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We propose that light-matter coupling can be used to realize synthetic lattices. In particular,
we consider a one-dimensional chain of exciton-photon sites to create a comb lattice that exhibits a
transition from a flat band to a finite mass dispersion by tuning site-dependent light-matter coupling.
Moreover, in a non-Hermitian system with gain and loss, the flat band phase is much more robust
and the transition is accompanied by the appearance of exceptional points in the complex energy
spectrum. We demonstrate that by engineering the light-matter coupling in the synthetic lattice,
one can explore various phases in the lasing regime. Our proposal paves the way for studying
non-Hermitian systems in higher dimensions.

I. INTRODUCTION

Lattice models are ubiquitous in physics, with applica-
tions ranging from approximations of real physical sys-
tems to efficient tools in theoretical research such as lat-
tice gauge theory. In the context of quantum simula-
tion, synthetic lattices are highly beneficial as a method
for using the internal degree of freedoms [1] or external
states [2] to investigate nontrivial topology and higher
dimensions [1, 3]. The formation of different lattice con-
figurations may be implemented by using spin[4], Ryd-
berg states[5], orbital angular momentum states[6, 7] and
photonic frequency comb [8].

Light-matter coupling may provide an advantage in in-
vestigations of non-Hermitian physics [9] due to flows of
energy or particles to and from a system. A key fea-
ture of non-Hermitian systems is the presence of com-
plex eigenvalues, which can lead to a variety of inter-
esting phenomena such as non-reciprocal transport [10],
topological phases [11], and exceptional points [12]. A
possible non-Hermitian system is a lattice with gain and
loss at its sites [13, 14]. Here we explore how light-matter
coupling can provide an additional degree of freedom for
creating a synthetic lattice. We study a simple model of
a one-dimensional lattice in which the light-matter cou-
pling can be manipulated. As such, we provide an ex-
ample of a comb lattice. In one dimension, the lattice
can be obtained from a two-leg ladder lattice [15] by re-
moving one leg while keeping all other connections and
couplings unchanged. Such lattices have been explored in
the context of random walks [16] and modeling chemical
compounds [17].

Light can couple to matter both weakly or strongly,
in the latter case leading to hybrid light-matter quasi-
particles called polaritons [18, 19]. Lattices of photonic
nodes can be created by structuring the sample itself by
deposition of a patterned layer on top of a cavity, sam-
ple etching [20] or etch-and-overgrowth[21] procedures, as
well as using a spatial light modulator to excite selected
nodes[22]. The ease of creating arbitrary geometries and
potential landscapes in polariton systems opened the way

for studying a variety of Hamiltonian models, includ-
ing Lieb lattices [23–32], Kagome[21], and honeycomb
[20, 33] lattices, as well as one-dimensional [34, 35] and
two-dimensional [36] topological systems. Owning to the
possibility to manipulate gain and loss [37, 38] polari-
tons are an ideal system for studying non-Hermitian ef-
fects [39]. A growing interest in such systems is directly
related to the possibility of exploring the physics of ex-
ceptional points [12, 40–42], parity-time symmetry [43]
or skin effect [10, 44–46].

In this work, we propose that light-matter coupling
in the intermediate regime between strong and weak
coupling can be exploited to introduce a synthetic lat-
tice with nontrivial properties. The considered lattice,
schematically shown in Fig. 1, is synthetic in the sense
that it can be engineered to possess specific features such
as lasing and flat bands. The fact that photon and ex-
citon modes in the same micropillar couple allows to de-
scribe the system formally as a one-legged comb model.
This allows investigation of the physics of a Lieb (Stub)
lattice, including the appearance of a flat band. We
show that site-dependent tuning of light-matter coupling
strength allows the observation of the transition from a
flat band to a dispersive spectrum.

