
SOFTWARE
ENGINEERING FOR

MACHINE LEARNING,
SOME FIRST

EXPERIENCES

Luciano Baresi
Politecnico di Milano
Milan (Italy)
luciano.baresi@polimi.it

LUCIANO BARESI

Professor @ DEIB
Visiting researcher/professor

University of Oregon (USA)
University of Paderborn (Germany)
Tongji University (China)

Research interests
Software engineering

Dynamic software architectures
Software engineering for ML
Self-adaptive systems
Mobile applications

https://baresi.faculty.polimi.it

CREDITS

Sam Guinea
Davide Yi Xian Hu
Giovanni Quattrocchi
Clément Quinton
Nicholas Rasi

Zoltán Ádám Mann
Andreas Metzger
Klaus Pohl

DISCLAIMER Artificial Intelligence vs
Machine Learning

DATA SCIENTIST VS SOFTWARE ENGINEER

Data scientist
 Is good at modelling techniques and feature engineering
 Is mainly focused on accuracy
 Uses notebooks or similar for prototyping
 Is not interested in model size, updateability, implementation stability

Software engineer
 Builds products
 Concerned about cost, performance, stability, safety, security, and release time
 Must scale solution and handle large amounts of data
 Maintains, evolves, and extends the product over long periods

by Christian Kaestner

NUMBER OF PUBLICATIONS

Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna
Maria Vollmer, Stefan Wagner: Software Engineering for AI-Based Systems: A Survey. ACM Trans. Softw. Eng.
Methodol. 31(2): 37e:1-37e:59 (2022)

AI-BASED SYSTEM PROPERTIES AND SE
APPROACHES

SCOPE OF RESEARCH

MAIN CHALLENGES FACED IN THE
DEVELOPMENT OF AI/ML SYSTEMS

Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbø, Tayana Conte: Software engineering for artificial
intelligence and machine learning software: A systematic literature review. CoRR abs/2011.03751 (2020)

SOME TAKEAWAYS

Empirical studies report AI software in various application domains,
with the main focus being Automotive, Finance, and Healthcare

Testing space for AI software is much larger, more heterogeneous and,
in many cases, it is difficult to formally define in comparison to
traditional software testing

AI development processes need to integrate infrastructures, processes
and tools for managing data as their integral parts

ML
… is everywhere

The talk is not about new ML algorithms and solutions

It is about what we did and what we are doing
 It is also a way to think of our work in terms of ML

ML SYSTEMS

They must offer predictions with given accuracy and precision

Usual requirements
 Response time is affected by resource allocation
 Computations can be executed on dedicated hardware (e.g., GPUs)
 Parallelization is not useful if data are not properly partitioned

New requirements
 Model quality also depends on the (hyper)-parameters of the learning algorithm
 Response time and quality are often correlated

 Fewer learning iterations allow for faster results but produce less accurate models

 Results depend on used data

TWO PHASES

Training
 Long-lasting batch activity (from several minutes to days)
 Based on dedicated frameworks (e.g., Spark, TensorFlow, PyTorch)
 Maximum time to complete a training process

Inference
 Interactive activity that exploits generated models
 Each computation lasts milliseconds or seconds
 Response time of multiple requests aggregated and constrained
 Quality of predictions cannot be easily computed

KNOWN LIMITATIONS (TRAINING)

Available frameworks do not support quality and time constraints on
carried out activities

Hyperparameters are defined at design time
 They must be carefully tuned to train the model efficiently and precisely

Data partitioning can accelerate the computation at the cost of more
synchronization among executors

Resource allocation is key to fulfill time-based requirements
 Proactive vs reactive solutions
 Executors must be able to govern heterogeneous hardware

KNOWN LIMITATIONS (INFERENCE)

ML frameworks lack support for the specification of quality and time
requirements

Dynamic resource allocation is mandatory when the incoming
workload fluctuates
 Requests must be scheduled to proper executors according to their hardware

capabilities and the state of the system

The quality of ML models at runtime cannot be directly monitored
 Uncertainty can help estimate it and understand when a model must be re-trained

HOW HAVE WE TACKLED
THESE ISSUES?

FSE 2016
TSE 2021
ICSOC 2021

From the original presentations by G. Quattrocchi

TWO ENABLERS

Containers (Docker)
 Fast actuation
 Precise actuation
 Better resource utilization

Control Theory*
 Fast decisions
 Precise decisions
 A priori guarantees

*In collaboration with Prof. Alberto Leva

DISTRIBUTED CONTROL OF CONTAINERS

One controller per container

Proportional-Integral (PI) controllers
 Next state computed in constant time

Workload split equally to container replicas
 No synchronization is required

VM 1

Container B

Container A

Container C (1)

C

C

C

VM 2

Container E

Container D

Container C (2)

C

C

C

SAME WORKLOAD
SAME SET-POINT

ARCHITECTURE

VM 1

DYNASPARK

DynaSpark extends Spark by introducing advanced and automated
resource management
 Vertical CPU scaling (CPU quotas)
 Resource contention among running applications
 Different strategies (e.g., Earliest Deadline First) to prioritize applications

