Conference paper Open Access

Learning to Detect Misleading Content on Twitter

Christina Boididou; Symeon Papadopoulos; Lazaros Apostolidis; Yiannis Kompatsiaris


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">social media</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">verification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fake detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">news mining</subfield>
  </datafield>
  <controlfield tag="005">20191104071219.0</controlfield>
  <controlfield tag="001">810537</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-9 June, 2017</subfield>
    <subfield code="g">ICMR2017</subfield>
    <subfield code="a">ACM 2017 International Conference on Multimedia Retrieval</subfield>
    <subfield code="c">Bucharest, Romania</subfield>
    <subfield code="n">Oral Session 5: Best Papers Candidates</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Symeon Papadopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Lazaros Apostolidis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Yiannis Kompatsiaris</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2649751</subfield>
    <subfield code="z">md5:e5bf5849e333a704777e6fc34c0e0fdd</subfield>
    <subfield code="u">https://zenodo.org/record/810537/files/learning-detect-misleading_camready_v2.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.icmr2017.ro/conference-program.php</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="o">oai:zenodo.org:810537</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Christina Boididou</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Learning to Detect Misleading Content on Twitter</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">610928</subfield>
    <subfield code="a">REVEALing hidden concepts in Social Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The publication and spread of misleading content is a problem of increasing magnitude, complexity and consequences in a world that is increasingly relying on user-generated content for news sourcing. To this end, multimedia analysis techniques could serve as an assisting tool to spot and debunk misleading content on the Web. In this paper, we tackle the problem of misleading multimedia content detection on Twitter in real time. We propose a number of new features and a new semi-supervised learning event adaptation approach that helps generalize the detection capabilities of trained models to unseen content, even when the event of interest is of different nature compared to that used for training. Combined with bagging, the proposed approach manages to outperform previous systems by a significant margin in terms of accuracy. Moreover, in order to communicate the verification process to end users, we develop a web-based application for visualizing the results.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3078971.3078979</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
75
50
views
downloads
Views 75
Downloads 50
Data volume 132.5 MB
Unique views 74
Unique downloads 41

Share

Cite as