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Abstract

In the Multi-Period Petrol Station Replenishment Problem (MPSRP) the aim is to optimize the
delivery of several petroleum products to a set of petrol stations over a given planning horizon.
One must determine, for each day of the planning horizon, how much of each product should be
delivered to each station, how to load these products into vehicle compartments, and how to plan
vehicle routes. The objective is to maximize the total profit equal to the revenue, minus the sum of
routing costs and of regular and overtime costs. This article describes a heuristic for the MPSRP.
It contains a route construction and truck loading procedures, a route packing procedure, and
two procedures enabling the anticipation or the postponement of deliveries. The heuristic was
extensively tested on randomly generated data and compared to a previously published algorithm.
Computational results confirm the efficiency of the proposed methodology.
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1. Introduction

The purpose of this article is to develop a heuristic for the Multi-Period Petrol Station Re-
plenishment Problem (MPSRP) which consists of optimizing the delivery of several petroleum
products to a set of petrol stations over a given planning horizon. More specifically, one must
determine, for each day of the planning horizon, how much of each product should be delivered
to each station, how to load these products into vehicle compartments, and how to plan vehicle
routes.

The MPRSP can be formally defined as follows. Let G = (V, A) be a directed graph where V =

{0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i , j} is the arc set. Vertex 0 corresponds to
the terminal while the remaining vertices represent petrol stations. Denote by ti j and ci j the
travel time and the travel cost associated with arc (i, j). A heterogeneous fleet of m tank trucks
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is based at the terminal. All trucks are assumed to travel at the same constant speed and have
the same fixed and variable costs. Each truck is subdivided into several compartments of vary-
ing capacities. Each petrol station uses a number of underground tanks of standard capacities.
These stations require the delivery of several petroleum products which must be stored in sep-
arate tanks. If mip denotes the underground tank capacity of product p at station i, sipt denotes
the stock level of product p at station i at the beginning of period t, and vipt denotes the sales of
product p at station i during period t (mip ≥ vipt for all t), then station i requires a delivery during
period t if there exists a product p for which the minimal delivery quantity vipt − sipt is positive.
In practice, sales are stochastic but we consider them as deterministic in this study. Also, stock
levels decrease continuously during the day and delivery amounts should be a function of trucks
arrival time at a station. Our model and algorithm implicitly assume the existence of safety
stocks so that it is feasible to deliver at any time during the day. When a truck delivers a product
to a station, it completely empties the compartment containing that product. This restriction is a
consequence of the fact that in the application that gave rise this study, trucks are not equipped
with flow meters. Avella et al. [1] also applied this rule in their case study. However, contrary to
what was done in Avella et al. [1], we do not impose that delivery quantities should be equal to
the total capacity of one or several compartments. In other words, any given truck compartment
can be partially filled when the truck leaves the terminal. The revenue per litre delivered is given.
The MPSRP contains a temporal and a spatial dimension. Since it is not necessary to visit each
station during each period of the planning horizon, one must determine the ideal periods to visit
stations, taking into account stock levels, fleet capacity, and routing efficiency. This problem can
therefore be viewed as an inventory routing problem [2] with additional constraints induced by
varying tank sizes and truck compartments. Contrary to the problem treated by Avella et al. [1],
stations do not specify fixed visit dates and delivery amounts. These decisions are optimized
centrally by the distributor. In other words, the considered operating mode can be described as a
push system.

The number of stations on any given route is limited. In our application, this limit is equal to
two [3]. The two-stop limit per route is a common practice in North America. It is explained by
the fact that most tank trucks have from four to six compartments and stations typically order two
or three products, one of which often requiring two compartments. Irrespective of the quantity
delivered at a station, the service time is assumed to be constant and equal to s. Several routes
can be assigned to the same vehicle in any given period. The normal duration of a working day is
equal to H ; however, this duration can be extended to H′ by using overtime. A regular wage rate
applies until time H and an overtime rate applies between H and H′. We solve the problem on
a planning horizon of T periods. Note that the same methodology could be applied on a rolling
horizon basis.

