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Abstract
Serverless computing is an emerging paradigm that greatly
simplifies the usage of cloud resources and suits well to many
tasks. Most notably, Function-as-a-Service (FaaS) enables
programmers to develop cloud applications as individual
functions that can run and scale independently. Yet, due to
the disaggregation of storage and compute resources in FaaS,
applications that require fine-grained support for mutable
state and synchronization, such as machine learning and
scientific computing, are hard to build.

In this work, we present Crucial, a system to program
highly-concurrent stateful applications with serverless archi-
tectures. Its programming model keeps the simplicity of FaaS
and allows to port effortlessly multi-threaded algorithms to
this new environment. Crucial is built upon the key insight
that FaaS resembles to concurrent programming at the scale
of a data center. As a consequence, a distributed shared mem-
ory layer is the right answer to the need for fine-grained
state management and coordination in serverless. We val-
idate our system with the help of micro-benchmarks and
various applications. In particular, we implement two com-
mon machine learning algorithms: 𝑘-means clustering and
logistic regression. For both cases, Crucial obtains superior
or comparable performance to an equivalent Spark cluster.
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1 Introduction
With the emergence of serverless computing, the cloud has
found a paradigm that removes much of the complexity of
its usage by abstracting away the provisioning of compute
resources. This fairly new model was started by services such
as Google BigQuery [40] and AWS Glue [5], and evolved
into Function-as-a-Service (FaaS) computing platforms, such
as AWS Lambda, and Google’s Cloud Functions, to name
a few. With these platforms, a user-defined function and
its dependencies are deployed to the cloud, where they are
managed by the provider and executed on-demand.

Current practice shows that the FaaS model works well for
applications that require a small amount of storage and mem-
ory due to the operational limits set by the cloud providers
(see, for instance, AWS Lambda [3]). However, there are
more limitations. While functions can initiate outgoing net-
work connections, they cannot directly communicate be-
tween each other, and have little bandwidth compared to a
regular virtual machine [9, 53]. This is because this model
was originally designed to execute event-driven, stateless
functions in response to user actions or changes in the stor-
age tier (e.g., uploading a photo to Amazon S3 [2]). Despite
these constraints, recent works have shown how this model
can be exploited to process and transform large amounts of
data [25, 42, 44], encode videos [15], execute linear algebra
tasks [46], and perform Monte Carlo simulations with large
amounts of parallelism [23].
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https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535


Middleware ’19, December 8–13, 2019, Davis, CA, USA D. Barcelona-Pons et al.

The above research projects, such as PyWren [25, 44]
and ExCamera [15], prove that FaaS platforms can be pro-
grammed to perform a wide variety of embarrassingly par-
allel computations. Yet, these tools face also fundamental
challenges when used out-of-the-box for many popular tasks.
Although the list is too long to recount here, convincing
cases of these ill-suited applications are machine learning
(ML) algorithms. Just an imperative implementation of 𝑘-
means [33] raises several issues: first, the need to efficiently
handle a globally-shared state at fine granularity (the clus-
ter centroids); second, the problem to globally synchronize
cloud functions, so that the algorithm can correctly proceed
to the next iteration; and finally, the prerogative that the
shared state survives system failures.

Current serverless systems do not address these issues
effectively. First, due to the impossibility of function-to-
function communication, the prevalent practice for shar-
ing state across functions is to use remote storage. For in-
stance, serverless frameworks, such as PyWren [25, 44] and
numpywren [46], use highly-scalable object storage services
to transfer state between functions. Since object storage is
too slow to share short-lived intermediate state in server-
less applications [31], some recent works use faster storage
solutions. For instance, this has been the path taken by Lo-
cus [42], which proposes to combine fast, in-memory storage
instances with slow storage to scale shuffling operations in
MapReduce. However, with all the shared state transiting
through storage, one of the major limitations of current
serverless systems is the lack of support to handle mutable
state at a fine granularity (e.g., to efficiently aggregate small
granules of updates). Such a concern has been recognized in
various works [9, 26], but this type of fast, enriched storage
layer for serverless computing is not available today in the
cloud, leaving fine-grained state sharing as an open issue.

Similarly, FaaS orchestration services (such as AWS Step
Functions [4] or OpenWhisk Composer [16]) offer limited
capabilities to coordinate serverless functions [17, 26]. For
instance, there is no abstraction to signal a function when
a condition is fulfilled, or for multiple functions to synchro-
nize, e.g., in order to guarantee data consistency, or to ensure
joint progress to the next stage of computation. Of course,
such fine-grained coordination should be also low-latency to
not significantly slow down the application. Existing stand-
alone notification services, such as AWS SNS [8] and AWS
SQS [18], add significant latency, sometimes hundreds of
milliseconds. This lack of efficient cloud coordination tools
means that each serverless framework needs to develop its
own mechanisms. For instance, PyWren [25, 44] enforces
the synchronization of map and reduce stages through ob-
ject storage, while ExCamera [15] has built a notification
system using a long-running VM-based rendezvous server.
As of today, there is no general way to let multiple functions
synchronize via abstractions hand-crafted by users, so that
fine-grained coordination can be truly achieved.

1.1 Contributions
To overcome the aforementioned issues, we propose Crucial,
a system for the development of stateful distributed applica-
tions with serverless architectures. To simplify the writing
of an application, Crucial provides a thread abstraction that
maps a thread to the invocation of a serverless function. To
support fine-grained state management and coordination,
our system builds a distributed shared object (DSO) layer on
top of a low-latency in-memory data store. This layer pro-
vides out-of-the-box strong consistency guarantees, simpli-
fying the semantics of global state mutation across serverless
threads. Since global state is manipulated as remote objects,
the interface for mutable state management becomes vir-
tually unlimited, only constrained by the expressiveness of
the programming language (Java in our case). The result is
that Crucial can operate on small data granules, making it
very easy to develop applications that have fine-grained state
sharing needs. Crucial also leverages this layer to imple-
ment fine-grained coordination. For applications that require
longer retention of in-memory state, Crucial ensures data
durability through replication. To ensure the consistency of
replicas, Crucial uses state machine replication (SMR), so
that any acknowledged write can survive failures.