Moreover, by analyzing the properties of the system in
the more realistic non-Hermitian regime with gain and
loss included, we find that the difference in loss rates
between excitons and photons leads to a great enhance-
ment of robustness of the flat band phase, and the ap-
pearance of a new flat band in a strongly non-Hermitian
case. These effects are shown to persist in the nonlin-
ear regime of lasing, where the signatures of a flat band
and associated compact localized states [47] (CLS) can be
observed in a state resulting from a long-time evolution
starting from a random initial condition.

Our results show that manipulating the light-matter
coupling strength in lattices opens the way for the experi-
mental realization of a new kind of synthetic lattices that
allow to explore strongly non-Hermitian physics. Our
model can be easily extended to higher dimensions or a
larger number of light and matter states, such as orthog-
onal light polarizations or higher exciton states [48, 49].
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It can be implemented in other physical platforms such as
cavity quantum electrodynamics [50] and coupled atom-
light systems [51]. We believe that our proposal may lead
to engineering highly dimensional extended lattices, pro-
viding an ideal platform for simulators of complex non-
Hermitian models.

II. MODEL

The lattice described by our model shown in Fig. 1,
consists of 2N micropillars (N is the cell index, with
two micropillars per unit cell) forming a one-dimensional
chain with lattice constant a. Each site is described
with two components, where we label exciton compo-
nents with superscript X and photonic components with
superscript C. We assume that there is finite and uni-
form coupling between the sites via photonic compo-
nents, while exciton components are not coupled with
each other due to the much larger exciton effective mass.
Photon and exciton modes in the same site are coupled
with each other with the strength corresponding to Rabi
frequencies which vary from site to site. We consider a
staggered distribution of couplings denoted by Ω1 in odd-
numbered sites and Ω2 in even-numbered sites, where
Ω2 ≤ Ω1. In particular, such a position-dependent light-
matter coupling can be realized in practice using site-
dependent external pumping, which induces saturation
of Rabi coupling [52]. Photon tunneling between photon
modes localized in neighboring micropillars is described
with J . As result, the model describing the system can
be considered effectively two-dimensional with an addi-
tional two-site exciton-photon degree of freedom.

FIG. 1. Scheme of our model. (Top) At lattice site j photonic
(ψC

j ) and excitonic (ψX
j ) states are coupled. The neighboring

photonic sites are coupled to each other with coupling rate
J . A possible choice of a unit cell is marked by the green
square. (Bottom) In practice the model can be implemented
in a lattice of coupled micropillars.

Our model equations can be presented in terms of four
fields inside a unit cell. Denoting each cell with index
n = 1, 2, 3, · · ·N , we have 2N micropillars, for which we
introduce fields ψCj , ψXj corresponding to photon and ex-

citon components at site j, where j = 1, 2, . . . , 2N . The
mean-field evolution equations are

i∂tψ
C
j =− iγCψCj + J(ψCj−1 + ψCj+1) + Ωjψ

X
j , (1a)

i∂tψ
X
j =− iγXψXj + g~−1|ψXj |2ψXj + Ωjψ

C
j , (1b)

where Ωj = Ω1 for odd j and Ωj = Ω2 for even j, γC(γX)
denotes the decay rate from the photon (exciton) modes,
and g is the nonlinear coefficient. Here g is a complex
number taking into account both exciton-exciton inter-
action in its real part and gain saturation effect in its
imaginary part [42]. In the case of periodic boundary
conditions we assume ψCN+1 = ψC1 . For simplicity, we
consider the case where there is no exciton-photon de-
tuning at any site.

To calculate the spectrum of the system, we consider
the eigenvalue equation H̃Ψ̃ = E(k)Ψ̃ at g = 0, where Ψ̃
is a plane wave solution with momentum k. We obtain

H̃ =


−i~γC ~Ω1 ~J(1 + e−ika) 0
~Ω1 −i~γX 0 0

~J(1 + eika) 0 −i~γC ~Ω2

0 0 ~Ω2 −i~γX

 .

