SOFTWARE ENGINEERING FOR MACHINE LEARNING, SOME FIRST EXPERIENCES

Luciano Baresi Politecnico di Milano Milan (Italy) Iuciano.baresi@polimi.it

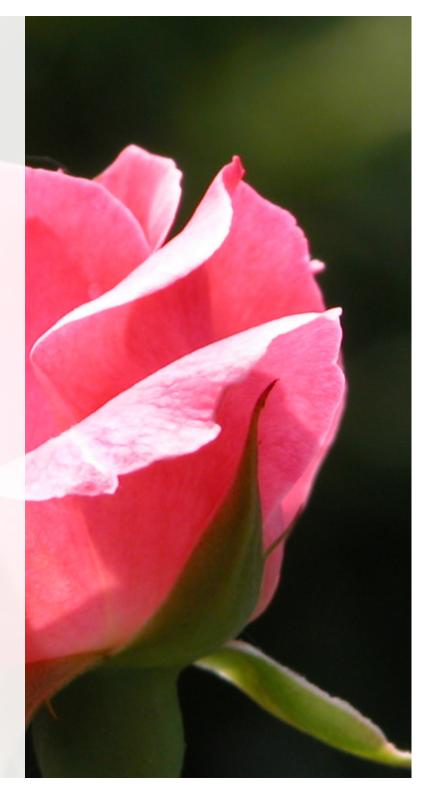
LUCIANO BARESI

Professor @ DEIB Visiting researcher/professor University of Oregon (USA) University of Paderborn (Germany) Tongji University (China) Research interests Software engineering Dynamic software architectures Software engineering for ML Self-adaptive systems Mobile applications

CREDITS

Sam Guinea Davide Yi Xian Hu Giovanni Quattrocchi Clément Quinton Nicholas Rasi

Zoltán Ádám Mann Andreas Metzger Klaus Pohl



DISCLAIMER

Artificial Intelligence vs Machine Learning

DATA SCIENTIST VS SOFTWARE ENGINEER

Data scientist

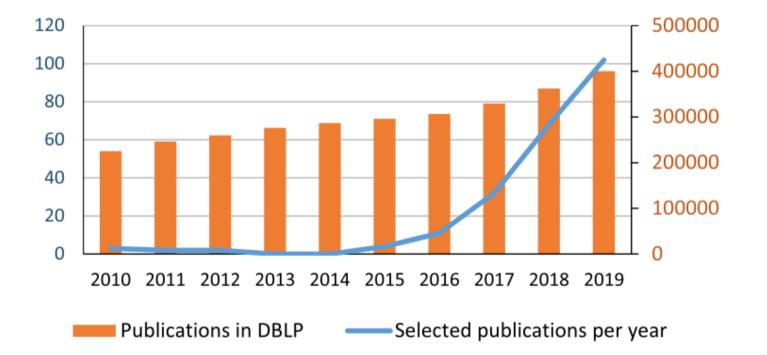
- Is good at modelling techniques and feature engineering
- Is mainly focused on accuracy
- Uses notebooks or similar for prototyping
- Is not interested in model size, updateability, implementation stability

Software engineer

- Builds products
- Concerned about cost, performance, stability, safety, security, and release time
- Must scale solution and handle large amounts of data
- Maintains, evolves, and extends the product over long periods