Most importantly, Crucial offers all of the above guaran-
tees with almost no increase in the programming complexity
of the serverless model. With the help of a few annotations
and constructs, developers can run their single-machine,
multi-threaded, stateful code in the cloud as serverless func-
tions. Crucial’s programming constructs enable developers
to enforce atomic operations on shared state, as well as to
finely synchronize functions at the application level, so that
(imperative) implementations of popular algorithms such as
𝑘-means can be effortlessly ported to serverless platforms.

Our evaluation shows that, for representative applica-
tions that require fine-grained updates (e.g., 𝑘-means, lo-
gistic regression), Crucial can rival, and even outperform,
Spark running on a dedicated cluster. We also establish that
Crucial induces a very small overhead, and that it can ef-
fectively be used for fine-grained coordination (e.g., to solve
the Santa Claus problem [51]).

In summary, the present work makes the following con-
tributions:

• We provide the first concrete evidence that stateful
applications with fine-grained data sharing can be ef-
ficiently built using stateless serverless functions and
a disaggregated shared object layer.

• We design Crucial, a system for the development
and execution of serverless stateful distributed appli-
cations. Crucial supports fine-grained semantics for
both mutable state and coordination. Moreover, the
programming model of Crucial keeps the simplic-
ity offered by current serverless architectures. These
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properties make Crucial a great tool to easily move
multi-threaded applications to the cloud.

• Using extensive evaluation of 𝑘-means and logistic re-
gression over a 100GB dataset, we show that Crucial
can lead to 18 − 40% performance improvement over
Spark running on dedicated instances at similar cost.
Crucial is also within 8% of the completion time of
the Santa Claus problem running on a local machine.

The remaining of the paper is structured as follows: Sec-
tion 2 puts this work in perspective with a general back-
ground. We explain Crucial’s programming model in Sec-
tion 3, and describe its design in Section 4. Section 5 covers
some implementation details. The evaluation is presented
in Section 6, where we validate Crucial through micro-
benchmarks and assess its effectiveness for fine-grained state
management and coordination in serverless environments.
Finally, we review related work in Section 7 and close in
Section 8.

2 Background
2.1 FaaS computing: What fits?
We contextualize FaaS computing with a description of AWS
Lambda; although other platforms are equally well-suited for
this purpose (e.g., Google Cloud Functions, Azure Functions,
or Apache OpenWhisk).

AWS Lambda is a cloud service designed to run user-
supplied cloud functions—or Lambdas—in response to events
(e.g., file uploads, message arrivals, etc.), or explicit API calls
(via HTTP requests). AWS Lambda, as other FaaS computing
platforms, gives the favorable advantages of rapid provision-
ing, high elasticity and just-right cost: containers used for
function deployment can be launched within a few seconds;
they can quickly scale up or down to match demand; and
the service charges for the duration of their execution at the
granularity of milliseconds. All these properties make pos-
sible to run arbitrary workloads in the cloud with minimal
overhead [25, 42, 44, 46].

However, due to their lightweight nature, cloud functions
are also subject to stringent resource restrictions. For in-
stance, AWS Lambda [3] imposes a 15 minute limit per func-
tion invocation and caps memory usage to 3GB. Similar limits
are applied by other FaaS providers. In addition, while a user
can execute functions concurrently, peer-to-peer communi-
cation is impossible between them. As a consequence, the
linear scalability in function execution is in practice only
achievable for embarrassingly parallel tasks [20, 26].

Function invocations can also fail for various reasons (e.g.,
it raises an exception, times out, or runs out of memory).
When an error occurs, the AWS Lambda service may au-
tomatically retry the failed invocation.1 This requires the
developer to consider carefully such a behavior when de-
signing FaaS applications.
1See: https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

2.2 The dilemma of shared data
This work focuses on the case of stateful distributed applica-
tions with fine-grained updates and synchronization needs.
Cloud functions are assumed to be stateless, and as such,
they do not provide support for arbitrary mutable state. This
stateless nature, together with the impossibility to commu-
nicate across functions, has encouraged the use of remote
storage [26, 54].

So far, the prevalent choice has been to rely on disaggre-
gated object storage such as Amazon S3 or Google Cloud Stor-
age. Typically, object stores have high access latency (>10ms)
and deliver either limited or costly I/O performance [26, 54].
Consequently, most serverless frameworks, like PyWren [25],
only allow coarse-grained operations to shared data.

To alleviate the above problem, some recent works [39, 42,
46] make use of their own in-memory storage instances. This
type of storage offers low-latency but it is not fault-tolerant
and does not support convenient abstractions to synchronize
cloud functions. In addition, these systems may not provide
guarantees regarding data persistence and availability.

Another recurring problem is the need to ship data to
code. Existing serverless frameworks access data using stor-
age services that either offer a CRUD interface or provide
limited sets of data types. As a consequence, data is repeat-
edly transported back and forth between the cloud functions
and the storage layer. This negatively impacts performance
(especially for large objects) and restrains concurrency on
shared data.

2.3 An overview of Crucial
Crucial apprehends a simplified view of FaaS where cloud
functions are seen as a set of “cloud threads” that communi-
cate through shared state. To achieve this, our framework
organizes mutable shared data in a layer of distributed shared
objects (DSO). Cloud functions remotely call the methods of
the objects to read/update them at fine granularity.

The DSO layer is implemented within a low-latency in-
memory data store and deployed jointly with the serverless
application. It delivers sub-millisecond latency—like other
in-memory systems such as Redis (see Table 2)—and achieves
even better throughput for complex, CPU-bound, concurrent
operations (see Fig. 2a). Both properties, low-latency and
high-throughput, make it an excellent substrate for mutable
shared state and synchronization. Crucial also permits data
to persist after the computation, ensuring their durability
through replication.

Although the idea of distributed objects is not novel, to
the best of our knowledge, it was never applied to serverless
computing. Such an approach simplifies the programming of
stateful applications atop serverless architectures and further
closes the gap between cloud and conventional computing.
The next two sections describe the programming model of
Crucial and its internals.

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
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Table 1. Programming abstractions

Abstraction Description

CloudThread Serverless functions are invoked like threads.

Shared objects Linearizable (wait-free) distributed objects.
AtomicInt, AtomicLong, AtomicBoolean,
AtomicByteArray, List, Map, . . .

Synchronization
objects

Shared objects providing primitives for thread
synchronization (e.g., CyclicBarrier, Semaphore,
Future).

