
Accepted for IEEE EDGE 2023

DOSA: Organic Compilation for Neural Network
Inference on Distributed FPGAs

Burkhard Ringlein∗† , François Abel∗ , Dionysios Diamantopoulos∗ , Beat Weiss∗ , Christoph Hagleitner∗ ,
and Dietmar Fey†

∗IBM Research Europe, †Friedrich-Alexander University Erlangen-Nürnberg
{ngl, fab, did, wei, hle}@zurich.ibm.com, {burkhard.ringlein, dietmar.fey}@fau.de

Abstract—The computational requirements of artificial intel-
ligence workloads are growing exponentially. In addition, more
and more compute is moved towards the edge due to latency
or localization constraints. At the same time, Dennard scaling
has ended and Moore’s law is winding down. These trends cre-
ated an opportunity for specialized accelerators including field-
programmable gate arrays (FPGAs), but the poor support and
usability of today’s tools prevents FPGAs from being deployed
at scale for deep neural network (DNN) inference applications.
In this work, we propose an organic compiler — DOSA — that
drastically lowers the barrier for deploying FPGAs. DOSA builds
on the operation set architecture concept and integrates the DNN
accelerator components generated by existing DNN-to-FPGA
frameworks to produce an overall efficient solution. DOSA starts
from DNNs represented in the community standard ONNX and
automatically implements model- and data-parallelism, based on
the performance targets and resource footprints provided by the
user. Deploying a DNN using DOSA on 9 FPGAs exhibits a
speedup of up to 52 times compared to a CPU and 18 times
compared to a GPU.

Index Terms—MLSys, Reconfigurable hardware, Domain-
specific architectures, Compilers, Distributed Artificial Intelli-
gence, Design Tools and Techniques

I. INTRODUCTION

Today, domain-specific architectures are developed and de-
ployed to address the exponential increase of the computa-
tional demands of machine learning (ML) and artificial intelli-
gence (AI) applications. This more hardware-centric approach
was triggered by the slow down of technology scaling [1]
and the drastic increase in complexity of AI models and their
use cases [2]. Likewise, AI and ML applications are now
ubiquitous and push data processing to the edge, due to latency
or power constraints [3]–[5]. Furthermore, regulation and
privacy considerations impose additional design restrictions by
limiting the localization and movement of data. The combina-
tion of these three trends led to a “Cambrian explosion” [6]
of new AI accelerators1. While many of these accelerators are
GPUs or application-specific integrated circuits (ASICs), field-
programmable gate arrays (FPGAs) became also increasingly
popular. FPGAs offer an attractive “middle ground” between
the lack of energy-efficiency of general-purpose GPUs and
CPUs and the lack of adaptability of full-custom ASICs. They
are energy efficient, can provide superior performance [6]–[9]
and adapt to frequent ML model changes [2], [10]. Therefore,
FPGAs are widely used for energy- and latency-constrained
ML applications at the edge [4], [5], [11]–[17].

1 Terminology: In this work, the term topology refers to the structure of a
neural network, i.e. its internal structure of operations or layers. Architecture
refers to the hardware implementation, and its properties, of a neural network
topology. Accelerator refers to the subset of an architecture (or to the
complete architecture). Framework refers to a set of scripts used to turn
a topology into an architecture (e.g. hls4ml [18]). Tool flow (or tool chain)
refers to a set of tools used to map (i.e. compile, synthesize, place and route)
an accelerator to an FPGA device.

2 https://github.com/cloudFPGA/DOSA

00

executed on
(multiple, heterogeneous)

FPGAs

data center
FPGAs

edge data center

deep neural network

detectors

ML developer

embedded
FPGAsensor networks automated fabrication

fo
cu

s
of

th
is

 w
or

k

compiler for automatic partitioning and synthesis,
tool chains, run-time environment, and control plane

low-latency
inference extend to

multiple
FPGAs

Fig. 1. Deploying low-latency DNN inference at the edge using FPGAs.

A. Motivational Example
Figure 1 shows an illustrative example of a depp neural

networks (DNNs) application deployed for a low latency
inference — 1 ms or below — classification at the edge.
The model for the inference service is developed by an ML
expert, who has little or no FPGA expertise, and is specified
in a widely supported community standard, such as the Open
Neural Network eXchange (ONNX) [19]. If the DNN model is
too large to fit in the FPGA at the data source, the (remaining
part of the) DNN can be executed in a nearby edge data center.
Hence, larger DNN models may expand to multiple devices.
Despite their favorable performance and energy efficiency,
such an FPGA implementation solution must also offer com-
petitive development and deployment complexity compared to
GPU or CPU based solutions. Hence, the goal of our research
is to develop a tool flow capable of turning an ONNX model
into a distributed FPGA design, in just “one-click”.

B. Problem Statement and Contributions
Today’s DNN-to-FPGA frameworks support only a very

narrow set of DNN topologies and target devices and “coding
even simple algorithms on FPGAs remains very painful and
time-consuming” [10]. In addition, deploying large AI models
on multiple FPGAs is difficult, because most tool-flows do not
support partitioning.

In this work, we first analyze the reasons behind the
limited adoption of FPGAs for AI inference at the edge.
We use our recently proposed organic compilation concept,
which leverages the large body of FPGA-optimized building
blocks generated by exiting tools [20]. We present DOSA2, an
open source implementation of the proposed organic compiler,
which supports deployment on distributed FPGAs. In particu-
lar, the main contributions of this research are:

1) A tool to automatically distribute a DNN specified in
ONNX to multiple heterogeneous nodes within seconds,
supporting model and data parallelism leveraging organic
compilation.

This is the accepted version of the article published by IEEE: 10.1109/EDGE60047.2023.00019

https://orcid.org/0000-0002-7222-9539
https://orcid.org/0000-0002-3295-0292
https://orcid.org/0000-0003-2979-5946
https://orcid.org/0000-0002-4069-1286
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0002-6077-4732
https://github.com/cloudFPGA/DOSA
https://doi.org/10.1109/EDGE60047.2023.00019

2) A unified evaluation criterion for DNN operations to find
the optimum in a heterogeneous design space.

3) The automated generation of host-to-FPGA, inter-FPGA
and intra-FPGA communication and the corresponding
software run-time environment.

4) The demonstration of an end-to-end example, running on
multiple FPGAs and outperforming CPUs and GPUs.

DOSA enables the compilation, deployment, and execution
of a DNN across distributed FPGAs with speedup gains of
up to 50 times compared to a CPU and 18 times compared
to a GPU. The paper is structured as follows: Section II
introduces the motivation behind organic compilation and
discusses prior art. This is followed by the presentation of our
organic compiler DOSA in Section III. Finally, we evaluate
our framework in depth and demonstrate an multi-FPGA end-
to-end example before we provide a conclusion.