Prototype deployed on MS Azure
 Precision (how close we reach the deadline)
 The closer it gets to a deadline the fewer resources are used

Precision > 98%

ROMA

A solution to manage scientific GPU-empowered interactive
applications
 Manages a cluster of heterogenous resources
 Targets interactive apps that can be accelerated with GPUs

GPUs are the preferred executors
 CPUs are used only if GPUs are not enough
 Evaluated on TensorFlow

DISPATCHER

Workload

VM 1
6 cores, 1 GPU

NODE MANAGER

Skyline Extractor

GoogleNet

Requests

GoogleNet

SkylineExtractor

LongestQueue

PI Controllers

GPU

CPU

VM N
10 cores, 2 GPU

NODE MANAGER

Skyline Extractor

PI Controllers CPU
Round RobinCPU

GoogleNet

EVALUATION

Prototype deployed on MS Azure

Metrics: number of violations and amount of used resources

Violations

Resources
32% fewer resources

on average

20 times fewer
on average

FEDERATED MACHINE LEARNING
AS A SELF-ADAPTIVE PROBLEM
SEAMS 2021

From the original presentation by G. Quattrocchi

HYPERFL

Federated (Machine) learning as a self-adaptive system

An extension to TensorFlow to allow a set of federated nodes to
cooperatively train an ML model under quality constraints
 Minimise Training Time
 Minimise Resource Consumption
 Maximise Model Quality (e.g., Accuracy)
 Minimize Used Bandwidth

MACHINE LEARNING

Clients send data to a centralized server (or a cluster of servers)
 A model is trained on the server
 Clients use the model to carry out inference

Problems
 Privacy: clients have to share private data
 Network overhead: all raw data must be sent to the server
PROBLEMS

FEDERATED MACHINE LEARNING (FEDML)

SERVER

CLIENTS

The centralised server initialises a
model with some weights

SERVER

CLIENTS

The model is sent to the clients

SERVER

CLIENTS

Each client performs an independent
iterative training using only local data

FEDERATED MACHINE LEARNING (FEDML)

SERVER

CLIENTS

When clients finish the local training
they send the updated weights (and no
data) to the server

SERVER

CLIENTS

The server aggregates the results and
computes a new model that is sent to all
clients

This process is repeated multiple times
(rounds)

MONITORING AND ANALYSIS

CPU/Memory consumption

Battery Level

Accuracy, Loss (calculated in a federated fashion)

Client training time

Total training time

Network overhead

PLANNING AND EXECUTION

Client Selection (server-side only)
 Decides which clients to involve in each round
 E.g., depending on availability, client resources

Data Selection (server/client side)
 Decides the size of the training dataset of each client at each round
 Decides the model weights that each client must send to server at each round

Workload and Resource Allocation (server/client side)
 Number of iterations (e.g., epochs) to be performed by each client at each round
 Resources to be used by each client at each round

FORMULATION

PROTOTYPE

GOAL: minimize resource consumption given a constraint on the
accuracy in a given number of rounds

Workload selection (number of iterations or epochs)
 Server-side planning
 Heuristic: linear and quadratic interpolation

PROTOTYPE

SETUP

We implemented the prototype in a custom simulation environment
 TensorFlow
 50 clients

Two real-world applications: MNIST and Fashion-MNIST
 115 experiments

RESULTS

APPLICATION: Fashion-MNIST

SETPOINT: Accuracy = 70% in 10 rounds

Linear Interpolation Quadratic Interpolation

CONCLUSIONS

FEDML systems call for self-adaptation

Control loops could be deployed in the centralized server and in the
federated clients

Initial results are promising

Future work
 Client selection
 Fine-grained client-side control
 Creation of a real FEDML framework (in progress)
 P2P FEDML (just initiated)

FELES: A FEDML SIMULATOR

DEEPNURSE

PROBLEM

Neural network accuracy decreases when dealing with data from
unknown domains (Out-Of-Distributions)

DEEPNURSE

Four-stage loop that automatically detects unknown domains and
adapts neural networks to them
 Uncertainty estimation
 Changepoint detector
 Style-guided data generation
 Weights adaptation

UNKNOWN DOMAIN DETECTION

Uncertainty estimation with Bayesian neural networks
 Deep Ensemble
 MonteCarlo dropout

Changepoint Detector
 Sliding window
 Kolmogorov-Smirnov two sample test

STYLE-GUIDED DATA GENERATION

ADAPTATION TO UNKNOWN DOMAINS

Weights adaptation
 Reset (Retraining from scratch)
 Partial (Retraining from trained model)
 Fine-tuning (Retraining only last layers)

Incremental learning
 Replay memory to avoid catastrophic forgetting

EXPERIMENTS

Three datasets

Classification
 Camelyon17 (Tumor Detection)
 Waterbirds (Bird Classification)

Regression
 Udacity* (Autonomous Driving)

*Custom collected dataset with 16 different driving scenarios

RESULTS

Eight different neural network architectures
 DenseNet, Resnet (classification)
 Dave-2, Epoch, Chauffeur (regression)

Results:
 Detected on average 81.0% of Unknown Domains
 Recovered 24.1% of the performance after adaptation

LET US FLIP THE PROBLEM

AI FOR SOFTWARE ENGINEERING

Everywhere

Think of a software engineering problem and you can conceive an AI-
based solution

Some examples
 Requirements management/elicitation
 Software design
 Test and analysis
 Software architecture
 Microservice/service/component composition
 Code repearing
 Code completion
 ….