(2)

In the following, we will analyze in detail the properties
of the system in both linear and nonlinear regimes.

III. HERMITIAN CASE

For the sake of clarity, we start our study with the
linear Hermitian case γC = γX = 0 and g = 0. When
Ω2 = 0, even exciton nodes ψX2n are completely isolated
from all other nodes. The remaining photonic nodes and
odd exciton nodes form the so-called one-dimensional
Lieb lattice (also called Stub lattice) model [24, 53, 54].
In this case one can find the dispersion equation analyti-
cally, E(k) = 0,±~

√
Ω2

1 + 2J2(1 + cos(ka)). The model
exhibits a flat band with E = 0 and infinite mass sepa-
rated by gaps from two dispersive bands, see Fig. 2(a).
Flat bands possess a number of intriguing physical phe-
nomena, including compact localized states, sensitivity to
perturbations and disorder, strongly correlated phases,
and topological states [47]. Note that in addition to the
Lieb lattice flat band, the full model (1) has a trivial flat
band that corresponds to isolated exciton sites.

When the Ω2 parameter is nonzero, the two degenerate
flat bands at E = 0 split into two dispersive bands, as
shown in Fig. 2(b) and Fig. 2(c). Hence, in the Hermitian
case, flat bands are present only in the limit of Ω2 = 0.
On the other hand, in the symmetric case, Ω1 = Ω2,
the two bands with positive energy and the two bands
with negative energy coalesce with each other, marking
a transition to the uniform one-legged ladder model. In
the intermediate regime 0 < Ω2 < 1, the two middle
bands that emerged from the flat bands preserve some
properties of the flat band eigenstates. In particular, the
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FIG. 2. Examples of spectra and eigenstates in the linear
Hermitian case. (a)-(b) Energy spectra in momentum space
for an infinite system. In (a) we assume Ω2 = 0 (Stub lattice).
In this case there are two degenerate flat bands with E = 0,
one corresponding to the Lieb lattice flat band, and another
corresponding to isolated exciton sites ψX

2n. In (b) we have
Ω2 = 0.4 ps−1, and the flat bands split into two dispersive
bands. Panel (c) shows eigenenergy spectrum in function of
Ω2 in a finite system withN = 30. (d),(e) Examples of density
distributions for eigenstates corresponding to the flat band in
(a) and dispersive band in (b), respectively. Corresponding
points are marked with a red star and a circle in (a) and
(b). Color scale is in arbitrary units. Other parameters are
Ω1 = 1 ps−1, J = 0.8 ps−1.

structure of the eigenstates in the middle bands resembles
the CLS of the Lieb lattice, as in Fig. 2(d). In contrast,
the eigenstates of the dispersive top and bottom bands
resemble standard bulk states, see Fig. 2(e).

IV. LINEAR NON-HERMITIAN CASE

We analyze the effect of nonzero decay γC , γX on the
spectra and eigenstates of the system, keeping the in-
teractions g = 0. The results are presented in Fig. 3.
It should be noted that adding a uniform decay rate
γC = γX > 0 would lead only to an addition of a con-
stant imaginary part to the eigenvalues of the system,
with no effect on the real part of the spectrum or the
eigenfunctions. However, in real systems the decay rate
of photons γC is typically much higher than the decay
rate for excitons γX . We find that this leads to a dra-
matic change in the spectra. An Example is shown in
Figs. 3(a) and 3(b), where real and imaginary parts of
eigenenergies are shown for the same parameters as in
the Hermitian case of Fig. 2(b), but with γC = 2.2 ps−1

FIG. 3. Linear non-Hermitian case. In (a) and (b) we show
the real and imaginary parts of eigenvalues in function of
quasimomentum for the same parameters as in Fig. 2(b), but
with nonzero decay terms γC = 2.2 ps−1 and γX = 0.1 ps−1.
In contrast to the Hermitian case, flat bands are present in
the system for a non-zero coupling Ω2 = 0.4 ps−1. Excep-
tional points (EPs) are marked with a black open circle. In
(c) and (d) we show real parts of eigenvalues in function of Ω2

for the fixed Ω1 = 1 ps−1. Qualitatively different spectra are
shown in (d) for a smaller decay rate γC = 0.54 ps−1. The
eigenstates corresponding to the points marked in panels (a)
and (b) are shown in panels (e)-(g).