II. MOTIVATION AND RELATED WORK

We reviewed the landscape of frameworks that can help a
user to deploy a DNN to an FPGA, and we found a signif-
icant amount of research tools [7]–[9], [13], [18], [21]–[27].
However, despite the availability of such frameworks, FPGAs
are seldom used outside of their community because they are
considered difficult to program [10], [20]. We attribute this
lack of adoption to four problems with the current state of the
art tools: First, despite the vast range of options for DNN-to-
FPGA flows, all frameworks support only a limited range of
DNN operations, or a very narrow set of target devices, or
both limitations are given [28], [29]. Second, there exists no
guide to help the user select the right framework for a given
DNN and application scenario, let alone an automated tool to
do so [20]. For example, the tool SAMO [25] improves the
efficiency of the considered specialist-frameworks by adding
common optimization passes to all of them, but does not
combine different accelerators or help the user in selecting
the right framework for a given problem. Likewise, existing
benchmarks like ECBA-MLI [30], which evaluates latency
and power consumption of different DNN deployments at the
edge, do not support FPGAs. Third, compatibility between
tool flows, frameworks and vendor tools is very limited. In
addition, a design flow breaks frequently, if just one of the
involved tools is upgraded to a newer (minor) version. Lastly,
most of today’s DNN-to-FPGA frameworks are limited to
single device use cases and can not distribute a given DNN
across multiple FPGAs, which limits the size and throughput
of the compiled DNN models.

Given the richness of existing optimized but narrow frame-
works, we envision a DNN compiler that can reuse and
combine these existing frameworks as one tool. If a certain
framework can already implement a specific part of a DNN
in an optimized way, e.g. the haddoc2 framework [22] can
synthesize 2D convolutions with certain fixed-point data types
to a high-throughput architecture, why not reuse this work and
avoid to “re-invent the wheel” again?

The foundation of organic compilation is to combine multi-
ple specialized-but-narrow frameworks into a single holistic
compiler. This requires a compiler that can reason about
different parts of the DNN, different devices, and different
frameworks in an unified way. To achieve this goal, we
build on our previously proposed Operation Set Architecture
(OSA) [20], a concept that enables the architecture-agnostic
optimization of a DNN and subsequently the selection of the
best implementation among multiple possibilities. This basic
principle is shown in Figure 2. Using the OSA, an abstract
syntax tree (AST) is built from the imported DNN and simple

(simplified print of AST)
implementing

operation set {%1, %2, %3}

to small FPGA at data source

(due to bandwith requirements)

optimized &

annotated AST

FPGA #2

IN
P

U
T

O
U

TP
U

T

C
O

N
V

2D

B
IA

S

R
E

LU

P
O

O
L

D
E

N
S

E

A
D

D

import

(e.g. from ONNX)

implementing
operation set {%4, ...}

to nearby (larger) FPGA
(due to better efficiency)

deep neural
network

....
%1 = conv2d(%0, %w0, %b0, kernel=(5,5), padding=0, layout=NCHW)

%2 = relu(%1)

%3 = max_pool2d(%2, kernel=2, stride=2)

%4 = conv2d(%3, %w1, %b1, kernel=(3,3), padding=0, layout=NCHW)

....

roofline &

bandwidth

analysis

build abstract syntax tree (AST)

(selected) optimizations

FPGA #1

IN
P

U
T

O
U

TP
U

T

C
O

N
V

2D

B
IA

S

R
E

LU

P
O

O
L

Fig. 2. Basic principle of the distributed Operation Set Architecture (OSA).

optimizations are executed. Additionally, the AST is lowered
to an intermediate representation (IR) that allows to handle
small-enough but still “meaningful” operations. In Figure
2, these are the operations conv2d, relu, max_pool2d,
which abstracts certain parts of the topology of the imported
DNN. The level of abstraction used by OSA is comparable
to the abstraction levels used by popular domain-specific
languages (DSLs) like RelayIR [31] or ONNX [32] or some
MLIR dialects [33]–[36] (cf. also [37]). In fact, also many
of the already existing DNN-to-FPGA frameworks provide IP
cores on this level of abstraction. For example, the academic
frameworks like hls4ml [13], [18], [21], haddoc2 [22], FINN
[7]–[9], or AIgean [23] provide interfaces to implement (some
kind of) a conv2d. Hence, taking architectural decisions
on this proper level of abstraction avoids a complex and
error-prone mapping of low-level instructions to an FPGA IP
core (cf. polyhedral-based compilation techniques [38], [39]).
Additionally, the abstraction level provided by OSAs enable
partitioning decisions at likewise “meaningful” steps of the
application. This allows the implementation of a fast DSE.
In the example of Figure 2, the roofline and bandwidth and
analyses (cf. Figures 3 and 4) indicates a partitioning after the
max_pool2d operation, as depicted at the lower half of the
Figure 2.

To not exceed the scope of this section, we refer the reader
to [20] for more background on OSAs and to [28], [29], or [40]
for a detailed review of existing DNN-to-FPGA frameworks.

III. DOSA: DISTRIBUTED OPERATION SET ARCHITECTURE
— OR HOW TO AUTOMATE REUSE FOR DNNS ON FPGAS

Our goal is to develop an “organic compiler” that ana-
lyzes a given DNN and selects the best-possible template-
type and implementation offered by a number of frameworks
for each arithmetic operation of this DNN. This compiler
should understand a conventional DNN exchange standard
and provide the user with insights on achievable performance,
possible bottlenecks, and how the user’s constraints influence
the architectural decision. The design-space exploration (DSE)
by this compiler should also consider partitioning, with model-
and device-parallelism as options, and should ideally take only
a few seconds, to allow frequent iterations and optimizations
with a user in the loop. Therefore, this compiler must be able
to predict performance and resource consumption for each
possible implementation quickly and reliably and must use
meaningful criteria to compare these estimates. In this section,

10 5 10 4 10 3 10 2 10 1 100

operational intensity (OI) [iter/Byte]

10 1

100

101

102

103

a
tt

a
in

a
b

le
 p

e
rf

o
rm

a
n

ce
 [

K
it

e
r/

s]

La
y
e
r

5
:

d
e
n

se
,

a
d

d
,
re

lu
 (

st
re

a
m

in
g

 i
m

p
l.
)

La
y
e
r

6
:

d
e
n

se
,
a
d

d
 (

st
re

a
m

in
g

 i
m

p
l.
)

Roofline for 'PTTDNN'
(draft: selected_best, node: 7, dpl: 1, opt: THROUGHPUT)

LUTRAM bandwidth

BRAM bandwidth

DRAM bandwidth

network bandwidth

req. performance Engine arch. (w/ 5000 sps, batch 1)

req. performance Stream arch. (w/ 5000 sps, batch 1)

implemented performance

(impl. 0.94 GFLOPS,
theor. max.: 3.76)

E
n

g
in

e
 a

v
g

.

S
tr

e
a
m

 a
v
g

.

3252.79 Kiter/s theoretical ROLE peak performance (application specific)

Fig. 3. Roofline analysis using kilo − iterations/s for one FPGA node
(pipeline stage 5 of Figure 6).

we present the important ingredient of a unified evaluation
criterion, before we discuss every step of the flow of an organic
compiler, as shown in Figure 5.