by Christian Kaestner

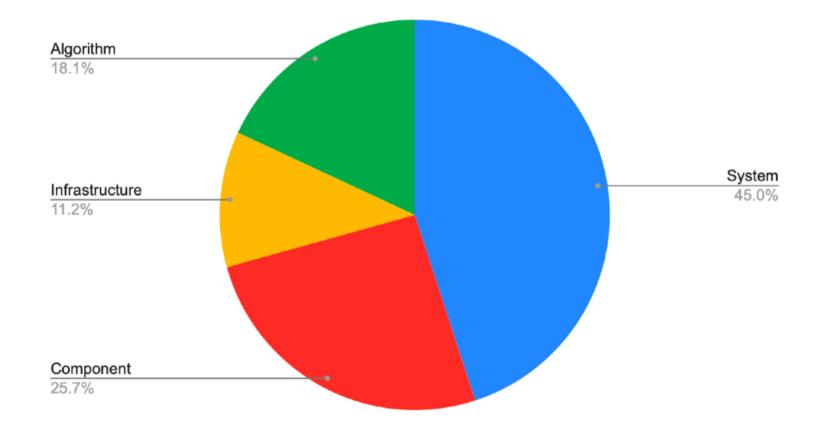
NUMBER OF PUBLICATIONS



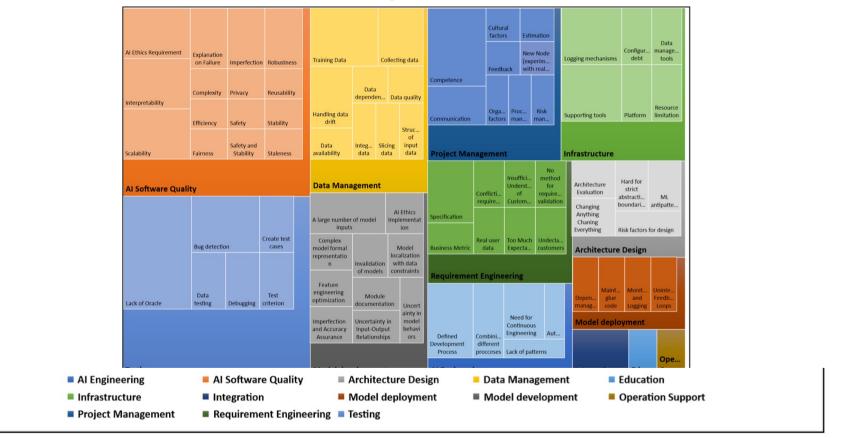
Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, Stefan Wagner: Software Engineering for Al-Based Systems: A Survey. ACM Trans. Softw. Eng. Methodol. 31(2): 37e:1-37e:59 (2022)

AI-BASED SYSTEM PROPERTIES AND SE APPROACHES

Study	Bibliometrics	AI-based systems properties	SE approaches	Challenges
[134]	101 studies (2005–2018)	safety, correctness	practices for the evaluation and improvement of the software quality of ML applications	ML quality assurance
[211]	38 studies (2008–2019)		33 unique architecture and design patterns for ML systems	
[23]	64 studies (2002–2007, 2013–2016)	safety, robustness, reliability	verification and validation techniques for safety-critical automotive systems	verification and validation in DNNs
[27]	37 studies (2012–2018)	correctness	testing practices	18 challenges organized in 6 dimensions: implementation issues, data issues, model issues, written code issues, execution environment issues, mathematical design issues
[166]	70 studies (2004-2019)	fairness, accuracy, safety, consistency	functional testing, test case generation and test oracle, integration testing, system testing	11 challenges
[226]	138 studies (2007-2019)	correctness, model relevance, robustness, security, data privacy, efficiency, fairness, interpretability	testing workflow, testing components, test- ing properties, application scenarios	4 testing challenges categories: test input generation, test assessment criteria, oracle problem, testing cost reduction
[180]	21 studies (2017–2019)		29 best practices for ML systems in six cat- egories: data, training, coding, deployment, team, governance	
[208]	15 studies (out of 906) (2009–2018)		Model Evaluation, Deployment	
[115]	115 studies (2003–2019)	safety, security, ethics and regulation, software structure, testability, maintainability,	all SWEBOK areas	SE challenges for ML applications



MAIN CHALLENGES FACED IN THE DEVELOPMENT OF AI/ML SYSTEMS



Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbø, Tayana Conte: Software engineering for artificial intelligence and machine learning software: A systematic literature review. CoRR abs/2011.03751 (2020)

SOME TAKEAWAYS

Empirical studies report Al software in various application domains, with the main focus being Automotive, Finance, and Healthcare

Testing space for AI software is much larger, more heterogeneous and, in many cases, it is difficult to formally define in comparison to traditional software testing

Al development processes need to integrate infrastructures, processes and tools for managing data as their integral parts

ML

... is everywhere

The talk is not about new ML algorithms and solutions

It is about what we did and what we are doing

It is also a way to think of our work in terms of ML

ML SYSTEMS

They must offer predictions with given accuracy and precision

Usual requirements

- Response time is affected by resource allocation
- Computations can be executed on dedicated hardware (e.g., GPUs)
- Parallelization is not useful if data are not properly partitioned

New requirements

- Model quality also depends on the (hyper)-parameters of the learning algorithm
- Response time and quality are often correlated
 - Fewer learning iterations allow for faster results but produce less accurate models
- Results depend on used data

