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Abstract
As microscopy diversifies and becomes more complex, the problem of quantification of

microscopy images has emerged as a major roadblock for many researchers. There are
challenges that all researchers face, independent of their scientific question and the images
they've generated. Complexities may arise at many stages throughout the analysis process,
including handling of the source data, image pre-processing, object finding, or measurement,
and statistical analysis. While the exact solution required for each complexity will be
problem-specific, by understanding tools and tradeoffs, optimizing data quality, breaking
workflows and data sets into chunks, talking to experts, and thoroughly documenting what has
been done, analysts at any experience level can learn to overcome these challenges and create
better and easier image analyses.

Introduction
There are few constants across microscopy's long and varied history, except perhaps for the

original goal: to make sense of the world that is smaller than what our eyes can perceive. Early
microscopy began as descriptions of the natural world, followed by hypothesis generation; it is
therefore no surprise that even after the invention of the digital camera, microscopy's history has
often rested on "representative image shown". As we now enter a more quantitative scientific
era, microscopy must face the challenge of image analysis: turning the astonishing variety of
things people do with microscopes into numerical data. Since most things researchers are
studying are complex, most image analysis workflows are complex. Here, we review several
sources of complexity, common themes in approaching difficult tasks, and discuss community
efforts available to help image analysis learners; while many examples here are pulled from the
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field of light microscopy of biological samples, general principles apply across disciplines and
microscope types.

Common sources of image analysis complexity
We review here several common sources of image analysis complexity. Not all experiments

will have all sources, but many experiments will have many of these sources, each of which
must be addressed for analyses to be properly interpreted. These are summarized graphically in
Figure 1. We do not deeply discuss here complexities in sample preparation and/or image
acquisition, but complexities exist in those steps as well; consideration of those steps is critical
in a fully quantitative imaging experiment1, and the best solution for some of the complexities
discussed below may be to return to those early stages and create different images.

Figure 1: Common sources of image analysis complexity. A: to analyze the source data,
analysts may need to navigate proprietary file format export, issues with data size, location
where the data must be processed, as well as associating and tracking metadata for future
reporting. B: images may need to be pre-processed before analysis, such as by stitching,
denoising/background removal, or pixel classification or "virtual staining". C: the analyst must
determine if they wish to perform object detection (left side, blue boxes) or segmentation (right
side, black outlines). In either case, objects may be erroneously merged or split, and segmented
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objects may not be identified with accurate boundaries. D: the analyst must determine the
appropriate ways to normalize, group, and present the data (left). If performing classification, the
analyst must decide between supervised and discrete classifications (top right) versus more
continuous and/or unsupervised groupings (bottom right).

Source data
The first major source of complexity a user must usually work around are the source data

files themselves. Many microscopes export data in proprietary formats that make it difficult to
open the files outside of specialist programs; care must also be taken that the export settings do
not alter or destroy image data (such as by clipping 16 bit data to 8 bit, or exporting four
fluorescent channels as a single RGB image). Once exported, one must deal with the size and
structure of the data - how many files are present, and in what configuration? Some
microscopes create large single files; others (such as some formats associated with
slide-scanning microscopes) create many files per scan, which must be kept in a certain
relationship to one another or file reading will break. The user must determine how much data
has been generated, where it will be immediately stored, if sufficient computational power exists
on the immediate storage machine to perform required post-processing and analysis, and what
(if any) plans exist for long-term data storage.

A key and underappreciated aspect of source data handling is the handling of associated
metadata - how was the sample generated, how was it imaged, and with what experimental
question in mind. The answers must be carefully tracked, and ideally permanently associated as
closely as possible to the image data so that in the future, it is easy to determine what any
image depicts and how it was made. This facilitates not only maximally correct analysis at the
time, but eventual data reuse 2.