@Shared User-defined shared object. Methods are run on the
DSO servers, allowing fine-grained updates and
aggregates (.add(), .update(), .merge(), . . . ).

Data persistence Long-lived shared objects are replicated. Use
@Shared(persistence=true) to activate it.

3 Using Crucial
3.1 Programming model
Crucial’s programming model is object-based and can be
integrated with any concurrent object-oriented language. As
Java is the programming language supported in our imple-
mentation, the following description considers its jargon.

Overall, a Crucial program is strongly similar to a regu-
lar multi-threaded, object-oriented Java one, besides some
additional annotations and constructs. Table 1 summarizes
the key programming abstractions available to developers
that are detailed hereafter.

Cloud threads To write a stateful application for serverless
architectures, a programmer first builds its logic as a regular
multi-threaded, object-oriented Java program. Then, two
refinements are necessary to make it executable atop the
FaaS model. First, each runnable object is associated with a
CloudThread. An instance of this class hides the execution
details of the remote cloud function to the developer. The
second modification is to replace each mutable object shared
between threads with its Crucial counterpart.

State handling Crucial already includes a library of base
shared objects to support mutable shared data across cloud
threads. This library consists of common objects such as
integers, counters, maps, lists and arrays. These objects are
wait-free and linearizable [34]. This means that each method
invocation terminates after a finite amount of steps (despite
concurrent accesses), and that concurrent method invoca-
tions behave as if they were executed by a single thread.
Crucial also gives programmers the ability to craft their
own custom shared objects by decorating them with the
@Shared annotation. Annotated objects become globally ac-
cessible by any thread. Crucial refers to an object with a
key crafted from the field’s name of the encompassing object.
The programmer can override this definition by explicitly
writing @Shared(key=k).

Data Persistence Shared objects in Crucial can be ei-
ther ephemeral or persistent. By default, shared objects are

1 public class PiEstimator implements Runnable{
2 private final static long ITERATIONS = 100_000_000;
3 private Random rand = new Random();
4 @Shared(key="counter")
5 crucial.AtomicLong counter = new crucial.AtomicLong(0);
6
7 public void run(){
8 long count = 0;
9 double x, y;

10 for (long i = 0L; i < ITERATIONS; i++) {
11 x = rand.nextDouble();
12 y = rand.nextDouble();
13 if (x * x + y * y <= 1.0) count++;
14 }
15 counter.addAndGet(count);
16 }
17 }
18
19 List<Thread> threads = new ArrayList<>(N_THREADS);
20 for (int i = 0; i < N_THREADS; i++) {
21 threads.add(new CloudThread(new PiEstimator()));
22 }
23 threads.forEach(Thread::start);
24 threads.forEach(Thread::join);
25 double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Listing 1. Monte Carlo simulation to approximate 𝜋 .

ephemeral and they only exist during the application lifetime.
Once the application finishes, they are discarded. Ephemeral
objects can be lost, e.g., in the event of a server failure in
the DSO layer, since the cost of making them fault-tolerant
outweighs the benefits of their short-term availability [31].
Nonetheless, it is also possible to make them persistent with
the annotation @Shared(persistent=true). Annotated ob-
jects outlive the application lifetime and are only removed
from storage by an explicit call.

Synchronization Current serverless frameworks support
only uncoordinated embarrassingly parallel operations, or
bulk synchronous parallelism (BSP) [20, 26]. To provide fine-
grained coordination of cloud threads, Crucial offers a num-
ber of primitives such as cyclic barriers and semaphores (see
Table 1 and an example at line 2 in Listing 2). These coor-
dination primitives are semantically equivalent to those in
the standard java.util.concurrent library. They allow a
coherent and flexible model of concurrency for serverless
functions that is, as of today, non-existent.

3.2 Sample application
Listing 1 presents an application implemented with Crucial.
This simple program is a multi-threaded Monte Carlo sim-
ulation that approximates the value of 𝜋 . It draws a large
number of random points and computes how many fall in the
circle enclosed by the unit square. The ratio of points falling
in the circle converges with the number of trials toward 𝜋/4
(line 25).

The application first defines a regular Runnable class that
carries the estimation of 𝜋 (lines 1-19). To parallelize its
execution, lines 23-24 run a fork-join pattern using a set of
CloudThread instances. The shared state of the application
is a counter object (line 5). This counter maintains the total
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Figure 1. Overall architecture of Crucial. A client applica-
tion would run a set of threads in FaaS functions, and all the
threads would have access to the same state (client included).

number of points falling into the circle, which serves to
approximate 𝜋 . It is updated by the threads concurrently
using the addAndGet method (line 15).

4 System Design
Figure 1 presents the overall architecture of Crucial. In what
follows, we detail its components and describe the lifecycle
of an application in our system. Crucial encompasses three
main components: 1) the FaaS computing layer that runs the
cloud threads; 2) the DSO layer that stores the shared objects;
and 3) the client application. A client application differs from
a regular JVM process on two aspects: threads are executed
as serverless functions, and they access shared data using
the DSO layer. In addition, Crucial may use object storage
(such as Amazon S3) to store the immutable input data of
the application (not modeled in Figure 1).

4.1 The distributed object layer
In Crucial, fine-grained updates to a data item are imple-
mented as object methods. Internally, each object in the DSO
layer is uniquely identified by a reference. Given an object of
type𝑇 , the reference to this object is (𝑇, 𝑘), where 𝑘 is either
the field’s name of the encompassing object or the value
of the parameter 𝑘𝑒𝑦 in the annotation @Shared(key=k).
When a cloud thread accesses an object, it uses its refer-
ence to invoke remotely the appropriate method. Crucial
constructs the DSO layer using consistent hashing [28], sim-
ilarly to Cassandra [32]. Each storage node knows the full
membership of the storage layer and thus the mapping from
data to node. The location of a shared object 𝑜 is then de-
termined by hashing the reference (𝑇, 𝑘) of 𝑜 . This offers
the following usual benefits: 1) no broadcast is necessary to
locate an object; 2) disjoint-access parallelism [24] can be

exploited; and 3) service interruption is minimal in the event
of server addition and removal. The latter property is useful
for persistent objects, as detailed next.

