Conference paper Open Access
Olga Papadopoulou; Markos Zampoglou; Symeon Papadopoulos; Yiannis Kompatsiaris
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/b5d3bb3c-5674-43b4-b786-ce6dd5d3c074/web-video-verification.pdf" }, "checksum": "md5:2804d1e7f39e1c65f5b02b336d00088e", "bucket": "b5d3bb3c-5674-43b4-b786-ce6dd5d3c074", "key": "web-video-verification.pdf", "type": "pdf", "size": 657564 } ], "owners": [ 27159 ], "doi": "10.1145/3078897.3080535", "stats": { "version_unique_downloads": 130.0, "unique_views": 151.0, "views": 155.0, "version_views": 155.0, "unique_downloads": 130.0, "version_unique_views": 151.0, "volume": 88771140.0, "version_downloads": 135.0, "downloads": 135.0, "version_volume": 88771140.0 }, "links": { "doi": "https://doi.org/10.1145/3078897.3080535", "latest_html": "https://zenodo.org/record/810474", "bucket": "https://zenodo.org/api/files/b5d3bb3c-5674-43b4-b786-ce6dd5d3c074", "badge": "https://zenodo.org/badge/doi/10.1145/3078897.3080535.svg", "html": "https://zenodo.org/record/810474", "latest": "https://zenodo.org/api/records/810474" }, "created": "2017-06-18T14:43:18.999725+00:00", "updated": "2020-01-20T17:38:13.003396+00:00", "conceptrecid": "810473", "revision": 8, "id": 810474, "metadata": { "access_right_category": "success", "doi": "10.1145/3078897.3080535", "description": "<p>As news agencies and the public increasingly rely on User-Generated Content, content verification is vital for news producers and consumers alike.\u00a0We present a novel approach for verifying Web videos by analyzing their online context. It is based on supervised learning on contextual features: one feature set is based on an existing approach for tweet verification adapted to video comments. The other is based on video metadata, such as the video description, likes/dislikes, and uploader information.<br>\nWe evaluate both on a dataset of real and fake videos from YouTube, and demonstrate their effectiveness (F-scores: 0.82, 0.79).\u00a0We then explore their complementarity and show that under an optimal fusion scheme, the classifier would reach an F-score of 0.9. We finally study the performance of the classifier through time, as more comments accumulate, emulating a real-time verification setting.</p>", "license": { "id": "CC-BY-4.0" }, "title": "Web Video Verification using Contextual Cues", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "810473" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "810474" } } ] }, "communities": [ { "id": "invid-h2020" } ], "grants": [ { "code": "687786", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::687786" }, "title": "In Video Veritas \u2013 Verification of Social Media Video Content for the News Industry", "acronym": "InVID", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Video verification", "Context analysis", "Social media", "Fake news" ], "publication_date": "2017-06-06", "creators": [ { "affiliation": "CERTH-ITI, Thessaloniki, Greece", "name": "Olga Papadopoulou" }, { "affiliation": "CERTH-ITI, Thessaloniki, Greece", "name": "Markos Zampoglou" }, { "affiliation": "CERTH-ITI, Thessaloniki, Greece", "name": "Symeon Papadopoulos" }, { "affiliation": "CERTH-ITI, Thessaloniki, Greece", "name": "Yiannis Kompatsiaris" } ], "meeting": { "acronym": "MFSec 2017 @ ICMR2017", "url": "http://mklab.iti.gr/mfsec2017/", "dates": "June 6, 2017", "place": "Bucharest, Romania", "title": "ACM 2nd International Workshop on Multimedia Forensics and Security, co-located with the 2017 ACM International Conference on Multimedia Retrieval" }, "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" } } }
Views | 155 |
Downloads | 135 |
Data volume | 88.8 MB |
Unique views | 151 |
Unique downloads | 130 |