The MPSRP consists of determining, for each period t of the planning horizon:

• the set of stations to which deliveries should be made,

• the quantity of each product p to be delivered to each of these stations,

• the loading of these products into vehicle compartments,

• feasible delivery routes to these stations,

• the assignment of routes to available trucks.
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The objective is to maximize the total profit equal to the revenue, minus the sum of routing costs
and of regular and overtime costs.

Our objective is to develop a multi-phase heuristic for the MPSRP. The remainder of this
paper is organized as follows. A literature review is provided in Section 2. The problem is
modeled in Section 3. The heuristic is described in Section 4, and computational results are
presented in Section 5. Conclusions follow in Section 6.

2. Literature review

The literature of the MPSRP is rather limited. The single period problem has been solved
exactly by Cornillier et al. [3]. A related problem with single customer trips and time windows
has been investigated by Brown and Graves [4], while Brown et al. [5] have developed a com-
puterized assisted dispatch system for the problem. Several greedy heuristics followed by simple
improvement procedures for the multi-period problem have been proposed by Taqa allah et al.
[6] and Malépart et al. [7].

Van der Bruggen et al. [8] solve the single period version of the problem as part of a broader
study aimed at optimizing the distribution network of a large oil company operating in the Nether-
lands. More recently, Avella et al. [1] have proposed heuristic and exact algorithms for a different
version of the single period problem. In particular, these authors assume that trucks compart-
ments cannot be partially filled and their algorithm works on the basis that the set of stations
to be delivered at any given period, as well as the delivery amounts, are known. In contrast,
our model and algorithm consider the set of stations and the delivery quantities to be decision
variables. In particular, deliveries can be anticipated if this proves to be profitable.

From a more operational point of view, Ronen [9] presents a number of different operational
environments associated with the dispatching petroleum products, as well as some analytical
tools used by oil companies. Bausch et al. [10] describe a decision system applied to a maritime
transportation problem consisting of scheduling a fleet of coastal tankers scheduling carrying
oil bulk products. More recently, Ben Abdelaziz et al. [11] have presented a real-life routing
problem in which a variable neighbourhood search heuristic was applied to solve a single period
petroleum products delivery problem using a heterogeneous fleet of compartmented tank trucks.
Finally, Rizzoli et al. [12] has described a software tool, based on an ant colony heuristic, which
assists dispatchers during the different stages of fuel distribution.

3. Mathematical model

The problem can be formulated as a large scale mixed integer program. While this formula-
tion is too large to be used to solve the problem optimally, we believe it is useful to formulate it
in order to remove any ambiguity regarding its precise definition. We first define the following
parameters:

R: revenue per delivered litre;
C: unit regular time cost;
C′: unit overtime cost;
qwk: capacity of compartment w of truck k;
mip: capacity of underground tank for product p of station i;
τi j: travel time from station i to station j, including loading time l at the terminal
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and unloading time s at station j: τi j = ti j + l + s when i = 0, τi j = ti j + s
when i, j , 0, and τi j = ti j when j = 0.

The decision variables are:

hkt: regular time for truck k at period t;
h′kt: overtime for truck k at period t;
zi jvkt: binary variable equal to 1 if truck k travels from station i (the terminal

if i = 0) to station j (the terminal if j = 0) within trip v at period t;
xipwvkt: quantity of product p of station i loaded in

compartment w of truck k within trip v at period t;
yipwvkt: binary variable equal to 1 if and only if product p of station i is loaded

in compartment w of truck k within trip v at period t.

The model is then as follows.

Maximize
∑

(i,p,w,v,k,t)

Rxipwvkt −
∑
(k,t)

(Chkt + C′h′kt) −
∑

(i, j,v,k,t)

ci jzi jvkt (1)

subject to:

sip,t+1 = sipt − vipt +
∑

(w,v,k)

xipwvkt ∀(i, p, t) (2)

xipwvkt ≤ qwkyipwvkt ∀(i, p,w, v, k, t) (3)

sipt +
∑

(w,v,k)

xipwvkt ≤ mip ∀(i, p, t) (4)∑
(i,p)

yipwvkt ≤ 1 ∀(w, v, k, t) (5)∑
i

zi jvkt ≥ y jpwvkt ∀( j, p,w, v, k, t), j , 0 (6)∑
i

zi jvkt =
∑

i

z jivkt ∀( j, v, k, t) (7)∑
j

z0 jvkt ≤ 1 ∀(v, k, t) (8)

zi jvkt + z jivkt ≤ 1 ∀(i, j, v, k, t), i, j , 0 (9)∑
(i, j)

zi jvkt ≤ 3 ∀(v, k, t) (10)∑
(i, j,v)