Persistence One interesting aspect of Crucial is that it
can ensure durability of the shared state. This property is
appealing, for instance, to support the different phases of ma-
chine learning workflows (training and inference). Objects
marked as persistent are replicated rf (replication factor)
times in the DSO layer. They reside in memory to ensure
sub-millisecond read/write latency and can be passivated
to stable storage using standard mechanisms (marshalling).
When a cloud thread accesses a shared object, it contacts one
of the server nodes. The operation is then forwarded to the
actual replicas storing the object. Each replica executes the
incoming call, and one of them sends the result back to the
caller. Notice that for ephemeral—non-persistent—objects,
rf is 1.

Consistency Crucial provides linearizable objects and
developers can reason about interleavings as in the shared-
memory case. This greatly simplifies the writing of stateful
serverless applications. For persistent objects, consistency
across replicas is maintained with the help of state machine
replication (SMR) [45]. To handle membership changes, the
DSO layer relies on a variation of view synchrony [10] View
synchrony provides a totally-ordered set of views to the
server nodes. In a given view, for some object 𝑥 , the opera-
tions accessing 𝑥 are sent using total order multicast. The
replicas of 𝑥 deliver these operations in a total order and
apply them on their local copy of 𝑥 according to this order.
A distinct replica (primary) is in charge of sending back the
result to the caller. When a membership change occurs, the
nodes re-balance data according to the new view.

4.2 Fast aggregates through method call shipping
Crucial helps to alleviate perhaps one of the biggest down-
sides of FaaS platforms: its data-shipping architecture [20].
As functions are not network-addressable and run separate
from data, applications are routinely left with no other choice
but to “ship data to code”. Fortunately, the DSO layer helps to
resolve this design anti-pattern with minimal effort from the
user side: it suffices to implement arbitrary computations as
object methods. This feature is extremely useful for many ap-
plications that need to aggregate and combine small granules
of data (e.g., machine learning tasks). As object methods are
remotely executed on the DSO servers, applications can save
significant communication resources. Without this property,
each cloud function would need first to pull all the inter-
mediate data from the remote storage service (e.g., S3) and
then aggregate it locally (i.e., AllReduce operation). This
would entail a communication cost of 𝑁 2 messages, where
𝑁 is the number of functions. With Crucial, however, this
complexity reduces to O(𝑁 ) messages. For instance, we ex-
ploited this feature in 𝑘-means clustering to calculate the
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final centroids from their partial updates. The performance
benefits are detailed in Section 6.2.

4.3 Execution lifecycle
The execution lifecycle of a Crucial application is similar
to that of a multi-threaded Java application. Every time a
CloudThread is started, a standard Java thread (i.e., instance
of java.lang.Thread) is spawned in the client application
with some extra logic. The basic role of this logic lies in call-
ing a generic serverless function to execute the Runnable
code attached to the CloudThread. During the execution of
a cloud thread, each access to a shared object is mediated
by a proxy. This proxy is created when a constructor is en-
countered in the code, and either the newly created object
belongs to Crucial’s library, or it is tagged @Shared.

The Java thread remains blocked until the call to the server-
less function terminates. Such behavior gives cloud threads
the appearance of conventional threads; minimizing code
changes and allowing the use of the join()method in the ap-
plication’s master thread to establish synchronization points
(e.g., fork/join pattern). It must be noted, however, that as
cloud functions cannot be canceled or paused, the analogy is
not complete. If any failure occurs to the remote cloud func-
tion, the error is propagated back to the client application
for further processing.

4.4 Fault tolerance
As detailed next, fault tolerance in Crucial is based on the
disaggregation of the compute and storage layers. On the one
hand, writes to the shared object layer can be made durable
with the help of data replication. In such a case, Crucial
tolerates the joint failure of up to rf − 1 servers.2 On the
other hand, Crucial offers the same fault-tolerance seman-
tics in the compute layer as the underlying FaaS platform.
In AWS Lambda, this means that any failed cloud thread
can be re-started and re-executed with the exact same input.
Thanks to the cloud thread abstraction, Crucial allows full
control over the retry system. For instance, the user may
configure how many retries are allowed and/or the time be-
tween them. If retries are permitted, the programmer should
ensure that the re-execution is sound (e.g., it is idempotent).
Fortunately, atomic writes in the DSO layer make this task
easy to achieve. Considering the 𝑘-means example depicted
in Listing 2 (or other iterative algorithms), it simply con-
sists of sharing an iteration counter. When a thread fails and
re-starts, it fetches the iteration counter and continues its
execution from thereon.

2Synchronization objects (see Table 1) are not replicated. This is not an
important issue due to their ephemeral nature.

5 Implementation
Crucial applications are written in Java and use Maven to
manage dependencies and compilation. Cloud threads are
defined by implementing a Runnable and executed with the
abstraction from Table 1. Our system uses AWS Lambda as
computation engine for the cloud threads. Lambda functions
are deployed with the help of the lambda-maven-plugin3

and invoked through the AWS Java SDK. To control the
replay mechanism, our prototype uses synchronous invoca-
tions (RequestResponse).

When an AWS Lambda function is invoked, it receives in
the payload the name of the user-defined Runnable and a
set of parameters to initialize it. We use the Java reflection
API to instantiate the classes and provide them the initial-
ization values. Before executing the user code, our generic
function establishes the connection to the DSO layer. Since
our prototype only accepts Runnable, the return payload is
empty unless an error occurs. In case of error, the system
interprets it and re-throws an exception.

The DSO layer is written atop the Infinispan in-memory
data grid [35] as a partial rewrite of the Creson project [49].
The code of the client and the server of this layer weigh 2.5k
and 9.2k SLOC, respectively. The client prototype includes
a small library of shared objects and the proxies to access
them. To wave proxies in the code of the client application
and the cloud functions, both are compiled with the help
of AspectJ [29]. In the case of user-defined shared objects,
the aspects are applied to annotated instance fields (see Sec-
tion 3.1). Such objects must be serializable and contain an
empty constructor for marshalling purposes. The jar pack-
age containing the objects is uploaded to the DSO servers.
This package is then loaded dynamically, without having to
restart the servers.

Synchronization objects (e.g., barriers, semaphores, fu-
tures) follow the structure of their Java counterparts. They
rely on Java monitors, blocking upon a method call at a client,
and using a combination of wait()/notify() at servers. For
instance, the cyclic barrier is implemented thanks to an in-
ternal counter and a generation system. A new generation
is started once the last process reaches the barrier.