TWO PHASES

Training

- Long-lasting batch activity (from several minutes to days)
- Based on dedicated frameworks (e.g., Spark, TensorFlow, PyTorch)
- Maximum time to complete a training process

Inference

- Interactive activity that exploits generated models
- Each computation lasts milliseconds or seconds
- Response time of multiple requests aggregated and constrained
- Quality of predictions cannot be easily computed

KNOWN LIMITATIONS (TRAINING)

Available frameworks do not support quality and time constraints on carried out activities

Hyperparameters are defined at design time

• They must be carefully tuned to train the model efficiently and precisely

Data partitioning can accelerate the computation at the cost of more synchronization among executors

Resource allocation is key to fulfill time-based requirements

- Proactive vs reactive solutions
- Executors must be able to govern heterogeneous hardware

KNOWN LIMITATIONS (INFERENCE)

ML frameworks lack support for the specification of quality and time requirements

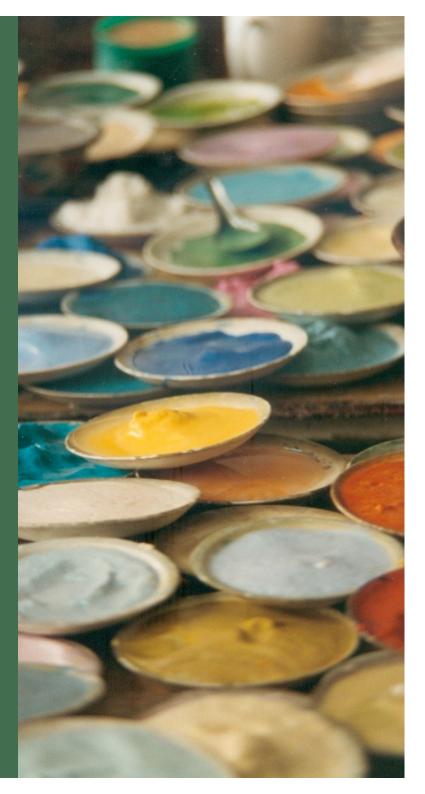
- Dynamic resource allocation is mandatory when the incoming workload fluctuates
- Requests must be scheduled to proper executors according to their hardware capabilities and the state of the system

The quality of ML models at runtime cannot be directly monitored • Uncertainty can help estimate it and understand when a model must be re-trained

HOW HAVE WE TACKLED THESE ISSUES?

FSE 2016 TSE 2021 ICSOC 2021

From the original presentations by G. Quattrocchi

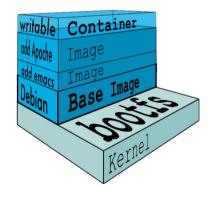


TWO ENABLERS

*In collaboration with Prof. Alberto Leva

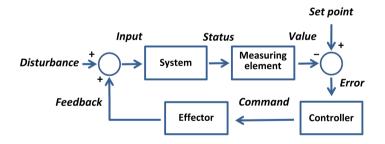
Containers (Docker)

