Conference paper Open Access

Learning to Detect Misleading Content on Twitter

Christina Boididou; Symeon Papadopoulos; Lazaros Apostolidis; Yiannis Kompatsiaris


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/810537">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/810537</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/810537"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Christina Boididou</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>CERTH-ITI, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Symeon Papadopoulos</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>CERTH-ITI, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Lazaros Apostolidis</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>CERTH-ITI, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Yiannis Kompatsiaris</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>CERTH-ITI, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Learning to Detect Misleading Content on Twitter</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2017</dct:issued>
    <dcat:keyword>social media</dcat:keyword>
    <dcat:keyword>verification</dcat:keyword>
    <dcat:keyword>fake detection</dcat:keyword>
    <dcat:keyword>news mining</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/687786/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/FP7/610928/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2017-06-08</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/810537"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/810537</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1145/3078971.3078979"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/invid-h2020"/>
    <dct:description>&lt;p&gt;The publication and spread of misleading content is a problem of increasing magnitude, complexity and consequences in a world that is increasingly relying on user-generated content for news sourcing. To this end, multimedia analysis techniques could serve as an assisting tool to spot and debunk misleading content on the Web. In this paper, we tackle the problem of misleading multimedia content detection on Twitter in real time. We propose a number of new features and a new semi-supervised learning event adaptation approach that helps generalize the detection capabilities of trained models to unseen content, even when the event of interest is of different nature compared to that used for training. Combined with bagging, the proposed approach manages to outperform previous systems by a significant margin in terms of accuracy. Moreover, in order to communicate the verification process to end users, we develop a web-based application for visualizing the results.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="http://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/810537"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/687786/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">687786</dct:identifier>
    <dct:title>In Video Veritas – Verification of Social Media Video Content for the News Industry</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/FP7/610928/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">610928</dct:identifier>
    <dct:title>REVEALing hidden concepts in Social Media</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
68
50
views
downloads
Views 68
Downloads 50
Data volume 132.5 MB
Unique views 67
Unique downloads 41

Share

Cite as