A. A Unified Evaluation Criterion: Replacing FLOP/s on
FPGAs

The core feature of our organic compiler for DNNs is
its ability to automatically select from different specialist-
frameworks the best mix of implementations on a mix of
devices for a given application. This ability requires not only
the “packing” of different implementations into the same cat-
egories, hence the selection of a DSL IR as done by the OSA,
but also the possibility to evaluate two semantically identical,
but differently implemented operations, based on predicted re-
source consumption or performance characteristics. Therefore,
unified measurements to compare these numbers are needed,
to be able to select the most efficient implementation available.

One natural criterion to compare the performance of differ-
ent hardware implementations and to judge their effectiveness
is to calculate their achieved FLOPs

s (or just FLOPS), i.e.
a measurement of how many arithmetic (floating point) op-
erations can be done in one second. The notion of FLOPS
historically originates from CPUs and their floating point
units or central arithmetic logic units, but it is also used for
FPGAs to compare their performance in marketing [41] and
research [42]. It also appears to be a useful measurement
for the purpose of our compiler, since we know what the
necessary arithmetic steps for e.g. a 2D convolutions are,
and we know the size and used data types of all inputs and
parameters. Hence, we can calculate the necessary FLOPS of
each operation and then, based on the architecture type, infer
how long each available implementation would take as well as
how many FPGA resources would be consumed. This would
fit well with our roofline analysis, typically based on FLOPS,
since it is the established way to determine the potential
performance of a given algorithm on a given hardware and
to identify potential performance bottlenecks (cf. [20]).

However, after building our compiler with this approach,
we noticed that the training of a prediction function like

f(FLOPS, operation, framework) → resource usage, latency

is very difficult and in most cases quite inaccurate, even if
we consider the detailed operation, data type, and sparsity of
the weights, as well as using conservative approaches and not
(marketing) data sheets (cf. [43]). As a short demonstration,
we show in Table I selected examples of addition, subtraction,
multiplication, division, or comparison, which could all be
seen as one FLOP or integer operation (IOP). Even for this

0 1 2 3 4 5 6
computing operations (i.e. layers)

0.000

0.005

0.010

0.015

0.020

b
a
n

d
w

id
th

 i
n

 G
B

/s

0

5

10

15

20

25

p
a
ra

m
e
te

rs
 i
n

 K
B

DOSA bandwidth analysis for 'PTTDNN'
(draft: selected_best, opt: THROUGHPUT, #nodes: 8)

(target: 5000 sps)
input bandwidth per operation output bandwidth per operation parameter per operation

Fig. 4. Bandwidth and parameter requirements per layer of a typical DNN.
The used topology is equivalent to the one in Figure 6.

very small sample, the deviation between the implementations
is significant. Also, most of these operations do not use
digital signal processors (DSPs), as would be expected or is
indicated by some data sheets. After some investigation of this
behavior, we concluded that measuring the performance and
efficiency of reconfigurable hardware, with its core features
of customization of the data path and control flow for each
algorithm, using a metric, which is supposed to express the
performance of a fixed hardware on all kind of computations,
is a conceptually flawed approach. Due to the wide design
space of a single arithmetic operation, from one LUT for 1-
bit multiplication up to multiple DSPs and hundreds of LUTs
for larger floating point multiplications, on one side and on the
other side the “fuzziness” of a “FLOP/IOP”, the prediction of
resource usage and performance using FLOPS is not suitable
for FPGAs. For example, how many FLOPS does a max
pooling operation, which performs only comparisons, use? Or
how to account for the data paths that are necessary to bring
the data to these comparators (cf. [44])? Such questions must
be answered by a compiler during a DSE phase. This misfit of
concepts is also not solved by measuring a few representative
example implementations on the targeted FPGA, calculating
their FLOPS and taking these measurements as a baseline
(cf. [42]), since all the different possible optimizations for a
slightly different algorithm or even just a different parameter
lead to high uncertainty again.

Consequently, we needed to find a different measure that
may not be as general as FLOPS but more accurate and more
helpful. Hence, we decided to use iterations

s , for one specific
unit under consideration. For example, when comparing two
max pooling implementations for the same operation the
compiler can compare both implementations in terms of pos-
sible iterations per second and resource consumption. Based
on this throughput calculation, the latency can be derived
directly, if this is the optimization goal of interest. Similarly,
when comparing multiple operations on different FPGAs, the
compiler can easily determine what the total iterations/s
for each node is, since the total performance depends on the
slowest operation and possible parallel executions. Finally,
implementations of complete DNNs can also be compared,
since the total iterations per second can be calculated likewise
by selecting the iterations of the bottlenecks.

While this may sound like a minor difference to us-
ing FLOPS, the implications are substantial. First, the used
iterations/s numbers are always bound to specific domain-
specific instructions and therefore more precise or “meaning-
ful”. For example, the performance roof of the roofline in
Figure 3 applies to the set of operations scheduled on this
particular FPGA. Second, how long one iteration takes can

TABLE I
EXCERPTS FROM THE RESOURCE USAGE OF ONE-FLOP/IOP-LIKE OPERA-

TIONS ON KINTEX ULTRASCALE FPGAS [45]–[47].

Operation Resource usage

Fm
ax

(M
H

z)

la
te

nc
y

(c
yc

le
s)

D
SP

s

FF
s

L
U

T
s

B
R

A
M

s
(3

6k
)

32 bit int add/sub 0 104 36 0 604 3
1 0 1 0 631 2

32 bit uint add/sub 0 106 59 0 571 3
28 bit const. coeff. int mult. 0 68 121 3.5 286 3

35 bit int mult. 4 69 18 0 631 6
12 bit uint mult. 0 173 125 0 467 3

32 bit float add/sub 2 311 189 0 539

N/A

0 578 349 0 643
32 bit float comparison 0 12 48 0 1,155

32 bit int to float conversion 0 228 157 0 635

32 bit float mult.
2 166 90 0 568
3 123 73 0 594
0 695 570 0 590

32 bit float division 0 1,383 763 0 598
1 bit mult. on Zynq [9] 0 1 1 0 >200 N/A

be easily measured in hardware or by analyzing simulations.
Hence, the measure is not as fuzzy as FLOPS. Third, the
measured iteration accounts for all hardware that is necessary
to perform the specified operation on the specified inputs,
e.g. it counts the necessary FIFOs for buffering, logic for the
control-flow, or all needed comparators. Finally, we noticed
after some experiments that performance and resource usage
predictions based on existing measurements of iterations (i.e.
frequency
latency) for a specific size of inputs and parameters are

more accurate than using FLOPS. This unit of measurement
is also compatible with the our idea to use a roofline analysis
as basis for the DSE. The meaning of the OI in this type
of roofline analysis is the same: The higher the intensity, the
fewer bytes are used for one iteration. Hence, the “bandwidth-
barriers” are still valid (cf. Figure 3). Subsequently, we decided
to use iterations

s as criterion when comparing the performance
of different available implementations of one specific opera-
tion in the AST.

B. Flow of an Organic Compiler for Distributed FPGAs
Figure 5 shows the flow diagram of our organic compiler.

Such an organic compiler requires a DSE phase that can ana-
lyze the DNN and which knows about the characteristics of the
available frameworks. Consequently, an organic compiler has
four inputs: The DNN A , specified in a community standard
as e.g. ONNX [19], the targeted performance and resource
constraints B , the description of the targeted devices E , and
the available specialist frameworks as library D .