- Fast actuation
- Precise actuation
- Better resource utilization



Control Theory*

- Fast decisions
- Precise decisions
- A priori guarantees



DISTRIBUTED CONTROL OF CONTAINERS

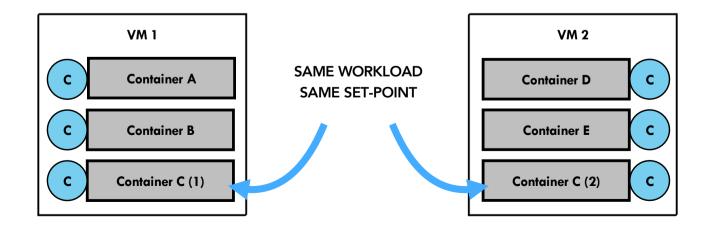
One controller per container

Proportional-Integral (PI) controllers

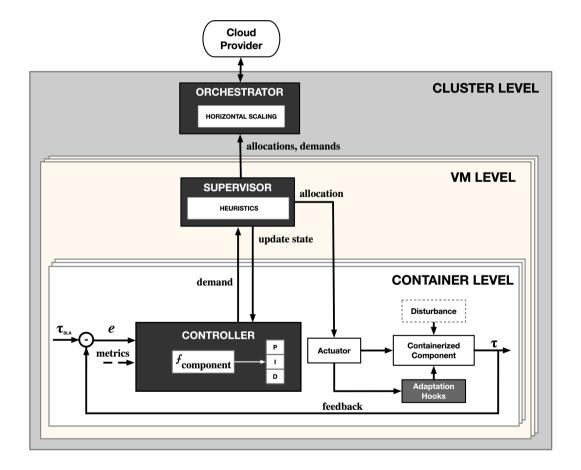
Next state computed in constant time

Workload split equally to container replicas

No synchronization is required



ARCHITECTURE



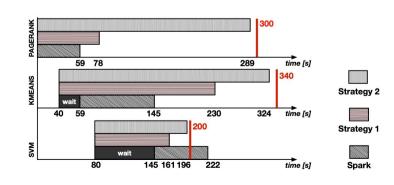
DYNASPARK

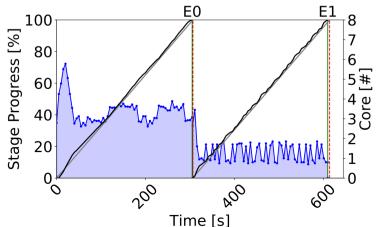
DynaSpark extends Spark by introducing advanced and automated resource management

- Vertical CPU scaling (CPU quotas)
- Resource contention among running applications
- Different strategies (e.g., Earliest Deadline First) to prioritize applications

Prototype deployed on MS Azure

- Precision (how close we reach the deadline)
- The closer it gets to a deadline the fewer resources are used





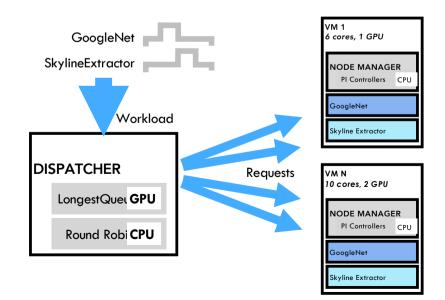
ROMA

A solution to manage scientific GPU-empowered interactive applications

- Manages a cluster of heterogenous resources
- Targets interactive apps that can be accelerated with GPUs

GPUs are the preferred executors

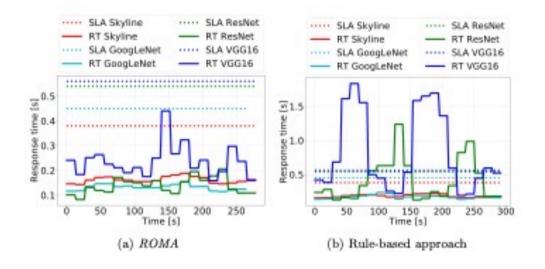
- CPUs are used only if GPUs are not enough
- Evaluated on TensorFlow



EVALUATION

Prototype deployed on MS Azure

Metrics: number of violations and amount of used resources



FEDERATED MACHINE LEARNING AS A SELF-ADAPTIVE PROBLEM

SEAMS 2021

From the original presentation by G. Quattrocchi

HYPERFL

Federated (Machine) learning as a self-adaptive system

An extension to TensorFlow to allow a set of federated nodes to cooperatively train an ML model under quality constraints

- Minimise Training Time
- Minimise Resource Consumption
- Maximise Model Quality (e.g., Accuracy)
- Minimize Used Bandwidth

MACHINE LEARNING

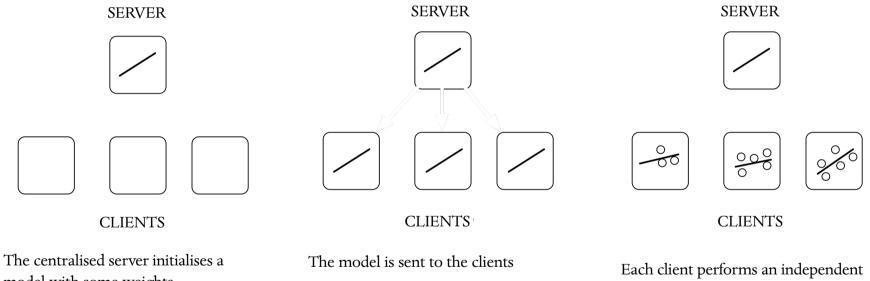
Clients send data to a centralized server (or a cluster of servers)

- A model is trained on the server
- Clients use the model to carry out inference

Problems

- Privacy: clients have to share private data
- Network overhead: all raw data must be sent to the server