and γX = 0.1 ps−1. In contrast to the hermitian case, we
find that despite nonzero Ω2, the system spectrum con-
tains two flat bands in the entire Brillouin zone, while the
dispersive bands develop small regions of flat dispersion
at the two ends of the Brillouin zone. The transition from
dispersive dependence at low quasimomentum to purely
imaginary dependence at high quasimomenta is marked
by the occurrence of exceptional points. We note that
previously a purely imaginary dispersion was predicted
to occur in the Bogoliubov excitation spectrum of a po-
lariton condensate coupled to a reservoir [55]. However,
it occurrs at low momenta while the mini-flat bands that



4

appear in our model are present at high quasimomenta
and the model does not assume condensation or include
interactions with an uncondensed reservoir.

The real part of energy eigenvalues is presented as a
function of Ω2 in Figs. 3(c) and 3(d) for two values of the
photon decay rate γC . Upon changing the decay rate, ex-
ceptional points may emerge in the spectrum. While in
the case of a high decay rate there are no energy gaps in
the real part of the energy, in the low decay rate case the
gaps are open at low values of Ω2 and the system spec-
trum is more similar to the Hermitian case of Fig. 2(c).
Nevertheless, even in this case flat bands survive to a
nonzero value of Ω2, in contrast to the Hermitian limit.
This shows that including dissipation to the model, which
occurs naturally in photonic systems, makes flat bands
much more robust. Moreover, increasing γC may induce
exceptional points. At low decay rates, we have three
distinct bands (including a flat band). This is shown in
panel (d) for low values of Ω2. But by increasing the
decay rate, the band gaps start decreasing, while excep-
tional points emerge at the gap closing. An example of
a gapless spectrum is shown in panel (c). In general,
increasing decay rate leads to coalescence of eigenvalues
which gives rise to exceptional points and the disappear-
ance of the gap. At larger values of the decay rate, ex-
ceptional points are present for any value of Ω2, and so
the real part has no gap in panel (c). However, for a
lower value of the decay rate the exceptional points may
appear only at certain range of Ω2. For this reason, the
spectrum in panel (d) displays band gaps.

Finally, in Figs. 3(e)-(g) we show three examples of
density distributions of eigenstates corresponding to dif-
ferent bands. The eigenstate of the flat band shown in
Fig. 3(e) preserves the characteristic structure of the CLS
of the Hermitian model, with all odd photonic sites be-
ing empty. In contrast, the state from the flat mini-band
at high quasimomentum in Fig. 3(f) is characterized by
a complementary pattern, with all even photonic sites
being empty. An eigenstate from the dispersive band
in the center of the Brillouin zone depicted in Fig. 3(g)
shows no particular structure of photonic states, which
are distributed more or less uniformly, with only a small
admixture of excitonic states.

V. LASING

In the previous section we considered a lattice in the
linear non-Hermitian regime. A natural extension is a
system in the presence of nonlinearity, g 6= 0. Lasing
corresponds to a steady state in the case of positive gain.
To achieve the steady state regime, we add a new feature
to our dissipative model, that is, we consider a balance
between gain and nonlinear decay. In this case parti-
cles escaping the lattice can be replenished by a pumping
term.

