4 4.5 4.5 4.0
Asp87 4.4 3.7 3.8 2.0 4.1 4.1 4.0
Asp88 na 5.9 5.9 9.1 4.2 4.2 4.0
Asp97 3.5 2.6 2.5 3.4 3.1 3.1 4.0
Glu113 4.1 3.9 3.7 4.5 3.8 3.8 4.4
Asp116 3.5 2.6 2.5 3.8 3.7 3.7 4.0

MAX 1.6 1.7 2.7 1.0 1.0 0.5
AAD 0.7 0.8 1.1 0.4 0.4 0.4

RMSD 0.9 0.9 1.4 0.5 0.5 0.4
r 0.68 0.68 -0.16 0.58 0.58 0.53

shows higher accuracy for this specific system, and propKa the worst one. PropKa has also

predicted opposite pKa shifts directions for several residues. Asp21 and Glu43 are the only

two cases where the FPTS gives the opposite experimental behavior for the pKa shifts. His8

is the critical case for calculated amino acids with the pHtMD method. Data is not available

for four cases including Asp19, Asp21 and Asp40 where deviations were observed for the

PropKa. It is unclear how the pHtMD method would perform for these residues.

28



pKa calculation for ALAC

α-lactalbumin is a calcium metalloprotein with 123 amino acids with several functional prop-

erties (e.g. apoptosis and induction of cell growth inhibition) and industrial applications.70–73

From a structural point of view, it exhibits conformational fluctuations that result in its elec-

trostatic properties similar to those of an intrinsically disordered protein structure.68 Since

FPTS relies on a rigid protein model, systems like ALAC with high structural fluctuations

represent an additional challenge.

Experimental pKas and the corresponding values calculated by the the NULL model,

all-atom REX-CpHMD, PropKa and FPTS methods are compared in table 5. Unexpectedly

due to its simplifications, the deviations obtained by the FPTS (RMSD=0.5) are smaller

than the others [RMSD(REX-CpHMD)=0.68 and RMSD(PropKa)=1.4]. Computed pKas

by the all-atom REX-CpHMD scheme are similar to the FPTS who has the best accuracy for

this system when comparing the three descriptors (1.0 x 1.6 for MAX, 0.4 x 0.7 for AAD, and

0.5 x 0.9 for RMSD). The qualitative analysis of the titration confirms these behaviour. Only

five amino acids (GLU7, GLU11, GLU25, GLU49 and ASP63) have their pKa shifts contrary

to the experiments. They are shifted down while in the experimental measurements they

were shifted up. The discrepancy increases to seven cases for the REX-CpHMD method.

On the other hand, PropKa is the theoretical method that shows the greatest difficulties

to reproduce the experimental shifts for this protein both in terms of the quantitative and

qualitative descriptors. It even gives a negative r value (−0.16) and ten cases are in the

wrong pKa shift direction. All methods provide results with less accuracy than the NULL

model. The FPTS is the only one whose outcomes are quite closer to the NULL model.

pKa calculation for OMTKY3 and HEWL2

Two other proteins, the turkey ovumucoid third domain and the hen egg-white orthorhom-

bic lysozyme, were included in this benchmark study. Rather than detailing their biological

functions or structural features, the main reason to study these two systems here is the
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Table 6: Calculated and experimental pKa values of OMTKY3 and HEWL2 proteins.
Salt concentrations were 10 mM for for OMTKY3, and 100mM for HEWL2. The mean and
standard deviations of the calculated FPTS pKa values for OMTKY3 were obtained from the
results of all 50 NMR structures available in the PDB coordinates (PDB id 1OMU) as done
in ref.10 a Experimental data from refs.74 and75 for OMTKY3 and HEWL2, respectively. b

The theoretical data for the hybrid neMD−MC was taken from ref.4 For OMTKY3, the data
is based on the averaged result for 7 simulations. For deviations and the linear correlation
coefficients, all available experimental points (15) were used.

