Conference paper Open Access

Web Video Verification using Contextual Cues

Olga Papadopoulou; Markos Zampoglou; Symeon Papadopoulos; Yiannis Kompatsiaris


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video verification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Context analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Social media</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Fake news</subfield>
  </datafield>
  <controlfield tag="005">20190410041354.0</controlfield>
  <controlfield tag="001">810474</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">June 6, 2017</subfield>
    <subfield code="g">MFSec 2017 @ ICMR2017</subfield>
    <subfield code="a">ACM 2nd International Workshop on Multimedia Forensics and Security, co-located with the 2017 ACM International Conference on Multimedia Retrieval</subfield>
    <subfield code="c">Bucharest, Romania</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Markos Zampoglou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Symeon Papadopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Yiannis Kompatsiaris</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">657564</subfield>
    <subfield code="z">md5:2804d1e7f39e1c65f5b02b336d00088e</subfield>
    <subfield code="u">https://zenodo.org/record/810474/files/web-video-verification.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://mklab.iti.gr/mfsec2017/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="o">oai:zenodo.org:810474</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Olga Papadopoulou</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Web Video Verification using Contextual Cues</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As news agencies and the public increasingly rely on User-Generated Content, content verification is vital for news producers and consumers alike. We present a novel approach for verifying Web videos by analyzing their online context. It is based on supervised learning on contextual features: one feature set is based on an existing approach for tweet verification adapted to video comments. The other is based on video metadata, such as the video description, likes/dislikes, and uploader information.&lt;br&gt;
We evaluate both on a dataset of real and fake videos from YouTube, and demonstrate their effectiveness (F-scores: 0.82, 0.79). We then explore their complementarity and show that under an optimal fusion scheme, the classifier would reach an F-score of 0.9. We finally study the performance of the classifier through time, as more comments accumulate, emulating a real-time verification setting.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3078897.3080535</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
51
62
views
downloads
Views 51
Downloads 62
Data volume 40.8 MB
Unique views 50
Unique downloads 59

Share

Cite as