This can be analyzed simply by assuming γX < 0 (as
the pump source, eg. a nonresonant optical pump cre-

(a) (b)

(c)

(b)

(c)

(d)

FIG. 4. (a) Real part of energy of excitations in a nonlinear
steady state in function of Ω2 forN = 30. The system is in the
weakly nonlinear regime. Parameters are γC = 2.2 ps−1 and
γX = −0.1 ps−1, other parameters as in Fig. 3. Red dots show
the energy of the linear excitation mode with zero imaginary
part. All other excitations have energies with negative imag-
inary parts. In panels (b)-(d) we show the evolution of den-
sities in photonic sites. In panel (b) we used Ω2 = 0.18 ps−1,
which corresponds to a non-zero real eigenenergy, see panel
(a). In panel (c) we used Ω2 = 0.46 ps−1, for which the
real part of the energy is very near the zero-energy flat band.
The resulting density shows signatures of random localization.
Panel (d) shows an example of dynamics in a weakly dissipa-
tive case where we used γC = 0.54 ps−1, γX = −0.12 ps−1,
and Ω2 = 0.85 ps−1. Here the system reaches the steady state
after initial Rabi oscillations. We assume the nonlinear pa-
rameter ~g = 0.005 − 0.005i meV2 ps which consists of both
density-preserving interactions and density-dependent decay.

ating excitons) while γC > 0 (photon decay). In this
regime, we need to assume a nonzero-complex nonlin-
ear term (g 6= 0) in Eqs. (1) to reach a stable steady
state. We keep the associated parameters in the so called
weak nonlinear regime when |g||ψ1,n|2 and |g||ψ2,n|2 are
at least one order of magnitude lower than ~γC . As an
aside, one possible source of disorder that may become
important in our modeling is due to randomness in pump-
ing, which is not considered here, but the results remain
unchanged with a minor percent of disorder strength [56].
We provide examples of the dynamics in the steady-state
regime in Figure 4.

Additionally, we calculate the spectrum of small Bo-
goliubov excitations around the steady state. As we
are dealing with a homogeneous case, in the steady
state case we may consider a stationary solution in the
form ψSC,SXj e−iEt/~. The phase factor holds information
about the eigenvalues of the model in real space. Indeed,
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by substituting the above ansatz in Eq. (1), one can find
a set of time-independent equations

0 =(−i~γC − E)ψSCj + ~J(ψSCj−1 + ψSCj+1) + ~Ωjψ
SX
j ,

(3a)

0 =(−i~γX − E)ψSXj + ~Ωjψ
SC
j + g|ψSXj |2ψSXj , (3b)

which can be solved to find the eigenvalues E. To this
end, we solve model equations (Eq. (1)) numerically
by employing Runge-Kutta method, and use the corre-
sponding excitonic occupations in the steady state solu-
tion |ψSX |2 in the above equations.

In the steady state, we are interested in excitations
for which the imaginary part of the energy eigenvalue
Im[E] is zero, since for Im[E] > 0 the steady state is
unstable, and for Im[E] < 0 the excitations decay in time.
Excitation modes with Im[E] = 0 can be considered as
discrete analogs of Goldstone modes. We assume that
the parameter that can be manipulated externally is Ωj .
As such, it would be useful to consider the variations of
energies with Ω2 in a steady state.

Real parts of excitation eigenvalues are shown in
Fig. 4(a). Here we assume that the interactions in a
chain of micropillars are effectively repulsive via the ef-
fect of exciton-exciton interactions. Considering the case
when particle conserving interactions and gain satura-
tion are of the same order of magnitude, we choose
~g = 0.005 − 0.005i meV2 ps as our effective nonlinear
parameter taking into account both conservative and dis-
sipative nonlinear processes. We note that in comparison
to the linear case in Fig. 3(c), at small Ω2 a new split
band is present in Fig. 4(a). This splitting from the zero
energy band is a nonlinear effect, that is, the nonlinear
term induces a positive onsite potential for the excitons,
proportional to Re[g]|ψXj |2. We note that for small Ω2

exciton sites which are indexed by j = 2n are almost iso-
lated from the rest of the lattice. Since excitons at these
sites do not experience photonic decay γC , their decay
is controlled by the imaginary part of the nonlinear term
g|ψXj |2. This term is much smaller than the decay of pho-
tonic states γC in the case of the weakly nonlinear regime
that we consider here. Hence, the j = 2n excitonic sites
experience the highest gain, which results in a steady
state where density is mostly localized at these sites at
small Ω2. We show an example of steady state formation
starting from a random initial condition in Fig. 4(b).