The flow starts 1 with the import of the DNN and the
execution of straightforward optimizations, such as constant
folding, dead code elimination or operator fusion. Also, an
AST of the DNN is built. In parallel, the library of specialist
DNN-to-FPGA frameworks D and the library of available
target platforms E are imported 2 and prepared for the
DSE using the evaluation criterion developed in the previous
section iterations

s C . In the next step 3 , the characterizations
of step 2 are then used to annotate the AST of the DNN
operation-wise using a roofline-like analysis (cf. Figure 3), to-
gether with the library of available platform characterizations.

Afterwards, having a detailed AST annotation, the DSE
phase starts with partitioning the DNN 4 , if required by the
size or throughput requirements of the DNN. The partitioning
is based on the roofline-analysis (see Figure 3) and bandwidth-
analysis (see Figure 4). Next, based on an updated roofline
analysis and the estimated latencies between nodes, high-level
architectural decisions are made 5 . Foremost, this decision
involves to decide if weights of the operations of the DNN
can be stored in an off-chip memory or if it has to stay
on-chip, because the available bandwidth would not allow

model import
high-level optimization

partitioning

architectural template
decision

framework decision

device decision
glue-logic estimation

communication decision
glue logic generation

component generation
system integration

executables &
runtime
for each node

roofline analysis
AST annotation

framework import
framework characterization

synthesis / place & route
(per node, partial bitstream)

insights to users

target_constraints.json

contributions by
this research

FPGA platform A
characterization1

3

2
4

5

6

7

8

9

framework A
type: engine

framework B
type: streaming

....D
N

N
-to

-F
P

G
A

fra

m
ew

or
k

lib
ra

ry
ta

rg
et

 p
la

tfo
rm

de
sc

rip
tio

n
lib

ra
ry

FPGA platform B
characterization

unified
evaluation
criterion

contributions by
our previous
research

D

C

E

A B

F

Fig. 5. Flow of an organic compilation to (distributed) FPGAs.

to load them fast enough (cf. [20]). Also, the best available
specialist framework that can implement the decided micro-
architecture with the derived performance requirements is
selected. Next 6 , if multiple target devices are available,
the best candidates are selected in this step. This step also
includes to calculate the resources necessary for the “glue
logic” between the selected accelerator blocks. Here, it could
be that this glue logic consumes more resources that are left
on some devices. In that case, this result is annotated and the
compiler continues with another partition step. After a valid
solution is found, or in case the compiler fails to find one,
the user is informed about the resulting performance, resource
footprints, and potential bottlenecks F . As seventh step 7 ,
the details of the communication between FPGA nodes are de-
cided, if the solution consists of multiple nodes. This involves
finding the best synchronization pattern and deciding the type
of serialization of multi-dimensional tensors. These decisions
influence the latency between FPGA nodes only minimally,
since they are all implemented in a data-flow architecture as
part of the network stack of the FPGA logic [48], [49]. For
the inter-node communication, DOSA builds on the ZRLMPI
framework [50], [51]. This framework provides FPGA cores
and CPU software to synchronize FPGA and CPU nodes
at run-time by implementing a subset of the MPI standard.
Therefore, DOSA instantiates the necessary Message Passing
Engines from the ZLRMPI framework and connects them to
the accelerator cores within the FPGA node. Additionally, this
network adapter core has the communication plan of the node
as table. This communication plan is generated by DOSA and
applies all parallelizations that were inserted by the DSE, i.e.
horizontal and vertical model parallelism and data parallelism.
Here, also the abstraction level of the OSA helps, since the
communication pattern of the operations can be derived in a
straightforward way at this IR level (cf. Figure 2). For non-byte
aligned data-types, on top of ZRLMPI, DOSA can leverage
the PHRYCTORIA framework as a messaging system, which
supports dynamically-adapted mixed-precision workloads for
transprecision [52]. Lastly, the network streams and memory

TABLE II
DNN-TO-FPGA FRAMEWORKS: PRODUCTIVITY ANALYSIS.

Framework
supports
ONNX
import

supports
distrib.
FPGAs

manual
scheduling or
partitioning

required

automated
deployment

DOSA
(this research) yes yes no yes
AIgean [23] no yes no no
hls4ml [13], [21] yes no no no
haddoc2 [22]
req. legacy BVLC-Caffe no no no no
Brevitas + FINN
[8], [9], [53] no (up to 2)

[54] partly partly

VitisAI [55] no no depends on
the model partly

TABLE III
EXAMPLE TOPOLOGIES FOR EVALUATION (ALL USING 8BIT WEIGHTS).

Task Network
topology # Conv. # Dense Parameter

(KB)
Jet Tagging CERN 3 layer 0 4 4.4

Hand Gestures MPCNN 3 2 70.3

MNIST TFC 0 4 59.2
LeNet-5 3 2 32.6

CIFAR-10 PTTDNN 3 2 32.6

buses are connected to the corresponding interfaces offered by
the Shell of the selected target platforms (cf. [49], [51]).

Finally, if all decisions are made, the specialist frameworks
are called to generate the desired building blocks 8 . Addition-
ally, the HDL of the glue logic is emitted, and all components
are integrated into top-level HDL design files. This step
includes the generation of the corresponding software run-time
environment to manage the resulting cluster of FPGAs. As
last step 9 , synthesis, place and route is executed per FPGA
node. In this work, the presented DSE phase assumes that the
weights of the input topology are already quantized. While an
automated optimization of different data-types throughout the
DNN topology would be feasible and sometimes necessary [7],
[24], [26], [56], [57], it is out of scope for this research.

IV. EVALUATION

In this Section we evaluate and quantify the benefits of
DOSA. We start by comparing the productivity-gains of DOSA
in contrast to existing frameworks. Second, we evaluate the
coverage of a model zoo by different OSGs and their com-
bination. Third, we analyze the DSE on the basis of multiple
DNNs. Lastly, we demonstrate the use of DOSA to deploy an
AI inference application across multiple FPGAs.

A. Productivity
One of our main goals is lowering the barrier for the

deployment of FPGAs by non-FPGA experts. We measure our
progress by comparing our developed tool with other DNN-
to-FPGA tools offered by academia and industry in Table II.
DOSA has a simple command line interface to automatically
compile, build and deploy a DNN on a heterogeneous, dis-
tributed cluster. Due to the roofline, bandwidth, parameter, and
device-compatibility analysis of DOSA, the scheduling and
partitioning is possible completely without any involvement of
the user. Alternative frameworks like FINN or VitisAI require
the user to program in python, C++, and HLS to adapt the
accelerator to the user’s needs. Hence, without DOSA, a user
who wants to deploy such a DNN is required to manually
identify which part is supported by which framework, partition
the DNN, generate the partial designs, and — depending on
the framework — write the necessary glue logic manually.
DOSA automates this completely and creates required build
and deploy scripts. Furthermore, DOSA supports the very pop-
ular community standard ONNX. Table II summarizes some
important features that aid user’s productivity. In summary,
DOSA improves the productivity of the user significantly and
offers better coverage of ONNX than comparable frameworks.