Image preprocessing
Once the user has their data, it will often (though not always) require some amount of

preprocessing before eventual analysis. If the microscopy method used starts with multiple
individual images (such as in single-molecule localization microscopy (SMLM), slide-scanning
microscopy, multi-objective image capture methods, or highly-multiplexed imaging methods),
customized integration may need to be done to create one "logical image" per sample. Since
fluorescence microscopists typically try to minimize the light on their sample to reduce
photodamage and bleaching, deconvolution and/or denoising may be needed to enhance
features of interest, especially in thick samples. The user may also lack a stain for particular
regions of interest in the image, or decide the existing stain is insufficiently specific; in these
cases, semantic segmentation (often called "pixel classification") tools may be called on to
create machine learning algorithms that will allow the user to "virtually stain" regions of interest
that they wish to measure later.
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Object finding
Many (though not all) microscopy analyses rely on identifying objects within the image.

Computer scientists differentiate between object detection (finding how many objects are
present, typically with a centroid and perhaps a bounding box of where the object can be found)
and instance segmentation (often simply referred to as "segmentation") where it is important to
find the exact boundary of the object. Users first must decide which task to perform: tasks which
rely primarily on counting and classification ("how many cells here are infected, and how many
uninfected?") are suited to object detection; cases where the user wants to know properties of
the specific objects ("how big are infected cells and uninfected cells?") require segmentation.
Segmentation is typically considered to be a much more difficult problem, since it requires much
more precision, but it is far more commonly used since it can ultimately provide more
information.

Segmentation can typically be performed either using standard computer vision techniques
or deep learning. Classical methods typically require that the objects of interest are bright and
everything else in the image is dark, which if not already the case requires image
pre-processing steps (see above). If this pre-processing is onerous, the user can consider using
deep learning techniques for either object detection or segmentation, but in the absence of an
existing pre-trained model for the user's task, training such a network can require substantial
data and computational expertise.

Measurement, classification, and interpretation
Once all image transformations are complete and any objects of interest have been found,

the user is finally ready to use their images to answer questions. Major sources of complexity at
this step begin with simply deciding on the exact metrics to use - does one want to know the
total amount of stain in an image or object? The mean amount? How the distribution of the stain
has changed? Determining what each metric precisely means, and which is the best match to
the scientific question of interest, can take significant knowledge and/or expertise. Statistical
treatment of the data also requires a careful approach - is the appropriate unit of comparison an
object, an image, or a sample? Does the data need to be normalized for cross-batch
comparison, and if so, what constitutes a batch and how will the normalization be performed?

If performing classification analyses, the user must consider if their phenomenon is
reasonably discrete (each class is distinct, with few examples of intermediate phenotypes) or
continuous (smooth progression between states). Different classification methods or techniques
may be more appropriate to each class of problem.

Common themes for approaching complex tasks
While deep-dive examinations of how to approach all of the possible sources of complexity

described above are beyond the scope of this work, several general principles about how to
solve for any given complexity can be derived.



Understand the tools and their limitations
Ultimately, all image analyses (and indeed, all experiments) one performs in the lab are

models - after performing some set of experiments on some finite number of samples, we are
attempting to create a quantitative picture of what the larger world looks like. Ultimately, as in all
models, there will be limitations and inaccuracies - as George Box said, "All models are wrong,
but some models are useful". Performing an image analysis is therefore not a matter of
performing some perfect series of steps, but rather in creating a model that is most correct/least
wrong. Error tolerance is a practical part of any image analysis, with the level of tolerance
linked to the expected size of the quantitative change: for example, a 10% error tolerance is
perfectly acceptable when looking at a 10-fold change but not when quantifying a 20% change.

As in sample preparation and imaging, image analysis ultimately involves balancing a series
of tradeoffs, including tradeoffs between aspects of sample preparation and analysis. In sample
preparation and microscopy, it is common to balance the cost, work, and fidelity of individual
steps of sample preparation and imaging, or even between kinds of imaging to use. When
selecting an analysis tool or approach, a similar set of tradeoffs must be considered: does this
approach do what I need? How easy is each tool in this approach to install? How easy is it to
use? How easily can the analysis scale from an initial prototype to many images? How easy is it
to inspect each step to make sure it is done correctly? How easily can I document what was
done for the future so it can be repeated? Depending on the user's needs, comfort level with
individual tools and with scripting/coding in general, there are nearly always many correct
approaches to any problem.