τi jzi jvkt = hkt + h′kt ∀(k, t) (11)

0 ≤ hkt ≤ H ∀(k, t) (12)
0 ≤ h′kt ≤ H′ − H ∀(k, t) (13)

zi jvkt ∈ {0, 1} ∀(i, j, v, k, t) (14)
yipwvkt ∈ {0, 1} ∀(i, p,w, v, k, t) (15)

xipwvkt ∈ R+ ∀(i, p,w, v, k, t) (16)
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hkt ∈ R+ ∀(k, t) (17)
h′kt ∈ R

+ ∀(k, t). (18)

In this formulation, the objective function (1) maximizes the total profit which can be de-
composed into revenue per delivered litre, minus regular working time and overtime costs, and
travel costs ci j. Equations (2) ensure stock equilibrium between two consecutive periods. Con-
straints (3) specify that the quantity loaded does not exceed the allotted compartment capac-
ity qwk. Constraints (4) specify that stock level after a delivery should not exceed the tank capac-
ity. Constraints (5) ensure that at most one product demand is assigned to a compartment. By
constraint (6) a product quantity can be delivered to station j only if a truck travels from some
station i to station j. Equation (7) specifies that the number of arrivals at a given station must
be equal to the number of departure from this station. Constraints (8) impose for each trip at
most one departure from the depot. Constraints (9) eliminate round trips between two stations,
and the number of visited stations is limited to two per trip by constraints (10). Equations (11)
decompose for each truck the workload into regular working time and overtime, with a regular
time limited to H hours (12) and a maximum overtime limited to H′ − H hours (13).

4. Multi-phase heuristic

We propose the following multi-phase heuristic for the MPSRP. Starting from the first pe-
riod t = 1 of the planning horizon, the heuristic iteratively constructs delivery plans for each
period. Denote by Xt the solution for period t which gives the stations to be visited, products
and quantities to deliver, trucks loading and truck routes. Also denote by Mt the duration of the
maximum working time of a vehicle in Xt. Three cases are possible:

(1). H < Mt ≤ H′,
(2). Mt > H′,
(3). Mt ≤ H.

In the first case, a feasible solution in which at least one vehicle uses overtime has been
identified at period t and the algorithm proceeds to period t + 1. In the second case, the solution
is infeasible because at least one vehicle exceeds the maximum working time H′, and a look-
back procedure is applied in an attempt to regain feasibility: the algorithm tries to move some
deliveries backward to period t − 1 in order to make Xt feasible. If this cannot be done without
making Xt−1 infeasible, this process is recursively reapplied starting from t− 1 until Xt, ..., X1 are
feasible, in which case the process moves to period t+1 to construct Xt+1, or until it is discovered
that no feasible solution can be identified, in which case the algorithm terminates. In the third
case, a feasible solution without overtime is found and a look-ahead procedure is applied in an
attempt to increase the number of stations visited at period t by anticipating future deliveries.
The process then moves to period t + 1. A flowchart of the heuristic is provided in Figure 1.

In terms of the mathematical model, the heuristic first assigns a value of 0 or 1 to each variable
yit =

∑
(p,w,v,k) yipwvkt for all i and t, under constraints (5). For each t, it then jointly determines the

values of yipwvkt, xipwvkt and zi jvkt for all i, j, p,w, v and k through the exact algorithm described
in Cornillier et al. [3]. During this process, constraints (2) to (10) are satisfied while constraints
(11) to (13) are relaxed. Since the resulting solution is not necessarily feasible with respect to
constraints (11) to (13), new values may have to be assigned to the yit variables, which implies
recomputing the yipwvkt, xipwvkt and zi jvkt variables. This process is iteratively reapplied until a
termination criterion is met.