TABLE IV
OPERATION COVERAGE OF DIFFERENT DNN-TO-FPGA FRAMEWORKS.

Example
Operation coverage of individual frameworks

haddoc2 hls4ml TIPS
DOSA

(the combination,
this research)

CERN 3 layer 0.27 1.0 1.0 1.0
MPCNN 0.76 0.82 0.52 1.0
TFC 0.27 1.0 0.90 1.0
LeNet-5 0.76 0.88 0.58 1.0
PTTDNN 0.81 0.81 0.19 1.0

TABLE V
RESULTS OF DOSA DSE

Example Number of
FPGA nodes

Predicted
throughput

(iops)
DSE time

(s)
CERN 3 layer 1 78,397.17 0.89

MPCNN 15 9,945.26 0.11
TFC 1 6,399.77 0.78

LeNet-5 18 5,066.91 0.20
PTTDNN 9 17,421.59 0.08

B. Coverage of DNN Operations by Combining Frameworks
The key motivation behind developing DOSA was to be able

to combine different specialist DNN-to-FPGA frameworks and
leverage this existing expertise. We observed that most of the
frameworks support only a very narrow set of DNNs, espe-
cially academic tools like haddoc2, hls4ml or TIPS [20]. For
example, the PTTDNN, which is discussed in Section IV-D,
can’t be implemented by either haddoc2 nor hls4ml alone,
since both do not support all necessary operations. To quantify
this observation, Table IV shows the share of operations that
can be implemented by each framework for a number of
DNNs. The DNN topologies and their application areas are
specified in Table III. The combination of these specialist
frameworks by DOSA can cover all necessary operations, as
is shown in the last column of Table IV. Hence, DOSA does
not only improve the productivity, but significantly increase
the topologies that can be implemented on FPGAs.

C. DOSA Design-Space Exploration
The primary use-case for DOSA are high-throughput or low-

latency inference applications, potentially in a heterogeneous
edge environment (cf. Figure 1). Therefore, we evaluated the
generated architectures for a number of topologies for this
application domain (cf. examples in Section I-A). For each
of these DNNs, DOSA was invoked to generate a distributed
FPGA design with the goal to achieve at least 5000 iops
(inference-operations per second). After determining the min-
imum number of FPGAs required to achieve the performance
goal, DOSA maximizes the throughput by fully utilizing the
FPGA nodes, even if this exceeds the performance goal. The
results of this analysis are printed in Table V. In all cases, the
performance goal is achieved. Additionally, the DSE including
the generation of all FPGA designs, build scripts, and software
run-time environment, takes less than 1 s, which is significantly
faster then related state of the art (cf. [54]).

D. Using DOSA for High-throughput Low-latency Inference
Finally, we demonstrate DOSA end-to-end with one DNN

for classification of the CIFAR-10 data set using the PTTDNN
topology (PyTorch Tutorial DNN, based on [58], see Ta-
ble III) and use this application to discuss all aspects of the
DSE for partitioned DNNs in depth. Figure 6 shows how
the CIFAR-10 DNN is partitioned across nine FPGAs. We
use the IBM∗∗ cloudFPGA platform [48], [49], [59], [60]
as testbed for distributed edge FPGA environments. This
platform consists of disaggregated Kintex KU060 FPGAs
(xcku060-ffva1156-2-i), each with a direct 10 GbE
network attachment. The Shell of the FPGAs consumes ap-
proximately 50 % of the total FPGA. Hence the part that is
available for use by DOSA are up to 40 % of the resources

1×3×32×32 1×10

input_0
Conv

W〈6×3×5×5〉
B〈6〉

Relu MaxPool
Conv

W〈16×6×5×5〉
B〈16〉

Relu MaxPool
Conv

W〈32×16×3×3〉
B〈32〉

Relu Flatten
Gemm

B〈84×288〉
C〈84〉

Relu
Gemm

B〈10×84〉
C〈10〉

output_0

CPU client

(entry & exit)

FPGAFPGA FPGA FPGAFPGA

Pipeline stages: 1 2 3 4 5
Used frameworks: haddoc2 (streaming) haddoc2 haddoc2 haddoc2 hls4ml (streaming)

Fig. 6. One example of a DNN spread (PTTDNN) across 9 FPGAs. The CPU client just performs send and receive calls.

TABLE VI
RESULTS OF THE PTTDNN INFERENCE SERVICE ON THREE PLATFORMS.

Devices
Measured

throughput
(iops)

End-to-end
latency

(ms)

Average
power
(W)

Total
energy
per inf.

(J)
9x KU060 FPGAs (156 MHz) 3,853.25∗ 0.259 77.31 0.020
1x Xeon E5-2630 (2.4 GHz) 73.38 13.627 123.69 1.686
1x Tesla K40c (745 MHz) 211.81 4.721 129.51 0.676
∗: Limited by the single-socket CPU client.

of a Kintex KU060, since a target resource utilization >90 %
lead to routing or timing failures. To compare the inference
service offered by standalone FPGAs with CPUs, we deployed
PTTDNN using pytorch on an Intel‡ Xeon E5-2630 v3 CPU
with 8 cores and 126 GB memory running Ubuntu 20.04.
We also measured the same service using a Nvidia Tesla
K40c (GK180GL). We have selected devices of comparable
technology nodes (CPU 22 nm, FPGA 20 nm, GPU 28 nm).
Since more and more embedded and edge components are
connected via the standard “internet stack” TCP/UDP/IP [11],
[12], [18], we use integrated network interfaces for inter-FPGA
communication and the connection to the services, which send
the source data and collect the results. The batch size for all
experiments was set to one as demanded by the low-latency
inference applications described in Section I-A, e.g. for an
industrial vision classification. The CPU client is not counted
towards the power consumption in all cases. The results of our
experiments are shown in Table VI.

First, this example shows the value of DOSA, because this
frameworks enables multi-FPGA inference with “one click”.
The partitioning across FPGAs, glue logic writing, commu-
nication implementation, and software run-time generation is
completely automated. We estimate that an experienced FPGA
developer would require roughly one or two months to perform
the same tasks manually with the current flows available, as
shown in Section II. Next, the results in Table VI exhibit the
potential of disaggregated network-attached FPGAs for low
latency classification applications. The inference requests to
the DNN distributed across nine FPGAs are served within
0.3 ms, 52 times faster compared with a CPU-based service,
and 18 times faster compared with the GPU. Likewise, the
FPGAs are at least 84 times more energy efficient compared
to the CPU and at least 30 times more energy efficient than
a GPU. This highlights also the advantage of disaggregation,
since the GPU alone would consume roughly 19 W but needs
a CPU attached to respond to network requests or to connect
with other data sources. Furthermore, the throughput of the
nine FPGA example in Figure 6 is close to 4000 iops, with
the measured peak throughput of the slowest pipeline stage
(stage 5 in the figure) at 17,970 iops. This exceeds the required
5000 iops by far and highlights the fact that performance
and resource consumption are not correlated linearly. For
example, a design for PTTDNN with a performance goal less
than 1000 iops would require only one FPGA. To achieve
such a high throughput, the DNN is completely implemented
with streaming architectures, i.e. haddoc2 and hls4ml. Despite
the all-streaming architecture, the advantage of combining
different operators can be seen here as well: The first layers,