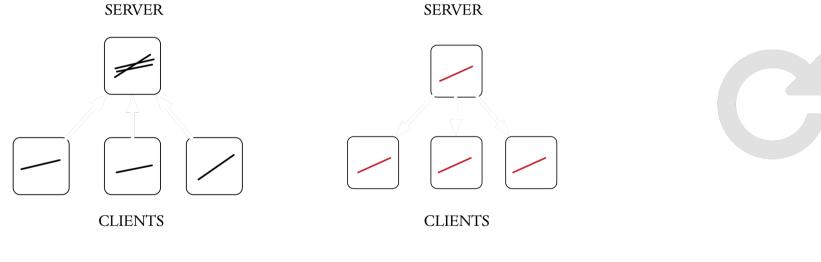
FEDERATED MACHINE LEARNING (FEDML)



model with some weights

iterative training using only local data

FEDERATED MACHINE LEARNING (FEDML)



When clients finish the local training they send the updated weights (and no data) to the server The server aggregates the results and computes a new model that is sent to all clients

This process is repeated multiple times (rounds)

MONITORING AND ANALYSIS

CPU/Memory consumption

Battery Level

Accuracy, Loss (calculated in a federated fashion)

Client training time

Total training time

Network overhead

PLANNING AND EXECUTION

Client Selection (server-side only)

- Decides which clients to involve in each round
- E.g., depending on availability, client resources

Data Selection (server/client side)

- Decides the size of the training dataset of each client at each round
- Decides the model weights that each client must send to server at each round

Workload and Resource Allocation (server/client side)

- Number of iterations (e.g., epochs) to be performed by each client at each round
- Resources to be used by each client at each round

FORMULATION

TABLE I: Formulation of the generalized FedML problem.

Constants

C	Set of all clients			
W	Model weights to be trained			
A_c^r ,	User data available on each client c at each round r			
X_c ,	Resources of each client c			
TT_{SLA}	Training time threshold			
AC_{SLA}	Accuracy threshold			
UB_{SLA}	Used bandwidth threshold			
RC_{SLA}	Resource consumption threshold			
Parameters				
R	Total number of rounds			

10	Total hamber of founds
K^r	Fraction of clients involved in training at each round r
E_c^r	Number of epochs for each round r for each client c

- $B_{c}^{\overline{r}}$ Batch size for each round r and client c
- Data used for each training round r and client c
- Selected clients at each round r
- $\begin{array}{c} D_c \\ N_c^r, \\ S_c^r \\ V_c^r \\ U_{c,w}^r \end{array}$ Fraction of model weights sent by each client c at round r
- Selected weights w at each round r and by client c

Metrics

 $TT(R, S, X, \frac{E \cdot N}{B}, C \cdot K, W \cdot V)$ $RC(R, S, X, \frac{E \cdot N}{B}, C \cdot K)$ $AC(R, K, S, \frac{E \cdot N}{B}, V, U, \eta)$ $UB(R, C \cdot K, W \cdot V)$

Fixed Constraints

C1. $0 < K^r < 1, K^r \in \mathbb{R}, \forall r \in R$ **C2.** $0 \leq V_c^r \leq 1, V_c^r \in \mathbb{R}, \forall r \in R, \forall c \in C$ **C3.** $0 < B_c^r \leq N_c^r, B_c^r \in \mathbb{R}, \forall r \in R, \forall c \in C$ C4. $E_c^r \geq 0, E_c^r \in \mathbb{N}, \forall r \in R, \forall c \in C$ C5. $\sum_{c=0}^{C} S_c^r = K^r \cdot C, \forall r \in R$ C6. $N_c^r < A_c^r, \forall r \in R, \forall c \in C$ **C7.** $\sum_{w=0}^{W} U_{c,w}^r = V_c^r \cdot W, \forall r \in R, \forall c \in C$

Metric-related Constraints

C8. $RC(R, S, X, \frac{E \cdot N}{B}, C \cdot K) \leq RC_{SLA}$ **C9.** $UB(R, C \cdot K, \overset{B}{W} \cdot V) \leq UB_{SLA}$ **C10.** $TT(R, S, X, \frac{E \cdot N}{B}, C \cdot K, W \cdot V) \leq TT_{SLA}$ **C11.** $AC(R, K, S, \frac{E \cdot N}{B}, V, U, \eta) \geq AC_{SLA}$