SMR is implemented using the interceptors API of Infin-
ispan.4 It follows the visitor pattern as commonly found in
storage systems. Infinispan [35] relies on JGroups [19] for to-
tal order multicast. The current implementation uses Skeen’s
algorithm [7].

In our current prototype, the deployment of the storage
layer is explicitly managed (like, e.g., AWS ElastiCache ser-
vice). Automatic provisioning of storage resources for server-
less computing remains an open issue [9, 26], with just a
couple works appearing very recently in this area [31, 42].

3https://github.com/SeanRoy/lambda-maven-plugin
4The interceptors API enables the execution of custom code in-between
Infinispan’s processing of data store operations.

https://github.com/SeanRoy/lambda-maven-plugin
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Table 2. Average latency comparison – 1KB payload

PUT GET
S3 34, 868𝜇s 23, 072𝜇s
Redis 232𝜇s 229𝜇s
Infinispan 228𝜇s 207𝜇s
Crucial 231𝜇s 229𝜇s
Crucial (rf = 2) 512𝜇s 505𝜇s

6 Evaluation
This section presents experimental results assessing that our
approach is not only feasible but also desirable for certain
types of applications, e.g., machine learning (ML).

We first validate the general design of Crucial with a
series of micro-benchmarks. Next, we show that our system
based on fine-grained updates to shared mutable data out-
performs Spark at comparable cost in two instances of ML
problems. Further, we outline the benefits of Crucial when
coordinating serverless functions The end of this section
explains quantitatively how Crucial simplifies the program-
ming of multi-threaded stateful applications over a serverless
infrastructure.

Evaluation setup All the experiments are conducted in
Amazon Web Services (AWS), within in a Virtual Private
Cloud (VPC) located in the us-east-1 region. Unless oth-
erwise specified, we use r5.2xlarge EC2 instances for the
DSO layer and the maximum resources available for AWS
Lambda.5

6.1 Micro-benchmarks
First, we evaluate Crucial’s performance across a range of
micro-benchmarks.

6.1.1 Latency
Table 2 compares the latency to access a 1KB object sequen-
tially in Crucial, Redis, Infinispan and S3. We chose Redis
because it is a popular key-value store available on almost all
cloud platforms, and it has been extensively used as storage
substrate in prior serverless systems [25, 31, 42]. Each func-
tion performs 30k operations and we display the average
latency of an access. In this test, Crucial exhibits a perfor-
mance similar to other in-memory systems. In particular, it is
an order of magnitude faster than S3. This table also depicts
the effect of object replication. When data is replicated, SMR
adds an extra round-trip, doubling the latency perceived at
a client.

6.1.2 Throughput
Figure 2a compares the performance of Crucial and Redis
for both simple and complex operations. In this experiment,
200 cloud threads access remotely 800 objects at random in
53008MB of memory at the time of writing.

(a) (b)

Figure 2. (a) Operations per second performed in Crucial
(with and without replication) and Redis. The simple opera-
tion is a multiplication. The complex one is the sequential
execution of 10k multiplications. Cloud threads access uni-
formly at random 800 different keys/objects. (b) Scalability of
a Monte Carlo simulation to approximate 𝜋 . Crucial reaches
8.4 billion random points per second with 800 threads.

closed loop. Each remote object consists of an integer with
basic arithmetic operations. The experiment runs for 30s
and we present the average performance. The storage layer
consists of a two-node cluster for both Crucial (with and
without replication), and Redis (2 shards with no replicas).

The key observation in Figure 2a is that Crucial is not sen-
sitive to the complexity of the operation. Redis is 50% faster
for base operations because its implementation is optimized
and written in C. However, for complex operations, the per-
formance of Crucial is almost five times better than Redis.
Again, implementation-specific details are responsible for
this behavior: while Redis is single-threaded—so concurrent
calls (Lua script) run sequentially—, Crucial benefits from
disjoint-access parallelism [24]. With replication, Crucial
is 70% faster.

6.1.3 Parallelism
Our first application using Crucial is the Monte Carlo sim-
ulation presented in Listing 1. This base algorithm is embar-
rassingly parallel, relying only on a single shared object (a
counter). We run the simulation with 1 to 800 cloud threads
and track the total number of points computed by them each
second. The results presented in Figure 2b show that our
system scales linearly and that it exhibits a 512x speedup
with 800 threads.

6.2 Fine-grained state management
This section shows that Crucial is efficient for parallel ap-
plications that access a shared state at fine grain. To this end,
we describe the implementation of two machine learning al-
gorithms in Crucial and compare them to a single machine
solution and Spark.
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Figure 3. Scalability of the 𝑘-means clustering algorithm
with VM threads versus FaaS with Crucial.

1 public class KMeans implements Runnable{
2 private CyclicBarrier barrier = new crucial.CyclicBarrier();
3 @Shared(key = "delta")
4 private GlobalDelta globalDelta = new GlobalDelta();
5 @Shared(key = "iterations")
6 private AtomicInteger globalIterCount = new AtomicInteger();
7 // Wraps a list of @Shared centroids
8 private GlobalCentroids centroids = new GlobalCentroids();
9

10 public void run(){
11 loadDatasetFragment();
12 int iterCount = globalIterCount.intValue();
13 do {
14 correctCentroids = globalCentroids.getCorrectCoordinates();
15 resetLocalStructures();
16 localDelta = computeClusters();
17 globalDelta.update(localDelta);
18 centroids.update(localCentroids, localSizes);
19 barrier.await();
20 globalIterCount.compareAndSet(iterCount, iterCount++);
21 } while (iterCount < maxIterations && !endCondition());
22 }
23 }

Listing 2. 𝑘-means implementation with Crucial.

6.2.1 A serverless 𝑘-means
Listing 2 details the code of a 𝑘-means clustering algorithm
written with Crucial. This program computes 𝑘 clusters
from a set of points across a fixed number of iterations, or
until some convergence criterion is met (line 21). The al-
gorithm is iterative, with recurring synchronization points
(line 19), and it uses a small mutable shared state. Listing 2
relies on shared objects for the convergence criterion (line
3), the centroids (line 8), and a synchronization object to
coordinate the iterations (line 19). At each iteration, the al-
gorithm needs to update both the centroids and the criterion.
The corresponding method calls (at lines 14, 17 and 18) are
executed remotely in the DSO layer.