Residue Experimenta hybrid neMD−MCb propKa FPTS NULL

OMTKY3

Asp7 2.7 3.43 3.43 3.34(7) 4.0
Asp27 2.3 4.27 3.69 3.15(10) 4.0
Glu10 4.1 4.04 5.03 3.98(6) 4.4
Glu19 3.2 3.53 4.14 3.38(9) 4.4
Glu43 4.8 4.39 4.64 4.12(3) 4.4

MAX 1.97 1.35 0.85 1.7
AAD 0.70 0.83 0.49 0.98

RMSD 0.97 0.92 0.57 1.12

HEWL2

Asp18 2.66 2.74 3.39 3.2 4.0
Asp48 1.6 1.41 2.07 3.41 4.0
Asp52 3.68 3.99 4.73 3.56 4.0
Asp66 0.9 0.83 1.98 3.37 4.0
Asp87 2.07 3.03 2.31 3.46 4.0
Asp101 4.09 3.57 4.08 3.42 4.0
Asp119 3.2 3.06 2.99 3.49 4.0
Glu7 2.85 2.86 2.98 3.75 4.4
Glu35 6.2 3.98 6.37 3.8 4.4
His15 5.36 3.85 6.31 5.74 6.3

MAX 2.22 1.08 2.47 3.1
AAD 0.60 0.50 1.10 1.43

RMSD 0.93 0.64 1.37 1.68

For these

two proteins

MAX 2.2 1.4 2.5 3.1
AAD 0.6 0.6 0.9 1.3

RMSD 0.9 0.7 1.2 1.5
r 0.73 0.94 0.62 0.56
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possibility to compare the FPTS results with the recent developed hybrid neMDMC.4 With

regard to the fundamental theory supporting this method, it is expected to accurately sample

the coupling of conformational dynamics, titratable sites and mobile explicit ions with im-

proved pKa convergence. Table 6 shows the outcomes from experiments and the computed

pKa values by hybrid neMD−MC, PropKa, the NULL model and FPTS. For OMTKY3,

this data confirms that FPTS is able to reproduce experimental shifts (RMSD= 0.57) even

better than more sophisticated methods for some systems regardless of the model approxi-

mations adopted to speed up calculations. PropKa gives deviations at an intermediate level

(RMSD= 0.92) in comparison with other theoretical schemes. From this result, apparently,

the convergence was probably not reached by the hybrid neMD−MC method for this specific

system (RMSD= 0.97). In contrast to the trend that was observed above for buried residues,

ASP-27 (0% buried) is the amino acid that seems to be the most difficult case for all three

theoretical methods. Probability, it is an amino acid where the changes in the protonation

state induce conformational variations that are neither described in the schemes using a rigid

protein description (as the FPTS) nor enough sampled in the constant-pH MD approaches

due to the slow convergence of them. All theoretical methods perform better than the NULL

model.

For HEWL2, the FPTS has, to a small degree, higher deviations in comparison with the

other methods. ASP-66 (13% buried) and GLU-35 (68% buried) are the two amino acids

that present the maximum deviations (−2.5 and 2.4, respectively). The hybrid neMDMC

method also has difficulties to reproduce the GLU-35 pKa value. The difference between

the experimental and computed pKa is 2.2 for this amino acid. PropKa achieved the lower

deviations for this protein. Curiously, the maximum deviation in PropKa data is observed

for ASP-66 (−1.1) as seen for the FPTS. Despite the quantitatively small discrepancies,

FPTS preserves the main protonation features of the other theoretical methods being able

to describe the pKa shift directions. Similar number of cases with pKa shifts inverted are

observed for all the theoretical methods (three for both propKa and FPTS, and four for
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Table 7: Summary of the deviations observed by different theoretical methods. All points
were taken from the previous tables. Following them, some protein systems were grouped
together. The qualitative analysis is expressed in terms of the number of cases where pKa

shifts are in the opposite direction in comparison with experiments divided by the total
number of available experimental points. The number between parenthesis expresses the
percentage to fail in this qualitative criterion. a Data for 25oC. b Calculated excluding some
residues. See text for details. c The CPU time is given for a single run with 107 MC steps
in a personal notebook [Intel i7-3630QM and 2.40GHz (4788.95/per processor) – running
ubuntu 12.04] for the FPTS. d Some ionizable amino acids were not calculated. Missing data
for 4 (for pHtMD) or 5 (for REX) residues.