We now explain this heuristic in more detail.
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Figure 1: Flowchart of the multi-phase heuristic
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4.1. Route construction and truck loading

Denote by S t the set of stations to be delivered at period t. This set is composed of all stations
that would run out of stock for at least one product if they were not visited in period t, and of
any station selected by the look-back and the look-ahead procedures. A routing plan minimizing
travel time is computed for S t. The two-stop limit per route considerably simplifies the problem.
Indeed, since each truck can visit one or at most two stations within the same trip, determining an
optimal set of routes can be achieved by solving a series of matching problems [3]. The matching
costs are the travel times needed to visit the two stations if the route is feasible. However, this
may not be the case. It may indeed be impossible to deliver the demand of some routes selected
by the matching algorithm if none of the available trucks has sufficient capacity to deliver the
corresponding minimal required quantities. The matching cost of any infeasible route is set to
infinity and the resulting matching problem is solved. This procedure is repeated until a feasible
loading can be found for all selected routes. Checking whether a route is feasible or not is
achieved by solving exactly the Tank Truck Loading Problem (TTLP) [3]. The proposed solution
algorithm maximizes the delivered quantity of route r and assigns products to the compartments
of truck k. The optimal quantity xipt of product p to be delivered to station i at period t depends
on the station’s sales and underground tanks capacity. It must lie between max{0, vipt − sipt}

and (mip − sipt). Other constraints on xipt relate to the compartment capacities of the truck
delivering to station i.

4.2. Route packing

Having determined a set of feasible routes and, for each of these routes, the set of associated
trucks, we compute for each feasible pair (r, k) the revenue Rrk corresponding to the optimal
quantities xipt determined by the TTLP algorithm. The next step is to construct truck working
days by assigning routes to trucks. The objective is to maximize the total revenue, minus the
overtime cost. However, because a feasible solution does not always exist, i.e. some truck
working days may exceed H′ hours, we subtract from the objective a term proportional to the
total time in excess of H′ in the solution. Formally, the following mixed integer program is
solved heuristically. Let yrk be a binary variable equal to 1 if and only if route r is assigned to
truck k, let Tr be the duration of the route r, let w′k be the amount of overtime of truck k, and
let zk be the time worked by truck k in excess of H′. If zk > 0 in the optimal solution, this means
that it is impossible to pack all routes into a feasible working day. Let C′ be the unit overtime
cost and M, an arbitrary large constant. The Route Packing Problem (RPP) is then:

(RPP) Maximize
∑

r

∑
k

Rrkyrk −C′
∑

k

w′k − M
∑

k

zk (19)

subject to: ∑
r

Tryrk ≤ H + w′k + zk ∀k (20)∑
k

yrk = 1 ∀r (21)

0 ≤ w′k ≤ H′ − H ∀k (22)
yrk ∈ {0, 1} ∀(r, k) (23)

w′t ∈ R+ ∀k (24)
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zk ∈ R+ ∀k. (25)

In this model, the left-hand side of (20) defines the working time of truck k, while the right-
hand side is equal to H if no overtime is performed by truck k, equal to H + w′k if the amount of
overtime is w′k, and equal to H +w′k + zk if overtime exceeds H′−H. Constraints (21) specify that
each route is assigned to exactly one truck. Note that the RPP without the wk and zk variables is a
Generalized Assignment Problem which is NP-hard. In practice, we solve this problem by means
of a greedy heuristic followed by a simple improvement phase. Initially, all routes are sorted in
the ascending order of the number of trucks to which they could be feasibly assigned. Ties are
broken by first considering the longest route. In other words, the routes that are most difficult to
assign appears earlier in the list. The routes are then sequentially assigned to trucks in order to
maximize the additional profit defined by (19). Whenever assigning a route to a truck causes H′

to be exceeded, an attempt to reassign one of the routes of that truck is made in order to regain
feasibility. All such reassignment moves are considered and the best one is implemented. After
all routes have been assigned to a truck, pairwise exchanges are made to improve the solution.