Figure 3 compares the scalability of Crucial against two
EC2 instances: m5.2xlarge, m5.4xlarge, with 8 and 16 cores
respectively. In this experiment, the input increases propor-
tionally to the number of threads. We measure the scale-up
computed with respect to that fact: scale-up = 𝑇1/𝑇𝑛 , where
𝑇1 is the execution time of Listing 2 with one thread, and

(a) (b)

Figure 4. Comparison of Spark and Crucial implementa-
tions of Logistic Regression. (a) shows the average comple-
tion time of the iteration phase (100 iterations). (b) shows a
comparison of the performance of both systems.

𝑇𝑛 when using 𝑛 threads.6 Accordingly, scale-up = 1 means
a perfect linear scale-up, i.e., the increase in the number of
threads keeps up with the increase in the workload size (top
line in Figure 3). The scale-up is sublinear when scale-up < 1.
Non-surprisingly, the single machine solution quickly de-
grades when the number of threads exceeds the number of
cores. The solution using Crucial is within 10% of the op-
timum. For instance, with 160 cloud threads, the scale-up
factor is ≈ 0.94. This lowers down to 0.9 for 320 threads due
to the overhead of thread creation.

6.2.2 Comparison with Spark
We compare Crucial against Spark [55] using two machine
learning algorithms: logistic regression and 𝑘-means. Both
algorithms are iterative and share a modest amount of state
that requires per-iteration updates. So they are a perfect fit
to assess the efficiency of fine-grained updates in Crucial
against a current state-of-the-art solution. To complement
this analysis, we also run the 𝑘-means application with a
modified version of Crucial that uses Redis for in-memory
storage. Object methods are implemented in Redis with the
help of Lua scripts.

Setup For this comparison, we provide equivalent CPU
resources to all competitors. In detail, Crucial experiments
are run with 80 concurrent AWS Lambda functions and one
storage node. Each AWS Lambda function has 1792MB and
2048MB of memory for logistic regression and 𝑘-means, re-
spectively. These values are chosen to have the optimal per-
formance at the lowest cost (see Section 6.2.3).7 Spark ex-
periments are run in an Amazon EMR cluster with 1 master
node and 10 m5.2xlarge worker nodes (Core nodes in EMR’s
terminology), each having 8 cores. The Spark executors are
configured to utilize the maximum resources possible on
6In Figure 3, threads are AWS Lambda functions for Crucial, and standard
Java threads for the EC2 instances.
7Starting with a configuration of 1792MB, an AWS Lambda function has
the equivalent to 1 full vCPU (https://docs.aws.amazon.com/lambda/latest/
dg/resource-model.html). Also, with this assigned memory, the function
uses a full Elastic Network Interface (ENI) in the VPC.

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
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Figure 5. Average completion time of the iteration phase (10
iterations) of the 𝑘-means algorithm with varying number
of clusters.

each node of the cluster. The DSO layer and Redis run on a
r5.2xlarge EC2 instance.

Dataset The input is a 100GB dataset generated with spark-
perf [11] that contains 55.6M elements. For the logistic re-
gression use case, each element is labeled and contains 100
numeric features. For 𝑘-means, each element corresponds to
a 100-dimensional point. The dataset has been split into 80
equal-size partitions to ensure that all partitions are small
enough to fit into the function’s memory. Each partition has
been stored as an independent file in Amazon S3.

Logistic regression We evaluate a Crucial implementa-
tion of logistic regression against its equivalent counterpart
in Spark’s MLlib [37]: LogisticRegressionWithSGD. A key
difference between the two implementations is the manage-
ment of the shared state. At each iteration, Spark broadcasts
the current weight coefficients, computes, and finally aggre-
gates the sub-gradients in a MapReduce phase. In Crucial,
the weight coefficients are shared objects. At each iteration,
a cloud thread retrieves the current weights, computes the
sub-gradients, updates the shared objects, and synchronizes
with the other threads. Once all the partial results are up-
loaded to the DSO layer, the weights are recomputed and
the threads proceed to the next iteration.

In Figure 4, we measure the running time of 100 iterations
of the algorithm and the logistic loss after each iteration. Re-
sults show that the iterative phase is 18% faster in Crucial
(62.3s) than Spark (75.9s), and thus the algorithm converges
faster.8 This gain is explained by the fact that Crucial ag-
gregates and combines sub-gradients in the dedicated shared
object layer. On the contrary, each iteration in Spark induces
a reduce phase that is costly both in terms of communication
and synchronization.

𝑘-means We now compare the implementation of 𝑘-means
described in Section 6.2.1 to the one in Spark’s MLlib. For
both algorithms, centroids are initially at random positions.
8This includes neither the provisioning time of the Spark cluster, nor the
time to load and parse the dataset from S3 (the same for both systems). FaaS
cold starts are also excluded due to a global barrier before measurement.

Table 3. Monetary costs of the experiments

Total
time (s)

Total
cost ($)

Iterations
cost ($)

𝑘-means
(𝑘 = 25)

Spark 168 0.246 0.050
Crucial 87 0.244 0.057

𝑘-means
(𝑘 = 200)

Spark 330 0.484 0.288
Crucial 234 0.657 0.492

Logistic
regression

Spark 192 0.282 0.111
Crucial 122 0.302 0.154

Figure 5 shows the completion time of 10 iterations of the
clustering algorithm. In this figure, we consider different val-
ues of 𝑘 to assess the effectiveness of Crucial when the size
of the shared state varies. With 𝑘 = 25, Crucial completes
the 10 iterations 40% faster (20.4s) than Spark (34s). The time
gap is less noticeable with more clusters because the syn-
chronization portion of each iteration is less representative
as the number of clusters increases. That is, the iteration
time becomes increasingly dominated by computation. As
in the logistic regression experiment, Crucial benefits from
computing centroids in the DSO layer, while Spark requires
an expensive reduce phase at each iteration. We also see
in Figure 5 that the implementation that uses Redis as the
storage tier is always slower than Crucial. This aligns with
the results of Section 6.1.2.

6.2.3 A note on costs
Although one may argue that the programming simplicity of
serverless computing justifies its higher cost [25], running
an application serverless should not significantly exceed the
cost of running it with other cloud appliances (e.g., VMs).