Problems

P1. minimize $RC(R, S, X, \frac{E \cdot N}{B}, C \cdot K)$ subject to C11 **P2.** minimize $RC(R, S, X, \frac{B}{B}, C \cdot K)$ subject to C9, C11 **P3.** minimize $RC(R, S, X, \frac{B}{B}, C \cdot K) \land$ minimize $UB(R, C \cdot K, W \cdot V)$ subject to C10**P4.** minimize $TT(R, S, X, \frac{E \cdot N}{B}, C \cdot K, W \cdot V) \land$ minimize $UB(R, C \cdot K, W \cdot V)$ subject to C11 **P5.** maximize $AC(R, K, S, \frac{E \cdot N}{B}, V, U, \eta)$ subject to C8 P6. ...

Table I summarises our formulation². Let us start from minimum or maximum thresholds for our metrics: TT_{SLA} for total training time, AC_{SLA} for accuracy, UB_{SLA} for used bandwidth, and RC_{SLA} for resource consumption.

In addition to constants C and W, we define A_c^r , an $R \times C$ matrix that contains the amount of examples (e.g., images) on each client at each round, and X_c as the C-sized vector that contains the amount of resources available on each device. Instead of always considering the same amount of clients K, we define an R-sized vector K^r to consider a different number of devices at each round. Similarly, E_c^r and B_c^r ($R \times C$ matrices) define the amount of epochs and size of local batches to allow one to tweak these values at each round and on each client. N_r^r is the amount of data used for training at each round and for each client $(R \times C \text{ matrix})$. Note that the original formulation used all available data on a client for training $(N_c = A_c)$ and N_c was constant for the whole training. The $R \times C$ matrix S_c^r defines the K clients employed at each training round (the matrix contains 1 if client c is active at round r; 0 otherwise).

While the original formulations always send all locallycomputed weights to the server at each round, the transmission of a significant subset could be more efficient [10]. To this end, V_c^r , an $R \times C$ matrix, defines the fraction of W parameters sent at each round by each client. $U_{c,w}^r$, an $R \times C \times W$ matrix, defines (0/1) the model parameters sent by each client at each round.

The four performance indicators (metrics) are formally defined as (unknown) functions that depend on the aforementioned constants and parameters. All the metrics depend on the number of rounds R and amount of selected clients $K \cdot C$, device selection S affects resource consumption, training time and accuracy, available resources X impact resource consumption and training time, the amount of local updates O impacts all the metrics except used bandwidth, while the selection of weights (V and/or U) impacts training time, accuracy, and used bandwidth.

The minimization/maximization of these functions must also satisfy a set of constraints. The constraints are grouped in two sets: the first one (C1-C7) defines parameters' domains and their relationships with one another. Constraints C1-C4J.C., A. J., in formation VID and P. C.

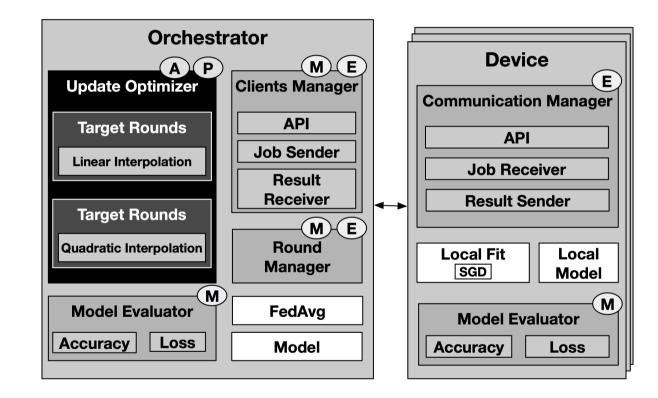
PROTOTYPE

GOAL: minimize resource consumption given a constraint on the accuracy in a given number of rounds

Workload selection (number of iterations or epochs)