4.3. Look-back procedure

The look-back procedure is applied whenever the maximum working time Mt of at least one
vehicle exceeds the maximum allowed working time duration H′. The procedure works with a
matrix (bit). The counter bit takes the value 0 if station i is not included in the set S t of stations
to replenish at period t; it takes the value 1 if i must be replenished at period t in order to avoid
stockout; it takes the value u − t + 1 if period u is the first period at which station i will run out
of stock for at least one product if it is not replenished before that period. The value of bit must
be updated whenever the delivery period of i is modified. Initially bit = 1 if station i ∈ S t and 0
otherwise. In order to make Xt feasible, the procedure iteratively moves the visit of some stations
from period t to period t − 1. The procedure first selects a station i ∈ S t, t > 1 and moves it to
period t−1. It sets bi,t−1 := bit +1 and bit := 0. It then solves the route construction, truck loading
and route packing problems for period t without station i. This operation is repeated until Xt is
feasible, in which case the look-back procedure terminates and the process moves to period t−1.

We have developed three variants of this procedure. They differ in the criterion λ used to
select which station i ∈ S t should be delivered in period t − 1. Each variant first computes
for period t the set It = arg min

i
{bit | bit > 0 and bi,t−1 = 0}. This set contains stations to be

delivered at period t (bit > 0) and for which the number of days by which their delivery has
been advanced is minimal. For each i ∈ It, a pair (bit, α

λ
it) is also computed, where αλit is defined

below. The (bit, α
λ
it) pairs are then ordered lexicographically and stations i are removed one by

one from S t until Xt is feasible.
The definitions of αλit are as follows. In the first variant, α1

it = max
p

{
vipt/mip

}
, i.e. α1

it computes

the maximum, over all products of station i, of the demand to tank capacity ratio. The procedure
will therefore favour a station having a tank that empties slowly. In the second variant, α2

it =

min
p

{
sipt/vipt

}
, i.e. α2

it computes the minimum over all products, of the stock level to sales ratio.

The procedure will therefore favour a station having a product that will reach zero inventory the
soonest. In the third variant, α3

it = min
j∈S t−1
{ti j}. The procedure will therefore favour the closest

station to one of those that should be visited at period t − 1.
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4.4. Look-ahead procedure
The look-ahead procedure is applied whenever the maximum working time Mt does not ex-

ceed the normal duration H of a working day. Its purpose is to increase the workload of period
t without exceeding H. It operates with a parameter θ equal to the number of periods consid-
ered ahead of t. The procedure computes for each station i < S t, the period πi + t at which the
first stockout will occur at that station. If πi ≤ θ, station i is included in S t and bit is set equal
to πi + 1; otherwise this station is not considered for an anticipated visit and bit remains equal
to zero. The route construction procedure is then applied to S t. If the solution contains routes
visiting a station or pair of stations whose delivery has been anticipated, then these stations are
removed from S t and the corresponding bit values are set back to zero. In other word, if at period
t a route contains only stations that can feasibly be delivered later than t, then this route can
be postponed and is therefore eliminated from the delivery plan of period t. The truck loading
procedure is then applied to the remaining routes of period t. If the maximum truck workload
does not exceed H, the algorithm proceeds to the next period. Otherwise, some stations of S t are
moved back to their original positions. This is achieved in a manner similar to what was done in
the look-back procedure. Three variants λ are considered, and for each of them a coefficient βλit
is defined: β1

it = α1
it, β

2
it = α2

it, and β3
it = min

j∈S t
{ti j}. The (bit, β

λ
it) pairs are then ranked in reverse

lexicographical order and stations i are removed one by one from S t until stations of S t can be
visited within time H. This process ensures that the stations benefitting the least from the visited
period t are removed first from S t.

5. Computational results

The algorithm described was coded in Objective-C and run on a PowerPC G4 1.33 GHz
processor. It was tested on 100 randomly generated problem instances with 200 stations over
a planning horizon of 28 days. Because the problem under study is highly complicated, no
optimal solutions or even good lower bounds are available. As a result, we can only make
indirect or limited comparisons. Note that the route construction and truck loading procedures
of the algorithm are optimal [3]. The route packing problem is similar to that of Boctor et al.
[13] which has proved superior to alternative heuristics including simulated annealing. For the
look-back and look-ahead procedures, we have conducted an in-depth sensitivity analysis of the
parameters (Section 5.2). To our knowledge, only one paper [6] has treated the same problem as
this one and we will provide a full comparison in Section 5.3.