system

Descriptor method HP36/BBL/HEWL RNase SNASE ALACa OMTKY3/HEWL2
MAX REX-CpHMD 2.5 1.6 1.9 1.6

pHtMD 1.1
neMD−MC 2.2
GB 1.7
PropKa 1.4 3.0 4.3 2.7 1.4
FPTS 2.6 1.0 3.4 1.0 2.5
NULL model 2.8 2.2 2.5 0.5 3.1

AAD REX-CpHMD 0.7 0.7 0.8 0.7
pHtMD 0.4
neMD−MC 0.6
GB 0.5
PropKa 0.5 1.5 0.9 1.1 0.6
FPTS 0.7 0.4 0.7 0.4 0.9
NULL model 0.9 1.1 0.9 0.4 1.3

RMSD REX-CpHMD 0.9 0.8 1.0 0.9
pHtMD 0.6
neMD−MC 0.9
GB 0.7
PropKa 0.6 1.7 1.3 1.4 0.7
FPTS 1.0 0.5 1.0 0.5 1.2
NULL model 1.2 1.1 1.1 0.4 1.5

r REX-CpHMD 0.87 0.88 -0.03 0.68
pHtMD 0.85
neMD−MC 0.73
GB 0.86

PropKa 0.92 0.83 0.33/0.53b -0.16 0.94

FPTS 0.67 0.95 0.59/0.88b 0.58 0.62

NULL model 0.67 0.93 0.58/0.87b 0.53 0.56

qualitative REX-CpHMD 5/22 (22.7%) 3/12 (25.0%) 0/14 (0%)d 7/15 (46.7%)

pHtMD 1/15 (6.7%)d

neMD−MC 4/15 (26.7%)
GB 4/22 (18.2%)
PropKa 6/22 (27.3%) 0/12 (0%) 10/19 (52.6%) 10/15 (66.7%) 3/15 (20.0%)
FPTS 5/22 (22.7%) 2/12 (16.7%) 3/19 (15.8%) 5/15 (33.3%) 3/15 (20.0%)

CPU costs (s)c 3/4/9 10 13 12 4/9

the hybrid neMDMC method). Analyzing together the two proteins reinforce this capacity.

FPTS results are closer to the ones produced by the hybrid neMDMC method at much lower

CPU cost. For the HEWS2 system, the CPU time for 107 MC steps is 11 s per experimental

condition in a personal notebook (Intel i7-3630QM and 2.40GHz). As observed for ALAC,

all theoretical methods are able to provide pKa predictions with higher accuracy than the

NULL model.
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Summary of pKa calculations for all studied systems

Figure 4 shows the correlation between experimental and calculated pKas using the FPTS

and PropKa methods. These scatter plots showing all available data suggests at least an

equivalent predictive capacity between the FPTS and other popular theoretical methods.

There is a slight tendency for the FPTS to be closer to the experimental measurements.

From this Figure, one can see that the slope given by the FPTS comes nearer to the ideal

line (given in dashed). The MAX, AAD and RMSD are, respectively, 5.2, 0.8 and 1.5, for

FPTS using all 87 available points; 3.4, 0.6 and 0.9, for FPTS using the same 81 points as in

PropKa analysis (excluding the data from table 3); and 4.9, 1.0 and 1.4, for PropKa using

81 points. As a reference to analyse these numbers, in another benchmark study, the results

for PropKa using a larger set of proteins were quite similar: 5.2, 1.0 and 1.4.46 Accordingly

to this work, CpHMD produces very close performance (5.1, 1.0 and 1.4).46 We note that

outcomes for RNA systems obtained by the FPTS are slightly more precise.45

The results for all studied proteins are summarized in Table 7, which also includes the

computation time for each system employing the FPTS. This comparison indicates that each

method performs better for a specific protein. In spite of the fact that the FPTS might have

difficulties to yield the actual value of a specific experimental pKa, it gives reasonable agree-

ment with experiments and at least equivalent performance to more elaborated methods. The

best reproducibility is seen for RNase, SNASE and ALAC. RNase is a good example where

the FPTS performs better than any other approach. The values reported are in within the

typical range of values given by different theoretical models.37 Except for ALAC, where the

FPTS predictions have slightly less accuracy [RMSD(FPTS)=0.5 and RMSD(NULL)=0.4],