It is also important to understand how the tools and the settings within them may affect the
final data. As an example, if the researcher's object of interest is usually around 20 pixels in
diameter and thus the analyst sets a hard cutoff during segmentation that only objects between
10 and 30 pixels in diameter are "real" and should be accepted, perturbations or conditions that
cause very large (>30 pixel diameter) or very small (<10 pixel diameter) objects may not be
detected, because these objects will be thrown out due to the cutoff. Such a cutoff may still be
good and least-wrong if it throws out relatively few real objects relative to many pieces of debris
that would otherwise have thrown off the quantification (see Figure 2), but it means the results
should not be interpreted to mean that Perturbation X does not create 35-pixel-diameter objects.

When adopting any new tool, but most especially tools using deep learning, it is important to
understand the data types a tool expects (such as fluorescence vs brightfield vs EM, individual
object crops vs individual slices vs whole volumes, etc.) as well as conditions under which it
does and does not work well3. This can be more challenging in deep learning because the user
is not typically manually setting cutoffs as they might be in a more conventional analysis tool,
and networks may be overfit to certain data types in ways that produce unexpected results.
While deep learning undoubtedly solves many problems in microscopy that conventional
approaches have not 4, it must be used with especial caution. Whether one should try a
deep-learning-based tool vs a conventional tool is not a simple answer for most tasks, and will
be based on ease of use, performance metrics, and how many conventional-tool-steps a deep
learning tool might replace.
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Figure 2: Example of real-world considerations when removing small, bright debris particles
from image analysis. A few of many possible options are presented; each has both advantages
and disadvantages. Color intensity represents brightness of the debris/cell object. Arrows mark
cells that would be inadvertently removed from analysis by a debris-removal method due to
brightness (filled arrows) or size (unfilled arrows).

Optimize data quality
It may sound obvious, but a general critical factor in image analysis and computing in

general is "garbage-in, garbage-out": to generate high-quality analyses, one needs to have
sufficient-quality images. Often, visual assessment is sufficient for this - is the image in focus,
not saturated, and reasonably clear of debris? (Figure 2) Are any objects the researcher wishes
to computationally identify visible, and are their boundaries defined enough that the researcher
can assess if segmentation is proceeding accurately? As discussed above, perfect images are
typically impossible to generate (and ultimately not required), but the images should be of good
enough quality that it does not push the analysis workflow outside the error tolerances of the
problem. The eventual problem and its tolerance will guide what good-enough means: in a
hypothetical experiment with a nuclear marker, cell boundary marker, and marker for some other
biology (Marker X) where the goal is to assess how much of Marker X is in the nucleus, a
dim/blurry cell boundary marker is likely tolerable, but if the goal is to measure the amount of
Marker X present at the cell membrane, it likely is not.



Work in "right-size", representative chunks
Essentially all complex image analysis problems are multi-stage workflows: many steps will

ultimately take place between the microscope hard drive and a final answer 5. Especially as data
sets get larger and/or the user accumulates more of them, knowing how best to handle this
complexity becomes more and more essential to a high-quality final product and the
least-painful experience for the analyst.

First, the workflow should be optimized in pieces, with data quality (see also above)
assessed at every stage: in an example workflow that involves alignment, followed by
denoising, followed by segmentation, followed by measurement, the aligned images, the
denoised images, and the segmentations should all be checked for errors introduced at each
step along the way. This optimization needs to happen sequentially in the order that the data will
travel through the workflow, as changes in later steps will need to be re-assessed anytime an
earlier step changes. While it may be tempting to "roll the dice" and only examine the final
product to bypass the time spent in quality checks, adding quality control steps along the
workflow is ultimately far faster in the long run for the vast majority of cases since it becomes
easier to trace the sources of the errors and solve them piecewise.