5.1. Test instances
We have generated test instances having similarities with real-life problems. Thus, using a

set of real data [14], we have determined six categories of petrol stations in function of their
total daily sales. Table 1 gives the lower and upper bounds on daily sales, and the percentage of
stations belonging to each category. Historical daily consumption data indicate that on average
the sales of regular, intermediate and super petrol grades are 76%, 7% and 17% of the total,
respectively. Because sales vary from one day to another, Table 2 gives the percentage of weekly
sales for each weekday and the ratio of daily sales with respect to the weekly average. Our data
also indicate that underground tank capacities and daily sales are related. Table 3 gives the most
commonly observed tank capacities, respectively for the three petrol grades, in function of total
daily sales. Finally, we consider three tank truck configurations among those commonly used in
practice. Table 4 provides the number of compartments and their capacity for each truck type.
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Table 1: Daily sales distribution

Daily sales bounds (litres) Percentage (%)
0 − 1 350 21.7
1 350 − 2 700 22.6
2 700 − 5 400 29.8
5 400 − 8 100 13.6
8 100 − 10 800 6.2
10 800 − 16 200 6.1

Table 2: Weekday adjustment coefficient

Weekday Sales (%) Adjustment coefficient
1 13 0.91
2 13 0.91
3 13 0.91
4 18 1.26
5 18 1.26
6 12.5 0.875
7 12.5 0.875

Table 3: Underground tanks configurations in function of daily sales

Daily sales (litres) Tank Tank size (litres)
0 − 2 700 1 25 000

2 15 000
3 15 000

2 700 − 8 100 1 35 000
2 22 700
3 25 000

8 100 − 16 200 1 50 000
2 25 000
3 35 000
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Table 4: Configurations of the tank trucks

Type Total capacity (1000 litres) Number of compartments Capacities (1000 litres)
1 60 6 17, 6, 10, 10, 7, 10
2 54 5 16, 6, 6, 10, 16
3 50 4 16, 8, 12, 14

To generate sales data for a given station, we start by generating an average daily sales for the
whole planning horizon (Table 1). This is done by randomly selecting a size category according
to the daily sales distribution and by then randomly determining the average daily sales within the
lower and upper limits of the selected size category. This daily sales average is then multiplied
by the weekday adjustment coefficient (Table 2) to determine the total daily sales for every day
of the planning horizon, and by the product sales coefficient to determine daily sales for each
product type. For each station, the underground tanks configuration is randomly selected among
the three configurations presented in Table 3. We select the configuration corresponding to the
daily sales with a probability of 80%, and one of the two other configurations with probability
of 10% for each one.

Depot coordinates are (50, 150) for all instances, while stations coordinates are integers ran-
domly drawn from a uniform distribution in a 100km×300km Euclidean space. Distances are
Euclidean and are not truncated.

For all problems, the fleet is composed of three trucks of type 1, three of type 2 and two of
type 3 for a total of eight tank trucks. Also we used the following data for all instances:

revenue per delivered litre: $0.004;
regular working time hourly cost per regular working hour: $15.00;
overtime hourly cost: $30.00;
travel variable cost per kilometer: $0.67;
average travel speed (km/h): 70.0;
truck loading time (minutes): 30;
station delivery time (minutes): 45;
daily regular working hours: 8;
daily maximum overtime hours: 4.

5.2. Performance of the proposed the look-back and look-ahead procedures

In this section, we analyze the performance of the proposed look-back and look-ahead pro-
cedures in function of its different parameters and embedded rules. Normalized average results
over 100 instances are reported in Table 5. The first two lines (in bold) correspond to the case
base to which all remaining scenarios are compared.

We can observe that for a given λ value, larger average profits are obtained twice with θ = 4
and once with θ = 3. This can be explained by the success of the look-ahead procedure. As
an example, for λ = 1 and θ = 4, we obtain a profit of 1.0919 (9.19% larger than with λ = 1
and θ = 0) which comes from a reduction of overtime (0.6970) and from a higher delivered
quantity (1.0010). In this case the improvement in the quantity delivered and in overtime is
larger than the cost increase (larger distance traveled and higher total working time), which
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yields a higher profit. The same behaviour is observed for each λ criterion, meaning that the
impact of the number of periods considered in the look-ahead procedure is independent of λ.

