Book section Open Access

Perspex Machine VIII: Axioms of Transreal Arithmetic

Anderson, J.A.D.W.; Voelker, N.; Adams, A.A.

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.810883</identifier>
      <creatorName>Anderson, J.A.D.W.</creatorName>
      <affiliation>University of Reading</affiliation>
      <creatorName>Voelker, N.</creatorName>
      <affiliation>University of Essex</affiliation>
      <creatorName>Adams, A.A.</creatorName>
      <affiliation>University of Reading</affiliation>
    <title>Perspex Machine VIII: Axioms of Transreal Arithmetic</title>
    <date dateType="Issued">2007-01-01</date>
  <resourceType resourceTypeGeneral="BookChapter"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.810882</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Non-Commercial (Any)</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains {-infinity, -1, 0, 1, infinity, nullity} as a proper subset. We note that the axioms have been shown to be consistent by machine proof. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down.</description>
All versions This version
Views 7878
Downloads 3030
Data volume 7.3 MB7.3 MB
Unique views 7474
Unique downloads 3030


Cite as