Table 3 offers a cost comparison of Spark and Crucial
based on the above experiments. The first two columns list
the time and cost of the entire experiments, including the
time of loading and parsing the input data, but without con-
sidering provisioning times. The last column lists the costs
that can be attributed to the iterative phase of each algo-
rithm. To compare fairly the two approaches, we consider
the pricing for on-demand instances and ignore AWS’s free
tier.

With the current pricing policy of AWS [3], the cost per
second of the Crucial setup is always higher than the Spark
one: 0.25 and 0.28 cents per second for 1792MB and 2018MB
function memory, respectively, against 0.15 cents per sec-
ond. Thus, when computation dominates the running time,
as in the 𝑘-means clustering with 𝑘 = 200, the cost of us-
ing Crucial is logically higher. This difference is erased in
experiments during which Crucial is substantially faster
than Spark (e.g., for 𝑘-means clustering with 𝑘 = 25). To
give a proper picture of this cost comparison, there are two
additional remarks to make here. First, the solution provided
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with Crucial using 80 concurrent AWS Lambda functions
employs a larger aggregated bandwidth from S3 than the so-
lution with Spark. This reduces the cost difference between
the two approaches. Secondly, Crucial users only need to
pay for the execution time of their functions, rather than the
time the cluster remains active. This includes the bootstrap-
ping of the cluster as well as the necessary trial-and-error
processes found, for instance, in machine learning training
or hyper-parameter tuning [52].9

6.3 Fine-grained synchronization
This section focuses on assessing the capabilities of Crucial
to coordinate serverless functions.

6.3.1 Synchronizing a map phase
Many algorithms require synchronization at various stages
of computation. In MapReduce, synchronization happens
during the shuffle between the map and reduce phases. Start-
ing the reduce phase requires to wait that all the appropriate
data is output in the map phase. This is a costly operation,
even if the reduce phase is short.

When data is small and the reduction operation simple,
aggregating the output of the map phase directly in the stor-
age layer is faster [12]. The DSO layer of Crucial allows to
implement such an approach. To attest this fact, we compare
different techniques to synchronize at the end of a map phase.
(i) the original solution in PyWren, based on S3; (ii) the same
mechanism but above an in-memory key-value data store
(Infinispan); (iii) using Amazon SQS, as proposed in some
recent works (e.g., [30]); and (iv) two techniques based on
the Future object available in Crucial. The first one outputs
one object per cloud thread and runs a reduce phase. The
second aggregates all the results directly in the DSO layer
and simply skips the reduce phase (auto-reduce).

We compare the above five techniques using a simple
MapReduce scheme where we run back-to-back the Monte-
Carlo simulation in Listing 1. The experiment employs 100
cloud threads, each doing 100M iterations. During a run, we
measure the time spent in synchronizing the threads. On
average, this time accounts for 23% of the total time spent in
a run.

Figure 6 presents the results of this comparison. The so-
lution based on Amazon SQS is the slowest. It employs a
polling mechanism that actively reads messages from the
remote queue. Using Amazon S3 is also slow, and the ap-
proach presents a high variability, some experiments being
much more slower than others. This is explained by the com-
bination of high access latency, eventual consistency, and a
polling-based mechanism. Infinispan is faster, but being still
based on polling, the approach induces noticeable overheads.

9Provisioning the 11-machine EMR cluster takes 2 minutes (not billed) and
bootstrapping requires an extra 4 minutes. A Crucial storage instance
starts in 30 seconds.

Figure 6. Synchronizing a map phase in MapReduce with
PyWren, Amazon SQS and Crucial.

The solution based on Future objects allow to immediately
respond when the results come up. This reduces the number
of connections necessary to fetch the result and thus trans-
lates into better synchronization times. When the results of
each map phase is aggregated directly in the storage layer,
the proposed solution based on Crucial achieves even better
performance, being twice faster than the polling-solution
using S3.

6.3.2 Synchronization objects
This section evaluates the capabilities of the barrier object
available in Crucial. In Figure 7a, we present a comparison
against a solution using Amazon SNS and SQS. Figure 7b
details a performance breakdown of the proposed synchro-
nization primitive when executing iterative tasks.

In this first experiment, the cloud threads execute consec-
utive short computations (1s each) in lock step. Figure 7a
reports the average time spent in waiting the barrier for
a thread. The results show that the barrier primitive of
Crucial is scalable: With 320 cloud threads, our solution
is one order of magnitude faster than an approach based
on the standard toolkit available in AWS. With 1800 cloud
threads (not presented in Figure 7a), the barrier is passed
after waiting 68ms on average.

Figure 7b further details the performance of the barrier
for iterative tasks that need to fetch input from an object
store. This figure provides a breakdown of the time spent
in each phase of the task (Invocation, S3 read, Compute and
Sync) for a selection of 2 cloud threads (out of 10). We report
the breakdown for two approaches. The first one launches
a new stage of cloud threads (a0 and a1) for each iteration
and does not use the barrier primitive. The second approach
launches a single stage of cloud threads (b0 and b1) that run
all the iterations and use the barrier primitive for synchro-
nization. In the first approach, input data must be fetched
from Amazon S3 at each iteration, while in the second ap-
proach the threads only need to fetch it once, resulting in a
lower total execution time. In addition, Figure 7b shows that
the overall time spent in synchronizing cloud threads with a
barrier is low. This lower overhead comes from the fact that
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(a) (b) (c)

Figure 7. (a) Average time threads spend waiting on a barrier. (b) Performance breakdown of an iterative task using either
multiple stages (a0/a1), or a single stage with a Crucial barrier (b0/b1). (c) Execution times of the Santa Claus problem on a
single-machine vs. Crucial.

function invocations and S3 accesses are not in the critical
path (which induces a high variability as seen in Figure 6).

6.3.3 A concurrency problem
Crucial can also be used for complex task coordination. To
demonstrate this feature, we consider the Santa Claus prob-
lem [51]. This problem is a concurrent programming exercise
in the vein of the dining philosophers, where processes need
to coordinate in order to make progress. Common solutions
employ semaphores and barriers, while others use actors [6].

In our case, we create a set of synchronization objects to
implement the logic of the problem. The entities are cloud
threads that communicate through Crucial’s shared objects.
These objects represent groups and gates, which allow en-
tities to coordinate by joining or passing through them. In
essence, the objects act like barriers and semaphores in a
distributed way.