FEATURE M O DEL -GUIDED O NL INE RE INFO RCEM ENT
LEARNING FO R SELF -ADAPT IVE SERV ICES

ICSOC 2020 (Best paper award)

From the original presentation by A. Metzger

SELF-ADAPTIVE SERVICE

Example: Self-adaptive online store

Monitor: Sudden increase in workload

Analyze: User-perceived latency too high

Plan: Deactivate optional feature “recommendation”

Execute: Replace “recommendations” with static banner

“DESIGN TIME” UNCERTAINTY

Infeasible to anticipate all future environment situations (e.g., QoS of
dynamically bound services)

Difficult to precisely determine the impact of adaptation actions on
QoS (e.g., exact QoS impact when adding a VM)

Simplifying assumptions (e.g., too much effort to explicitly codify all
details as knowledge)

Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute

System Logic

Environment

ONLINE REINFORCEMENT LEARNING (RL)

Learn suitable action selection policy via agent’s interactions with
environment

Agent receives reward for executing an action (here: adaptation
action)

Reward expresses how suitable action was (here: QoS satisfaction)

Update policy from reward signal = learn

Goal of RL: optimize cumulative rewards

Environment
Action at

State st

Reward rt+1
Policy

Update

Action
Selection

Next state st+1

Agent

ONLINE RL FOR SELF-ADAPTIVE SERVICES

Combining MAPE-K and RL [Palm et al., 2020]

Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute
Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute

Reinforcement Learning

at

rt+1

pt+1

Monitor Execute

Action -
Selection

Self - Adaptation Logic

Policy p
(Knowledge)

s t

Policy Update
s t+1

Reward

State Policy

Adaptation
Action

State

PROBLEM STATEMENT

Exploitation-exploration dilemma of RL [Sutton & Barto, 2018]
 Exploit existing knowledge vs explore new knowledge

How adaptation actions are explored impacts on learning
performance

Limitations of State of the Art in RL for self-adaptive services
 (1) Random exploration (e-greedy)

 Slow learning if large set of adaptation actions

 (2) Evolution-unaware exploration
 New adaptations explored with low probability and thus late

FEATURE MODELS

Feature model expresses system configurations in compact form

Concrete system configuration expressed as feature combination

Adaptation expressed as runtime reconfiguration

Web
Application

Data
Logging

Content
Discovery

Min Max

Medium

Search
Recommen-

dation

ü

ü ü ü

ü

Web
Application

Data
Logging

Content
Discovery

Min Max

Medium

Search
Recommen-

dation

ü

ü ü

ü

Nbr of Concurrent Users > 1000 à Adaptation

Mandatory

Optional

Alternative

ü Activated

Recommendation
ÞMax Ú Medium

Recommendation
ÞMax Ú Medium

û

EXPERIMENT SETUP

CloudRM – Self-adaptive Cloud Resource Management Service
 Feature Model (Defines 344 configurations = adaptation actions)
 Real-world workload trace

 10,000 tasks, 29 days

 Simulated Evolution of Adaptation Space

„Multiple“ Placement „Maxsize“
Placement

CloudRM Service

„Simple“
Placement

„Consolidation-
Friendly“

Placement

Task Group
Size k

Relative
Size µ

2 3 20… 0.25 0.3 1

Selection
Policy

FF BF WF

Selection
Metric

å Õ lenmax min imb

PM Selection
Policy

(same as for
„Maxsize“)

PM Selection
Metric

(same as for
„Maxsize“)

VM Selection
Policy

max min

VM Selection
Metric

(same as for
„Maxsize“)

0.5 0.6 0.9

Evolution step #1
Evolution step #2

Evolution step #3

Initial

(1) LARGE ADAPTATION SPACE

Asymptotic performance 0%
Time to threshold 48.6%
Jumpstart 1.3%
Total reward 58.8%

Energy savings 0.1%
Reduced VM migrations 7.8%

MAIN RESULTS

Exploiting structural knowledge from design time (feature models) to
guide online learning for self-adaptive services

Future enhancements
 Experiments with additional systems
 Comparison of other exploration strategies and RL algorithms
 Considering changes of existing features (on top of additions and removals)
 Methodology for defining suitable feature models during design time

CONCLUSIONS

Many different possible combinations
 Software engineering vs. Artificial Intelligent

More to come
 Almost any paper submitted to SE conferences embeds AI or ML
 It would be nice to know what the others think of it

Some ideas for the future
 Are we sure it is always the right way?
 Performance, quality, precision
 Ethical issues

THANK YOU !!!
(谢谢你)

luciano.baresi@polimi.it

WE ARE HIRING !!!