i.e. pipeline stages 1 – 4 in Figure 6, are implemented without
any reuse using the haddoc2 framework, i.e. every weight has
a dedicated multiplication or addition circuit. Consequently,
the network must be partitioned across nine FPGAs, despite
the relatively small number of parameters. The scheduling of
only one max pooling operation on FPGA of pipeline stage
3 in Figure 6 appears to be sub-optimal, but this operation
can’t be added to the FPGAs of stage 2 or 4, since they are
fully consumed by the convolutional operations. Hence, DOSA
would select larger FPGAs for this stages, but those aren’t
available in our current testbed. The last layer is implemented
using hls4ml with a reuse factor of 32. This results in lower
throughput, which is still sufficient due to the lower required
bandwidth at the end of the DNN (cf. Figure 4). Additionally,
haddoc2 can’t implement dense operations while hls4ml would
consume a lot more resources for the same convolutions. As
seen, combining two different OSGs results is a more efficient
solution.

V. CONCLUSION

Boosting the adoption of FPGAs for AI requires an organic
compiler ecosystem that offers holistic solutions for a wide
range of neural networks and are usable by non-FPGA experts.
Once FPGAs are accessible to a growing community, their
flexibility will mitigate performance bottlenecks, their low
and predictable latency enables new edge applications, and
their energy efficiency decreases the energy-footprint of AI
applications. To achieve this goal, we propose and implement
an organic compiler combined with the concept of Opera-
tion Set Architectures. This allows us to combine a large
number of existing, but narrow, DNN-to-FPGA frameworks.
Furthermore, the demonstrated one-click open-source organic
compiler DOSA does not only increase the scope of potential
solutions, it also increases the efficiency and is able to dis-
tribute large DNNs across many FPGAs automatically. Our
results for a low latency DNN inference service on multiple
FPGAs reveal a speedup of 18 and 84 times, and an energy
efficiency-increase of 30 and 52 times compared to a GPU and
CPU, respectively. We hope that our research showcases the
advantage of combining specialized — yet restricted —- DNN-
to-FPGA frameworks into one organic compiler, using the
presented notion of Operation Set Architectures and Operation
Set Generators and helps to lower the barrier for a wider
deployment of FPGAs for AI.

ACKNOWLEDGMENTS
This work is partially funded by the EU Horizon 2020 Programme under

grant agreement No 957269 (EVEREST). We would also like to thank our
former colleague Mitra Purandare for her feedback in the early phase of the
project and for picking the acronym DOSA.

NOTICES
‡ Intel, Intel logo, and Intel Xeon are trademarks or registered trademarks

of Intel Corporation or its subsidiaries in the United States and other
countries.

** IBM and the IBM logo are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on ibm.com/trademark.

https://ibm.com/trademark

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age
for computer architecture,” Communication of the ACM, Jan.
2019. DOI: 10.1145/3282307.

[2] D. Amodei et al. (2018). “Ai and compute.” https : / / blog .
openai.com/aiand-compute, visited on 2022-05-19.

[3] A. Cohen et al., “Inter-Disciplinary Research Challenges in
Computer Systems for the 2020s,” 2018.

[4] M. G. S. Murshed et al., “Machine learning at the network
edge: A survey,” ACM Comput. Surv., Oct. 2021. DOI: 10 .
1145/3469029.

[5] X. Wang et al., “Convergence of edge computing and deep
learning: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, Secondquarter 2020. DOI: 10 . 1109 /
COMST.2020.2970550.

[6] J. Fowers et al., “A configurable cloud-Scale DNN processor
for real-Time AI,” Proceedings - International Symposium on
Computer Architecture, 2018. DOI: 10 . 1109 / ISCA . 2018 .
00012.

[7] M. Blott et al., “FINN-R: An End-to-End Deep-Learning
Framework for Fast Exploration of Quantized Neural Net-
works,” ACM Trans. Reconfigurable Technol. Syst., Dec. 2018.
DOI: 10 . 1145 / 3242897. arXiv: http : / / arxiv. org / abs / 1809 .
04570v1 [cs.AR].

[8] Y. Umuroglu et al., “LogicNets: Co-Designed Neural Net-
works and Circuits for Extreme-Throughput Applications,” in
Proceedings of the 30th IEEE International Conference on
Field-Programmable Logic and Applications (FPL), Gothen-
burg, Sweden: IEEE, 2020. DOI: 10.1109/FPL50879.2020.
00055.

[9] Y. Umuroglu et al., “FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17, Monterey, Cal-
ifornia, USA: Association for Computing Machinery, 2017.
DOI: 10.1145/3020078.3021744. eprint: 1612.07119.

[10] S. Hooker, “The hardware lottery,” Commun. ACM, Nov.
2021. DOI: 10.1145/3467017.

[11] B. Weiss et al., “A power-efficient wireless sensor network
for continuously monitoring seismic vibrations,” in 2011 8th

Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, Jun. 2011.
DOI: 10.1109/SAHCN.2011.5984921.

[12] S. Brigas et al., “A Novel Design And Implementation Of A
Wireless Sensor Network Aimed At Monitoring The Vibra-
tions Produced By Oil
& Gas Activities,” ser. Offshore Mediterranean Conference
and Exhibition, OMC-2011-115, Mar. 2011. eprint: https :
/ / onepetro . org / OMCONF / proceedings - pdf / OMC11 / All -
OMC11/OMC-2011-115/1684977/omc-2011-115.pdf.

[13] J. Duarte et al., “Fpga-accelerated machine learning inference
as a service for particle physics computing,” Computing and
Software for Big Science, 2019.

[14] A. M. Deiana et al., Applications and techniques for fast
machine learning in science, 2021. arXiv: 2110 . 13041
[cs.LG].

[15] R. Herbst et al., “Implementation of a framework for deploy-
ing ai inference engines in fpgas,” in Accelerating Science and
Engineering Discoveries Through Integrated Research Infras-
tructure for Experiment, Big Data, Modeling and Simulation,
K. Doug et al., Eds., Cham: Springer Nature Switzerland,
2022.

[16] T. Lieske et al., “Dataflow optimization for programmable
embedded image preprocessing accelerators,” in 2016 Interna-
tional Conference on ReConFigurable Computing and FPGAs
(ReConFig), Nov. 2016. DOI: 10 . 1109 / ReConFig . 2016 .
7857161.

[17] F. Jentzsch et al., “Radioml meets finn: Enabling future rf
applications with fpga streaming architectures,” IEEE Micro,
Nov. 2022. DOI: 10.1109/MM.2022.3202091.

[18] J. Duarte et al., “Fast inference of deep neural networks
in FPGAs for particle physics,” Journal of Instrumentation,

2018. DOI: 10.1088/1748-0221/13/07/P07027. arXiv: 1804.
06913.

[19] The Linux Foundation. (2022). “Open Neural Network Ex-
change (ONNX).” https://onnx.ai, visited on 2022-03-18.