We implemented three solutions to the Santa Claus prob-
lem. The first solution uses plain old Java objects (POJO),
where objects are monitors and the entities are threads. Our
second solution is a refinement of this base approach, where
shared objects are stored in the DSO layer. The conversion
is straightforward using the API presented in Section 3. In
particular, the code of the objects used in the POJO solution
is not changed. Only the @Shared annotation is required.
The last refinement consists in using cloud threads instead
of Java ones—leveraging the CloudThread abstraction.

We consider an instance of the problem with 10 elves,
9 reindeer, and Santa, and run the simulation for 15 toy
deliveries (epochs of the problem). We take the average time
to complete the problem for each solution and plot the results
in Figure 7c.

Storing the objects in Crucial induces an overhead of 8%.
This low penalty shows that the synchronization model of
Crucial is efficient. When cloud threads are used in the last
solution, there is almost no difference in the completion time.
The difference in Figure 7c is due to the remote calls to the

Figure 8. Inferences per second performed on a 𝑘-means
model during 6 minutes. Up to 100 concurrent FaaS functions
connecting to the shared model on up to 3 DSO nodes with
rf = 2. Note the FaaS cold start at the beginning.

FaaS infrastructure to start the computation (for consistency,
we do not include cold starts, which add 1 to 2 seconds
of invocation delay). Overall, these results assess that our
approach fits well for this kind of application.

6.4 Persistent state
To assess the durability of Crucial’s replicated objects, we
carry out a base experiment using our 𝑘-means code.

Figure 8 shows a 6-minute evolution of the number of
completed inferences per second using the 𝑘-means model
trained with our system. The model remains stored in a
cluster of 3 DSO nodes with rf = 2. The inferences are
performed using 100 cloud threads. Each inference performs
a read of all objects in the model (200 centroids) and several
distance computations.

In this experiment, at 120s and 240s, we crash and add,
respectively, a storage node to the DSO layer. Figure 8 shows
that our system is elastic and resilient to storage node fail-
ures. Indeed, changes in the membership of the DSO layer
affect performance but do not block the system. The (abrupt)
removal of a node lowers performance by 30%. The initial
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Table 4. Lines of code changed in each application to move
it to FaaS with Crucial.

Application Total lines Changed lines
Monte Carlo 44 2
Logistic Regression 430 10
𝑘-means 329 8
Santa Claus problem 255 15

throughput of the system (490 inferences per second) is re-
stored 20s after a new storage node is added.

6.5 Programming Simplicity
Table 4 details the modifications that were necessary to
port each application to Crucial. The difference between
single-machine, parallel code and its serverless counterpart
is small. Even for complex programs, such as the logistic
regression detailed in Section 6.2.2, changes account for less
than 3%. Starting from a conventional object-oriented pro-
gram, Crucial requires a handful of changes to port it to a
FaaS platform. We believe that this smooth transitioning can
help everyday programmers to start leveraging the benefits
of serverless computing.

7 Related Work
Serverless computing is an emerging paradigm for the cloud.
With its simplicity and high scalability, it has seduced both
industry [3, 38, 41] and academia [21]. Some recent works
in this area focus on enhancing its performance by reducing
the cost of isolation [1] and improving startup time [36].
However, existing systems fundamentally lack support for
mutable shared state and coordination [20, 26]. In Section 1,
we have already discussed them and only a brief recap is
provided here.

Coordination Services like Step Functions [4], Durable
Functions [38] and Composer [16] orchestrate workflows
using state machines. They provide a limited form of coor-
dination among serverless functions and are not designed
for highly-parallel concurrent tasks [17]. Coordination ker-
nels such as ZooKeeper [22] can be used to synchronize
serverless functions. However, their expressivity is limited
and they do not support partial replication [13, 27]. Many
serverless frameworks [15, 25, 44, 46] offer BSP-style pro-
gramming patterns. They mainly differ by the way they
synchronize the map operator. While some of them use stor-
age [25, 44, 46], other systems, such as ExCamera [15], im-
plement their own notification systems using a VM-based
rendezvous server. Ray [39] is a recent framework to build
distributed applications by combining stateless functions
and actors that may synchronize with the help of futures. It
achieves high-scalability with a bottom-up distributed sched-
uler and fault-tolerance using a chain-replicated key-value

store. Its architecture is based on cluster provisioning and
does not fit the serverless model.

Mutable data A number of research works [25, 44, 46] opt
to write shared data to slow, highly-scalable storage. To hide
latency, they perform coarse-grained accesses. The work
of Pu et al. [42] combines Redis with slow storage to scale
the shuffling phase in MapReduce. Pocket [31] focuses on
the scalability and the cost-efficiency to access ephemeral
data for serverless analytics. None of these works meet the
requirements for fast, fine-grained updates to shared mutable
state necessary in stateful applications.

Mutable shared state can be abstracted in various ways.
Crucial targets the simplicity of serverless computing for
general stateful applications. It choses to represent state as
objects, and keeps the well-understood semantics of lineariz-
ability. Existing storage systems such as Memcached [14],
Redis [43], or Infinispan [35] cannot readily be used in the
DSO layer. They either provide too low-level abstractions or
require server-side scripting. We show this problem in Sec-
tion 6.2.2. Crucial borrows the concept of callable objects
from Creson [49]. It simplifies its usage (@Shared annota-
tion), provides control over data persistence and offers a
broad suite of synchronization primitives. Some systems
[47, 48, 50] rely instead on weak consistency, trading ease
of programming for performance. The study of other consis-
tency models in Crucial is left for future work.

8 Conclusion
This paper presents Crucial, a system to program highly-
concurrent stateful applications on top of a Function-as-a-
Service platform. Crucial is built using an efficient disaggre-
gated in-memory data store, and it can be used to construct
demanding serverless applications that require fine-grained
support for mutable state and synchronization. In particu-
lar, we show that Crucial achieves superior or comparable
performance to Spark for two common machine learning
algorithms. In both cases, less than 3% of our code differs
from a conventional solution using plain old Java objects.
We also assess experimentally that Crucial rivals in perfor-
mance with a single-machine, multi-threaded implementa-
tion to solve a complex coordination problem, despite the
unavoidable overhead imposed by the serverless architec-
tural constraints. Abiding by the simplicity of imperative
programming, we believe that Crucial can help broadening
the horizon of serverless computing to unexplored domains.
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