Book section Open Access

Perspex Machine VIII: Axioms of Transreal Arithmetic

Anderson, J.A.D.W.; Voelker, N.; Adams, A.A.


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.810883">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.810883</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.810883"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Anderson, J.A.D.W.</foaf:name>
        <foaf:givenName>J.A.D.W.</foaf:givenName>
        <foaf:familyName>Anderson</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Reading</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Voelker, N.</foaf:name>
        <foaf:givenName>N.</foaf:givenName>
        <foaf:familyName>Voelker</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Essex</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Adams, A.A.</foaf:name>
        <foaf:givenName>A.A.</foaf:givenName>
        <foaf:familyName>Adams</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Reading</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Perspex Machine VIII: Axioms of Transreal Arithmetic</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2007</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2007-01-01</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/810883"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/810883</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.810882"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/opendepot"/>
    <dct:description>Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains {-infinity, -1, 0, 1, infinity, nullity} as a proper subset. We note that the axioms have been shown to be consistent by machine proof. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down.</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="http://creativecommons.org/licenses/by-nc/2.0/"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.810883"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
30
6
views
downloads
All versions This version
Views 3030
Downloads 66
Data volume 1.5 MB1.5 MB
Unique views 3030
Unique downloads 66

Share

Cite as