Unless one's data is extremely small, this prototyping process is made much easier by only
working with a subset of the total data set during the prototyping phase. For large images, this
may mean a few crops; for sets that consist of many smaller images, a few well-chosen images.
It is extremely important that such subset not just consist of the first few images or the prettiest
areas, but the full range of phenotypes present in the whole data set, or else the analysis
workflow will be overfit to the kind of data in the subset; this is an especially critical factor with
deep learning workflows 3. As an example, when working in multiwell plates where each well is
differently perturbed, pulling one image from each well is often sufficient to ensure one's
workflow is robust to the whole experiment before running the final optimized workflow on the
full data set.

Bring together the right experts
It is entirely understandable if a new image analyst has become overwhelmed by this point in

the process: it seems like there is far too much for anyone to learn alongside all of the
domain-specific and technique-specific knowledge they need to keep up with. This is ultimately
true, as image analysis becomes accepted as a discipline in its own right. Understanding these
complexities, the open-source image analysis community has created a number of resources in
order to help users get started and/or improve their analyses, including tool lists 6 and best
practices guides 1,5,7,8 . In 2018, the Scientific Community Image Forum (forum.image.sc) was
launched to create a single central place for users to ask questions related to image analysis 9,
and as of mid-2023, serves as a central help forum for 56 individual open-source image analysis
tools and contains tens of thousands of posts that are free for users to search for answers.
Image analysis also has become an increasingly common option within imaging facilities, and a
few stand-alone image analysis facilities now exist 10.

While image analysis experts are critical, image analysis expertise is not the only knowledge
needed: expertise in what the samples are, how they were created, and how they were imaged
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is critical to determining what can and what cannot be learned from any given image. This
information may be provided by the researcher, the image analyst, and/or by a microscopy
specialist involved in creation of the image. Finally, the most indispensable expert is the
researcher, as they are the expert in their scientific question, and therefore which metrics are
and are not important to gather and which compromises can be accepted without derailing their
analysis. Many local and global organizations now exist to help users figure out how to improve
their understanding of imaging and image analysis; a non-exhaustive living list with a focus on
bioimaging experiments is available at bioimagingguide.org 1.

Document everything
Even experts may disagree on the right approach to solving a particular complex problem;

image analysis is a constantly-evolving discipline, where new tools and approaches emerge
seemingly daily. Ultimately, there is rarely a single "right" answer to any complexity, and certainly
there is no single correct workflow for any given class of problem. Ultimately, the correctness of
one's analysis rests on the ability of the reader to understand what was done, how, and why.
Thorough documentation of every step taken is critical for scientific validation, including
metadata of the images, steps taken, programs used, tool versions, order of operations, and
beyond. Checklists have been proposed to guide users through the necessary documentation
for analyses 7 as well as for the kinds of metadata that are critical to capture in a bioimaging
experiment 2, but in general, one will rarely regret the time taken to document an analysis, if only
for one's own future understanding when publication time rolls around.

Conclusion
It takes many hours of study and work to become an expert in all aspects of image analysis,

and in such an ever-changing discipline, by the time one has become an expert many aspects
of one's knowledge have become out-of-date. In such a dynamic field, knowing how to solve
problems is therefore far more valuable than knowing all possible solutions. While it is tempting
to think professional image analysts represent a total solution to the problem of the complexity
of image analysis, the tradeoffs and considerations required in designing any image analysis
workflow are such that the researcher's scientific input on which tradeoffs are and are not
acceptable is critical, meaning that while image analysts are critical in modern science 10, input
and understanding from the researchers creating the images is indispensable.

By understanding the potential pitfalls, working in stages, ensuring high-quality data at every
step, understanding how individual steps are shaping the analysis, working with experts, and
documenting what was done, even a novice analyst can create high-quality analyses that fairly
model the scientific question that their images sought to probe. While exact tools to perform
these steps will no doubt change year by year, approaches to solving problems are likely to
serve users in good stead for many years to come, and help is available in local and online
global resources for those who wish to improve their skills.
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Practitioner points
- Image analysis involves a number of possible complexities that may arise between the

acquired image and the final answer, including dealing with source data, preprocessing
images, finding objects, and measuring and/or classifying the images.

- Several common principles apply to overcoming most kinds of complexities, including to
work in stages or "chunks", understanding the tools being used, assessing data quality
at every stage of the process, talking to the right experts, and documenting all steps
taken.
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