[20] B. Ringlein et al., “Advancing Compilation of DNNs for
FPGAs using Operation Set Architectures,” IEEE Computer
Architecture Letters, Jan. 2023. DOI: 10 . 1109 / LCA . 2022 .
3227643.

[21] Fast Machine Learning Lab / hls4ml community. (2022).
“hls4ml.” https://fastmachinelearning.org/hls4ml/, visited on
2022-03-18.

[22] K. Abdelouahab et al., “Tactics to directly map cnn graphs
on embedded fpgas,” IEEE Embedded Systems Letters, Dec.
2017. DOI: 10.1109/LES.2017.2743247. eprint: http://arxiv.
org/abs/1712.04322v1.

[23] N. Tarafdar et al., “Aigean: An open framework for deploying
machine learning on heterogeneous clusters,” ACM Trans.
Reconfigurable Technol. Syst., Dec. 2022. DOI: 10 . 1145 /
3482854.

[24] J. Ney et al., “HALF: Holistic Auto Machine Learning
for FPGAs,” in Proceedings of the 31st IEEE International
Conference on Field-Programmable Logic and Applications
(FPL), Virtual (Dresden, Germany): IEEE, 2021. DOI: 10 .
1109/FPL53798.2021.00069.

[25] A. Montgomerie-Corcoran, Z. Yu, and C.-S. Bouganis,
“SAMO: Optimised Mapping of Convolutional Neural Net-
works to Streaming Architectures,” in Proceedings of the 32st

IEEE International Conference on Field-Programmable Logic
and Applications (FPL), Belfast, United Kingdom: IEEE,
2022. DOI: 10.1109/FPL57034.2022.00069.

[26] M. Blott, “Benchmarking neural networks on heterogeneous
hardware,” Ph.D. dissertation, Trinity College, 2021.

[27] T. Moreau et al., “A hardware–software blueprint for flexible
deep learning specialization,” IEEE Micro, Sep. 2019. DOI:
10.1109/MM.2019.2928962. arXiv: http://arxiv.org/abs/1807.
04188v3 [cs.LG].

[28] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for
mapping convolutional neural networks on fpgas: A survey
and future directions,” ACM Comput. Surv., Jun. 2018. DOI:
10.1145/3186332.

[29] K. Guo et al., “[DL] A survey of fpga-based neural network
inference accelerators,” ACM Trans. Reconfigurable Technol.
Syst., 2019. DOI: 10.1145/3289185.

[30] M. Schneider et al., “Ecba-mli: Edge computing benchmark
architecture for machine learning inference,” in 2022 IEEE
International Conference on Edge Computing and Communi-
cations (EDGE), Jul. 2022. DOI: 10.1109/EDGE55608.2022.
00016.

[31] J. Roesch et al., “Relay: A new IR for machine learning
frameworks,” in Proceedings of the 2Nd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Programming
Languages, ser. MAPL 2018, Philadelphia, PA, USA: ACM,
2018. DOI: 10.1145/3211346.3211348.

[32] The ONNX community. (2022). “Open Neural Network Ex-
change Intermediate Representation (ONNX IR) Specifica-
tion.” https://github.com/onnx/onnx/blob/main/docs/IR.md,
visited on 2022-03-18.

[33] The MLIR/LLVM community. (2022). “Multi-Level IR Com-
piler Framework.” https://mlir.llvm.org, visited on 2022-05-
31.

[34] C. Lattner et al., “Mlir: Scaling compiler infrastructure for do-
main specific computation,” in 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO),
Feb. 2021. DOI: 10.1109/CGO51591.2021.9370308.

[35] The MLIR/LLVM community. (2022). “The Torch-MLIR
Project.” https://github.com/llvm/torch-mlir, visited on 2022-
12-21.

[36] ——, (2022). “Tensor Operator Set Architecture (TOSA)
Dialect.” https://mlir.llvm.org/docs/Dialects/TOSA/, visited
on 2022-12-21.

[37] K. Majumder and U. Bondhugula, “Hir: An mlir-based inter-
mediate representation for hardware accelerator description,”
arXiv preprint arXiv:2103.00194, 2021. DOI: 10 . 48550 /
ARXIV.2103.00194. eprint: https://arxiv.org/abs/2103.00194.

https://doi.org/10.1145/3282307
https://blog. openai. com/aiand-compute
https://blog. openai. com/aiand-compute
https://doi.org/10.1145/3469029
https://doi.org/10.1145/3469029
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1145/3242897
https://arxiv.org/abs/http://arxiv.org/abs/1809.04570v1
https://arxiv.org/abs/http://arxiv.org/abs/1809.04570v1
https://doi.org/10.1109/FPL50879.2020.00055
https://doi.org/10.1109/FPL50879.2020.00055
https://doi.org/10.1145/3020078.3021744
1612.07119
https://doi.org/10.1145/3467017
https://doi.org/10.1109/SAHCN.2011.5984921
https://onepetro.org/OMCONF/proceedings-pdf/OMC11/All-OMC11/OMC-2011-115/1684977/omc-2011-115.pdf
https://onepetro.org/OMCONF/proceedings-pdf/OMC11/All-OMC11/OMC-2011-115/1684977/omc-2011-115.pdf
https://onepetro.org/OMCONF/proceedings-pdf/OMC11/All-OMC11/OMC-2011-115/1684977/omc-2011-115.pdf
https://arxiv.org/abs/2110.13041
https://arxiv.org/abs/2110.13041
https://doi.org/10.1109/ReConFig.2016.7857161
https://doi.org/10.1109/ReConFig.2016.7857161
https://doi.org/10.1109/MM.2022.3202091
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/1804.06913
https://onnx.ai
https://doi.org/10.1109/LCA.2022.3227643
https://doi.org/10.1109/LCA.2022.3227643
https://fastmachinelearning.org/hls4ml/
https://doi.org/10.1109/LES.2017.2743247
http://arxiv.org/abs/1712.04322v1
http://arxiv.org/abs/1712.04322v1
https://doi.org/10.1145/3482854
https://doi.org/10.1145/3482854
https://doi.org/10.1109/FPL53798.2021.00069
https://doi.org/10.1109/FPL53798.2021.00069
https://doi.org/10.1109/FPL57034.2022.00069
https://doi.org/10.1109/MM.2019.2928962
https://arxiv.org/abs/http://arxiv.org/abs/1807.04188v3
https://arxiv.org/abs/http://arxiv.org/abs/1807.04188v3
https://doi.org/10.1145/3186332
https://doi.org/10.1145/3289185
https://doi.org/10.1109/EDGE55608.2022.00016
https://doi.org/10.1109/EDGE55608.2022.00016
https://doi.org/10.1145/3211346.3211348
https://github.com/onnx/onnx/blob/main/docs/IR.md
https://mlir.llvm.org
https://doi.org/10.1109/CGO51591.2021.9370308
https://github.com/llvm/torch-mlir
https://mlir.llvm.org/docs/Dialects/TOSA/
https://doi.org/10.48550/ARXIV.2103.00194
https://doi.org/10.48550/ARXIV.2103.00194
https://arxiv.org/abs/2103.00194

[38] W. Niu et al., “Dnnfusion: Accelerating deep neural networks
execution with advanced operator fusion,” in Proceedings of
the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, ser. PLDI
2021, Virtual, Canada: Association for Computing Machinery,
2021. DOI: 10.1145/3453483.3454083.