As Ω2 increases, these disconnected excitonic states
(ψX2n) couple strongly with the other states. The popula-
tions in the other sites in the steady state increase while
the population in ψX2,n decreases. At some critical Ω2

the split band gap is closed and the real part of the en-
ergy eigenvalue becomes zero, as visible in Fig. 4(a). At
this point, the eigenstate of the system with the highest
imaginary part of the energy belongs to E = 0 flat band.
This has a profound effect on the dynamics of the sys-
tem. As shown in Fig. 4(c), states that are spontaneously
formed from a random initial condition result in a differ-
ent random density distribution after some certain time.

This random density distribution is long lived and locally
resembles the density of a flat band state. This can be
seen as a reminiscence of flat band CLS of the linear Lieb
model, see Fig. 2(d). Further increasing Ω2 with other
parameters fixed leads to a situation where no steady
state exists since all the eigenstates have negative imag-
inary part. In this case any initial distribution decays to
zero. A qualitatively different situation occurs where the
photon decay is decreased, as shown in Fig. 4(d). In this
case the system converges to a steady state with a peri-
odic, regular density distribution with all sites occupied.
The initial dynamics shows a clear signature of collec-
tive Rabi oscillations in the lattice, which decays after a
sufficiently long time.

VI. CONCLUSION

In summary, we propose that a lattice system with
coupled light and matter modes can be used to realize a
synthetic comb lattice by employing the internal degree
of freedom due to light-matter coupling. This idea can
be readily realized in exciton-polariton systems, where
several methods of tuning light-matter coupling strength
have been shown. We demonstrated that local engineer-
ing of light-matter coupling provides a way to explore a
dissipative phase transition between the regimes of dis-
persive and flat band phases. The transition is accompa-
nied by the appearance of exceptional points in the spec-
trum. Importantly, in the dissipative case the flat band
regime is not restricted to a limiting case in the param-
eter space, but exists in a range of values of light-matter
coupling, which makes the phenomenon much more ro-
bust than in the Hermitian case. We also showed that
the existence of a flat band has a profound effect on the
states of the system after long evolution in the regime of
lasing, enabling a straightforward experimental observa-
tion. The proposed method can be generalized to higher
dimensional lattices, and the number of sites in the syn-
thetic lattice can be increased by considering additional
light and matter states. This opens the way to explore
non-Hermitian systems in higher dimensions.
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APPENDIX

The dynamics of exciton-polaritons are known to be
described by mean-field Gross-Pitaevskii equations:

i~∂tψC =− i~γCψC + ~ΩψX , (4a)

i~∂tψX =(−δ − i~ΓX)ψX + ~ΩψC + α1|ψX |2ψX

+ gRnRψ
X + i~RnRψX , (4b)

∂tnR =P − (γR +R|ψX |2)nR , (4c)

where nR is the density of the exciton reservoir, P (γR) is
the rate of pumping to (decay from) a reservoir. There

are three parameters that take into account interactions:
α1, gR and R. The energy detuning between the ex-
citon and the photon field is given by δ. By using
the adiabatic approximation [57] one can assume that
nR ≈ P

γR
(1− R|ψX |2

γR
), the effective equation for the exci-

ton field becomes

i~∂tψX =− i~γXψX + ~ΩψC + g|ψX |2ψX , (5)

where we introduce −i~γX = −δ − i~ΓX + P/γR(gR +

i~R), g = α1 − gRPR
γ2
R
− i~R

2P
γ2
R

. Equation (5) has been
used to simulate the exciton field in the main text.
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