For a given θ, no λ value dominates the others. Note that the maximal profit (1.0919) is
obtained with λ = 1 and θ = 4.

Computing times range from 3.9 seconds (for λ = 1 and θ = 0) to 15.6 seconds (for λ = 3
and θ = 5). As expected, computing times are closely related to the number of period ahead
considered in the look-ahead procedure. Using λ = 3 seems to require slightly more computing
time.

5.3. Comparison with the Taqa allah et al. algorithms

Taqa allah et al. [6] have proposed several solution procedures and have shown that their A4
algorithm was the best available. In order to further assess the quality of the solution procedure
proposed in this paper, we compare it to the A4 heuristic which can be decomposed into eight
steps:

1. identify stations that must be delivered at period t, determine products and quantities to
deliver, assign a vehicle to each station, and load their compartments;

2. if possible, assign the least satisfied products to free compartments;
3. if possible, assign products that do not need to be delivered at period t to free compart-

ments;
4. attempt to match stations requiring one compartment and others requiring two;
5. attempt to group together stations requiring one compartment and assign them to the same

vehicle;
6. assign routes to vehicles (if needed, determine the number of vehicles to rent);
7. if there are unused compartments, try to insert stations that need to be delivered at period

t + 1 into existing routes;
8. if there are under-used vehicles, try to construct routes with stations that need to be deliv-

ered at period t + 1.

We observe that the A4 heuristic was designed to solve a slightly different version of the
MPSRP where trucks are identical and composed of three compartments (one for each product),
demands are constant over the planning horizon, and where it is possible to rent extra trucks if
needed. In addition, the A4 heuristic uses truck fixed costs. Consequently, we had to gener-
ate another set of test instances to fit these extra features in order to perform our comparative
analysis.

We randomly generated 30 test instances with 200 stations and used a 28 days horizon. In
these instances, we used a homogeneous fleet composed of three-compartment trucks with ca-
pacities 25 000, 15 000 and 9 000 litres for a total of 49 000 litres. Daily sales are constant over
time. In addition, we set daily fixed costs per truck equal to $250 and a daily rental cost per
truck equal to $750. In order to allow each method to produce its best possible results, we tried
different fleet sizes. The proposed algorithm was run using θ = 4 and λ = 1.

We have carried out comparisons with the Taqa allah et al. heuristic on the total cost basis.
The original A4 algorithm was coded in Turbo Pascal but run on the same computer. Results
presented in Table 6 show that the solution procedure developed in this paper outperforms the
Taqa allah et al. heuristic for all fleet sizes. Our procedure produced its best results with a
fleet of five trucks (cost: $109 462) while the A4 algorithm requires seven trucks to produce its
best results (cost: $169 053). If we compare the best results of both procedures, we see that
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Table 5: Normalized average results as a function of the parameters.

λ θ Dist TT OT Vis Tps Qty Profit Sec
1 0 74 308 km 1 857 h 264 h 795 405 22 350 489 l $7 792 3.93

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 1.0057 1.0075 0.8191 1.0099 1.0105 0.9978 1.0035 1.1908
2 1.0065 1.0106 0.7042 1.0158 1.0168 0.9996 1.0664 1.9312
3 1.0070 1.0113 0.7004 1.0168 1.0180 1.0010 1.0777 2.6284
4 1.0057 1.0104 0.6970 1.0164 1.0180 1.0010 1.0919 3.2086
5 1.0054 1.0104 0.7087 1.0164 1.0187 1.0013 1.0915 3.7404

2 0 0.9996 0.9997 1.0008 0.9998 0.9998 0.9998 1.0009 1.0610
1 1.0056 1.0076 0.8192 1.0102 1.0108 0.9979 1.0051 1.2951
2 1.0076 1.0122 0.7167 1.0180 1.0195 1.0020 1.0748 1.9083
3 1.0070 1.0117 0.7150 1.0176 1.0195 1.0025 1.0862 2.5776
4 1.0083 1.0130 0.7150 1.0188 1.0202 1.0029 1.0785 3.2442
5 1.0076 1.0123 0.7223 1.0183 1.0199 1.0032 1.0850 3.7888