[39] R. Zhao and J. Cheng, “Phism: Polyhedral high-level synthesis
in mlir — (work in progress),” Workshop on Languages, Tools,
and Techniques for Accelerator Design, 2021.

[40] B. Ringlein, “Mapping of a Machine Learning Algorithm
Representation to Distributed Disaggregated FPGAs,” Ph.D.
dissertation, Technische Fakultät der Friedrich-Alexander-
Universität Erlangen-Nürnberg, Erlangen, 2022. DOI: 10 .
5281/zenodo.7957659.

[41] Xilinx Inc. (2016). “UltraScale FPGA Product Tables and
Product Selection Guide (XMP102).” https://docs.xilinx.com/
v/u/en-US/ultrascale-fpga-product-selection-guide retreived
on 2022-05-31.

[42] E. Calore and S. F. Schifano, “Performance assessment of
fpgas as hpc accelerators using the fpga empirical roofline,”
in 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL), Aug. 2021. DOI: 10 . 1109 /
FPL53798.2021.00022.

[43] M. Parker, “Understanding peak floating-point performance
claims,” Tech. Rep., 2014.

[44] A. Ivanov et al., “Data movement is all you need: A case
study on optimizing transformers,” in Proceedings of Machine
Learning and Systems, A. Smola, A. Dimakis, and I. Stoica,
Eds., 2021.

[45] Xilinx Inc. (2022). “Performance and Resource Utilization for
Adder/Subtracter v12.0.” https://www.xilinx.com/htmldocs/
ip_docs/pru_files/c-addsub.html#kintexu retreived on 2022-
05-31.

[46] ——, (2022). “Performance and Resource Utilization for
Multiplier v12.0.” https://www.xilinx.com/htmldocs/ip_docs/
pru_files/mult-gen.html#kintexu retreived on 2022-05-31.

[47] ——, (2022). “Performance and Resource Utilization for
Floating-point v7.1.” https://www.xilinx.com/htmldocs/ip_
docs/pru_files/floating-point.html#kintexu retreived on 2022-
05-31.

[48] B. Ringlein et al., “System architecture for network-attached
fpgas in the cloud using partial reconfiguration,” in 2019 29th

International Conference on Field Programmable Logic and
Applications (FPL), Barcelona, Spain: IEEE, 2019. DOI: 10.
1109/FPL.2019.00054.

[49] B. Ringlein et al., “A Case for Function-as-a-Service with
Disaggregated FPGAs,” in Proceedings of the 2021 IEEE
14th International Conference on Cloud Computing (CLOUD
2021), Virtual Conference: IEEE, Sep. 2021. DOI: 10.1109/
CLOUD53861.2021.00047.

[50] B. Ringlein et al., “ZRLMPI: A Unified Programming
Model for Reconfigurable Heterogeneous Computing Clus-
ters,” in 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
Fayetteville, Arkansas: IEEE, May 2020. DOI: 10 . 1109 /
FCCM48280.2020.00051.

[51] ——, “Programming Reconfigurable Heterogeneous Com-
puting Clusters Using MPI With Transpilation,” in 2020
IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC), IEEE, Nov.
2020. DOI: 10.1109/H2RC51942.2020.00006.

[52] D. Diamantopoulos et al., “Phryctoria: A messaging system
for transprecision opencapi-attached fpga accelerators,” in
2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2020. DOI: 10 . 1109 /
IPDPSW50202.2020.00023.

[53] A. Pappalardo. (2023). “Xilinx/brevitas.” https://github.com/
Xilinx/brevitas, visited on 2023-03-02.

[54] T. Alonso et al., “Elastic-df: Scaling performance of dnn
inference in fpga clouds through automatic partitioning,” ACM
Trans. Reconfigurable Technol. Syst., Dec. 2021. DOI: 10 .
1145/3470567.

[55] Xilinx Inc. (2021). “Vitis AI User Documentation.” https://
www.xilinx.com/html_docs/vitis_ai/1_4/index.html, visited
on 2021-07-04.

[56] A. Gholami et al., “A survey of quantization methods for
efficient neural network inference,” Mar. 2021. arXiv: 2103.
13630 [cs.CV].

[57] A. Pappalardo et al., “Qonnx: Representing arbitrary-precision
quantized neural networks,” Jun. 2022. arXiv: 2206 . 07527
[cs.LG].

[58] PyTorch community, Deep Learning with PyTorch: A 60
Minute Blitz — Training a Classifier, https : / / pytorch . org /
tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu
[Last accessed: October 19, 2022], 2022.

[59] F. Abel et al., “An FPGA platform for hyperscalers,” Pro-
ceedings - 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects, HOTI 2017, 2017. DOI: 10.1109/
HOTI.2017.13.

[60] F. Abel et al. (2022). “The cloudFPGA Development Kit.”
https://github.com/cloudFPGA, visited on 2022-03-18.

https://doi.org/10.1145/3453483.3454083
https://doi.org/10.5281/zenodo.7957659
https://doi.org/10.5281/zenodo.7957659
https://docs.xilinx.com/v/u/en-US/ultrascale-fpga-product-selection-guide
https://docs.xilinx.com/v/u/en-US/ultrascale-fpga-product-selection-guide
https://doi.org/10.1109/FPL53798.2021.00022
https://doi.org/10.1109/FPL53798.2021.00022
https://www.xilinx.com/htmldocs/ip_docs/pru_files/c-addsub.html#kintexu
https://www.xilinx.com/htmldocs/ip_docs/pru_files/c-addsub.html#kintexu
https://www.xilinx.com/htmldocs/ip_docs/pru_files/mult-gen.html#kintexu
https://www.xilinx.com/htmldocs/ip_docs/pru_files/mult-gen.html#kintexu
https://www.xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html#kintexu
https://www.xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html#kintexu
https://doi.org/10.1109/FPL.2019.00054
https://doi.org/10.1109/FPL.2019.00054
https://doi.org/10.1109/CLOUD53861.2021.00047
https://doi.org/10.1109/CLOUD53861.2021.00047
https://doi.org/10.1109/FCCM48280.2020.00051
https://doi.org/10.1109/FCCM48280.2020.00051
https://doi.org/10.1109/H2RC51942.2020.00006
https://doi.org/10.1109/IPDPSW50202.2020.00023
https://doi.org/10.1109/IPDPSW50202.2020.00023
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/brevitas
https://doi.org/10.1145/3470567
https://doi.org/10.1145/3470567
https://www.xilinx.com/html_docs/vitis_ai/1_4/index.html
https://www.xilinx.com/html_docs/vitis_ai/1_4/index.html
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2206.07527
https://arxiv.org/abs/2206.07527
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu
https://doi.org/10.1109/HOTI.2017.13
https://doi.org/10.1109/HOTI.2017.13
https://github.com/cloudFPGA