FPTS performs better for all studied systems than the NULL model. In fact, for this system,

the other theoretical methods are much slower and the corresponding predictions are poor

[RMSD(REX-CpHMD)=0.9 and RMSD(propKa)=1.4]. A qualitative analysis of the pKa

shifts calculated by REX-CpHMD, propKa and the FPTS (the three methods with more

available data in table 7 for a better statistics) verifies that the FPTS predicts experimental
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trends with less errors than the others (21.7% for FPTS, 23.8% for REX-CpHMD, and 34.9%

for propKa). Together with its fast convergence and cheap CPU costs,45 this confirms the

robustness and ability of FPTS to properly describe the main system’s physics.

The reduction in computational time achieved by the FPTS represents a considerably

advantage of this method. A single run for a given protein structure in an electrolyte solution

takes ≈ 10s as seen in Table 7. This permits the repetition of the calculation for a much

larger set of protein conformations (as done here by all low-energy NMR solution structures

for OMTKY3), salt concentrations, mutations, etc., and, even more important, the study

of multi titrating objects containing several ionizable sites. Note, however, that this single

calculation provides < zaa > and < Zp > and not directly pKa. Note also that the simulation

has to be repeated for equilibration and production phases, at least. Therefore, the full set

of simulations to compute the pKa is higher than the numbers given in this table.

In terms of CPU performance, PropKa is by far the faster method. A typical run for a

single protein chain takes less than 1s of user time in the same Linux box (data not shown in

this table). Nevertheless, it provides the pKas as its main output and not charges. PropKa

does not evaluate the electrostatic interactions of the titratable site with all extra-molecular

charges in the system. Conversely, in a MC run with the FPTS, charges are directly ob-

tained, and can fluctuate as a function of the solution pH. Extra molecular electric fields

from other charged species present in the solution are taken into account contributing to

the titration acceptance criterion.40 This gives the real opportunity to explore the impor-

tant charge regulation mechanisms so relevant for protein complexation.15,32,34,59 A further

development of the present method is the coupling with a MD engine, a on going work that

will contribute to bring more information for the understanding of the electrostatic world of

the biomolecules.
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Figure 4: Correlation between experimental and calculated pKas using the FPTS (top panel)
and PropKa (bottom panel) methods. All points were taken from the previous tables (1–6)
for the cases where there was both an experimental and predicted data (n = 87 for FPTS
and n = 81 for PropKa). Fitted regression lines are given in red. The linear correlation
coefficients and slopes are equal to 0.68 and 0.79, for FPTS; 0.51 and 0.60, for PropKa.

Conclusion

The accurate prediction of protonated amino acids by the FPTS was critically tested for

several proteins with a diversity of structural features. Since experimental pKa values com-

pare relatively well with those calculated by the FPTS, this suggests that this fast Coarse

Grained method is able to properly describe the main physics of the studied protein sys-

tems. Deviations are found to be within the typical range of values given by other theoretical

models. Some ionizable groups are shifted to the acid or basic regimes as also happens with

other computational methods. pKa can be substantially shifted for deeply buried amino

acids, because this scheme relies on the phenomenological assumptions given by the use of

pK0s. Features like conformational changes in response to the switch in the titration state

are not incorporated in the model and can also affect the quality of the results. The average,

maximum absolute and root-mean-square deviations were measured as [0.4− 0.9], [1.0− 5.2]

and [0.5−1.2] pH units, respectively. The present data might also contribute with the under-

standing of factors that affect the accuracy of theoretical pKas leading to the improve of any

biomolecular electrostatics method. It is important to stress that we rely on the available
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protein structures, and the comparison is carried out with experimental data also subject to

uncertainties.

uncertainties. The gain in CPU performance is clearly a great advantage of the present

method. It permits its application to much larger systems and a proper sampling of the

complex electrostatic coupling between the ionizable sites and other charges and also opens

up opportunities for the study of multibiomolecular systems. The latter is a real achievement

for the simulation of such systems. Other molecular simulation methods based on CpHMD

are still prohibitive in this context even with massive computational resources due to their

slow convergence that will become more critical when more biomolecules are included in the

simulation box.
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