3 0 1.0004 1.0004 1.0017 1.0004 1.0004 1.0003 0.9990 1.1170
1 1.0071 1.0088 0.8218 1.0109 1.0117 0.9985 0.9969 1.4427
2 1.0072 1.0120 0.7130 1.0180 1.0190 1.0016 1.0751 2.0254
3 1.0070 1.0118 0.7024 1.0178 1.0196 1.0021 1.0881 2.7303
4 1.0078 1.0129 0.6998 1.0193 1.0213 1.0028 1.0888 3.5115
5 1.0067 1.0114 0.7110 1.0173 1.0191 1.0018 1.0839 3.9745

λ criterion used in the look-back and look-ahead procedures;
θ number of periods ahead considered in the look-ahead procedure;
Dist total distance travelled;
TT total working time needed (including overtime);
OT total overtime used ;
Vis total number of visits;
Tps total number of trips;
Qty total delivered quantity;
Profit total profit realized;
Sec average computing time in seconds.
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Table 6: Comparison with the Taqa allah et al. A4 algorithm.

Tr RTr TT OT Dist Vis Tps Qty Cost Sec

Taqa allah 5 36 2 050 437 123 030 756 732 25 684 954 181 718 0.1

6 16 2 031 340 121 930 754 731 25 680 605 171 436 0.1

7 7 2 024 221 121 479 753 730 25 677 446 169 053 0.1

8 2 2 019 126 121 221 752 729 25 672 442 170 968 0.1

Proposed in 5 – 1 298 262 77 937 831 423 21 280 112 109 462 15.9

this paper 6 – 1 352 104 81 156 869 442 22 193 457 118 226 15.0

7 – 1 354 10 81 283 886 450 22 340 271 123 936 21.0

8 – 1 379 0 82 779 913 463 22 580 225 132 164 16.1

Deviation 5 −36.7% −40.1% −36.7% +10.0% −42.2% −17.1% −39.8%

6 −33.5% −69.5% −33.4% +15.3% −39.5% −13.6% −31.0%

7 −33.1% −95.4% −33.1% +17.6% −38.4% −13.0% −26.7%

8 −31.7% −99.6% −31.7% +21.4% −36.5% −12.0% −22.7%

Tr number of trucks;
RTr number of rented trucks over the 28 days horizon;
TT total working time (including overtime);
OT total overtime hours used ;
Dist total distance travelled;
Vis total number of visits;
Tps total number of trips;
Qty total delivered quantity in litres;
Cost total cost;
Sec average computing time in seconds.
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the proposed solution procedure yields a total cost 35% lower than that of the Taqa allah et al.
algorithm. If we examine the ratio Vis/Tps, we can also see that the proposed procedure mainly
produces routes visiting two stations (with an average of 1.93), whereas the Taqa allah et al.
algorithm mainly uses routes that visit only one station (with an average of 1.03). Our algorithm
therefore reduces the number of trips by 42% and the total travelled distance by 35%. This yields
a total working time reduction of 35%. With our algorithm, the delivered quantities are reduced
by 17%. This means it attempts to deliver smaller amounts without incurring stockouts. The
cost per delivered litre is 22% lower with our algorithm, and the number of litres per kilometers
is 29% higher. These results are hardly surprising since the Taqa allah algorithm is a simple
greedy procedure which is very quick but fails to perform an in-depth search.

6. Conclusion

We have developed a heuristic solution procedure for the Multi-Period Petrol Stations Re-
plenishment Problem. This iterative heuristic is composed of several procedures and embeds
the solution of a Route Packing Problem. The proposed heuristic was extensively tested on ran-
domly generated problems and compared to a previously published algorithm. Our comparative
analysis shows that the proposed heuristic is significantly superior to that algorithm. Avenues
for future research include the possibility of considering routes with more than two stations, and
partial unloadings of compartments.
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