Thesis Open Access
Lee, Benjamin Charles Germain
Finkbeiner, Douglas
Cataloging is an essential part of the data processing pipelines of modern surveys: most astrophysicists conduct research using catalogs of astronomical objects rather than raw telescope images. Though traditional cataloging packages perform well in most instances, crowded fields are particularly challenging due to the blending of and covariance between neighboring sources. With the improved depth of future telescope surveys, the fraction of exposures in the crowded limit will only continue to increase. As a result, it is more important than ever to explore new methods of crowded field photometry. In this thesis, I present the first application of probabilistic cataloging to real optical data. Probabilistic cataloging uses Bayesian inference and a trans-dimensional search to sample the space of all possible catalogs consistent with an image, producing an ensemble of catalogs instead of just one. Unlike catalogs produced by traditional cataloging packages, the resulting catalog ensemble retains fully marginalized deblending uncertainties and covariances between sources.
I quantitatively show that probabilistic cataloging outperforms DAOPHOT, the best-performing of the traditional stellar photometry packages in the crowded limit, on a 100×100 pixel cutout of a Sloan Digital Sky Survey (SDSS) r-band image of the globular cluster Messier 2 (Becker et al. 2007). Adopting a Hubble Space Telescope catalog of the same region of sky as ground truth, I show that the catalog ensemble generated using probabilistic cataloging is complete to over 1 magnitude deeper than the corresponding DAOPHOT catalog while maintaining a similar false discovery rate. Additional tests show that probabilistic cataloging is robust to different seeing conditions. Lastly, I provide a labeling procedure by which the catalog ensemble can be distilled to a single “condensed” catalog with fully marginalized uncertainties that maintains a similar completeness and false discovery rate to those of the catalog ensemble. These results demonstrate the applicability of probabilistic cataloging to future surveys such as the Large Synoptic Survey Telescope.
Name | Size | |
---|---|---|
leeben_69709_3869324_Benjamin_Lee_Thesis_Submission.pdf
md5:172f709790177dc84c9623f1fca21f22 |
27.1 MB | Download |
Alam, S., et al. 2015, ApJS, 219, 12
Albareti, F.D., et al. 2016, ArXiv e-prints, arXiv:1608.02013v1
An, D., et al. 2008, ApJS, 179, 326
Anderson, J., et al. 2008, AJ, 135, 6
Annunziatella, M., Mercurio, A., Brescia, M., Cavuoti, S., & Longo, G. 2012, ArXiv e-prints, arXiv:1212.0564
Becker, A., Silvestri, N., Owen, R., Ivezic, Ž., & Lupton, R. 2007, PASP, 119, 1462
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Brewer, B. 2015, arXiv:1411.3921
Brewer, B. 2016. DNest3, https://github.com/eggplantbren/DNest3
Brewer, B., & Foreman-Mackey, D. 2016, arXiv:1606.03757v3
Brewer, B., Foreman-Mackey, D., & Hogg, D. 2013, AJ, 146, 1
Brewer, B., Pártay, L., & Csányi, G. 2010, Statistics and Computing, 21, 649
Budavári, T., & Basu, A. 2016, ArXiv e-prints, arXiv:1609.03065
Cowles, M., & Carlin, B. 2015, Journal of the American Statistical Association, 91, 434
Davis, L. 1994, "A Reference Guide to the IRAF/DAOPHOT Package"
Daylan, T., Portillo, S., & Finkbeiner, D. 2016, ArXiv e-prints, arXiv:1607.04637
Doi, M., et al. 2010, AJ, 139, 4
Eisenstein, D., et al. 2005, ApJ, 633, 2
Fan, Y., & Sisson, S. 2010, arXiv:1001.2055
Ferrarese, L., Silbermann, N., Mould, J., Stetson, P., Saha, A., Freedman, W., & Kennicutt Jr., R. 2000, PASP, 112, 177
Gelman, A., & Rubin D. 1992, Statistical Science, 7, 457
Green, P. 1995, Biometrika, 82, 711
Gunn, J.E. 1998, AJ, 116, 6
Harris, W. E. 1996, AJ, 112, 1487
Jiang, L., et al. 2014, ApJS, 213, 1
Laher, R., et al. 2012, PASP, 124:737
Lupton, R., et al. 2001, ASP Conf.Ser. 10, 269
MacKay, D. 2003, Information Theory, Inference, and Learning Algorithms (6th ed.; Cambridge University Press)
Portillo, S.K.N., Lee, B.C.G., Daylan, T., & Finkbeiner, D.P. 2017, arXiv:1703.01303
Primini, F., & Kashyap, V. 2014, ApJ, 796, 7
Romanishin, W. 2006, "An Introduction to Astronomical Photometry Using CCDs," http: //www.physics.csbsju.edu/370/photometry/manuals/OU.edu_CCD_photometry_wrccd06.pdf
Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. 2006, GeoJI, 167, 528
Sarajedini, A., Bedin, L. R., Chaboyer, B., et al. 2007, AJ, 133, 1658
Schechter, P., Mateo, M., & Saha, A. 1993, PASP, 105, 1342
Stephens, M. 20000, Ann. Statist., 28, 40
Stetson, P. 1987, PASP, 99, 191
Stetson, P. 1998, "User's Manual for DAOPHOT II"
Trotta, R. 2008, ConPh, 49, 71
York, D., et al. 2000, ApJ, 120, 3
All versions | This version | |
---|---|---|
Views | 55 | 55 |
Downloads | 73 | 73 |
Data volume | 2.0 GB | 2.0 GB |
Unique views | 51 | 51 |
Unique downloads | 68 | 68 |