- Server-side planning
- Heuristic: linear and quadratic interpolation

PROTOTYPE



SETUP

We implemented the prototype in a custom simulation environment

- TensorFlow
- 50 clients

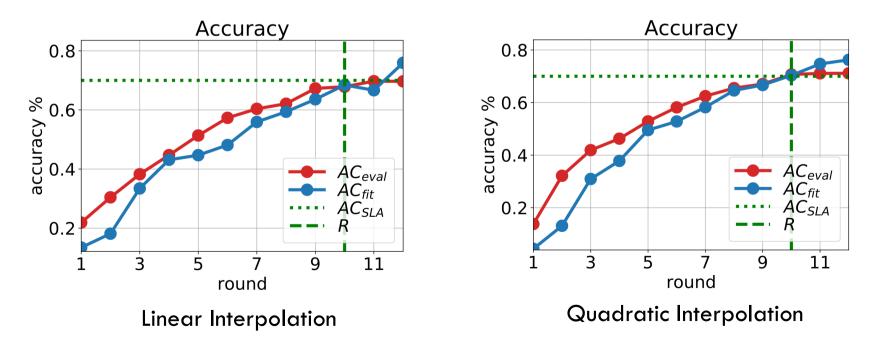
Two real-world applications: MNIST and Fashion-MNIST

115 experiments

RESULTS

APPLICATION: Fashion-MNIST

SETPOINT: Accuracy = 70% in 10 rounds



CONCLUSIONS

FEDML systems call for self-adaptation

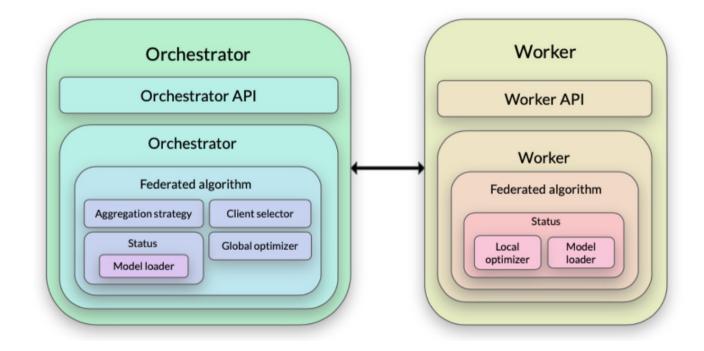
Control loops could be deployed in the centralized server and in the federated clients

Initial results are promising

Future work

- Client selection
- Fine-grained client-side control
- Creation of a real FEDML framework (in progress)
- P2P FEDML (just initiated)

FELES: A FEDML SIMULATOR



PROBLEM

Neural network accuracy decreases when dealing with data from unknown domains (Out-Of-Distributions)



(d) Training - Source dataset (hospital A).

(e) Runtime - Target dataset A (hospital B).

(f) Runtime - Target dataset B (hospital C).

DEEPNURSE

Four-stage loop that automatically detects unknown domains and adapts neural networks to them

- Uncertainty estimation
- Changepoint detector
- Style-guided data generation
- Weights adaptation

UNKNOWN DOMAIN DETECTION

Uncertainty estimation with Bayesian neural networks

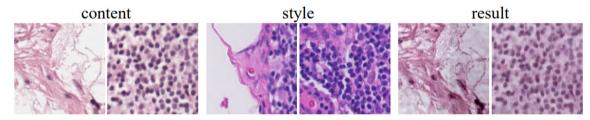
- Deep Ensemble
- MonteCarlo dropout

Changepoint Detector

- Sliding window
- Kolmogorov-Smirnov two sample test

STYLE-GUIDED DATA GENERATION

(a) Landscape and daytime style transfer (lake day→mountain night).



(b) Hospital style transfer (hospital A→hospital B).

ADAPTATION TO UNKNOWN DOMAINS

Weights adaptation

- Reset (Retraining from scratch)
- Partial (Retraining from trained model)
- Fine-tuning (Retraining only last layers)

Incremental learning

Replay memory to avoid catastrophic forgetting

EXPERIMENTS

Three datasets

Classification

- Camelyon17 (Tumor Detection)
- Waterbirds (Bird Classification)

Regression

Udacity* (Autonomous Driving)

*Custom collected dataset with 16 different driving scenarios

RESULTS

Eight different neural network architectures

- DenseNet, Resnet (classification)
- Dave-2, Epoch, Chauffeur (regression)

Results:

- Detected on average 81.0% of Unknown Domains
- Recovered 24.1% of the performance after adaptation

LET US FLIP THE PROBLEM

AI FOR SOFTWARE ENGINEERING

Everywhere

Think of a software engineering problem and you can conceive an Albased solution

Some examples

- Requirements management/elicitation
- Software design
- Test and analysis
- Software architecture
- Microservice/service/component composition
- Code repearing
- Code completion

• • • • •

••• • • • · · · ·	0	☐ openai.com	5
ဖြာ OpenAl			

④ ① + □

Menu

Introducing ChatGPT

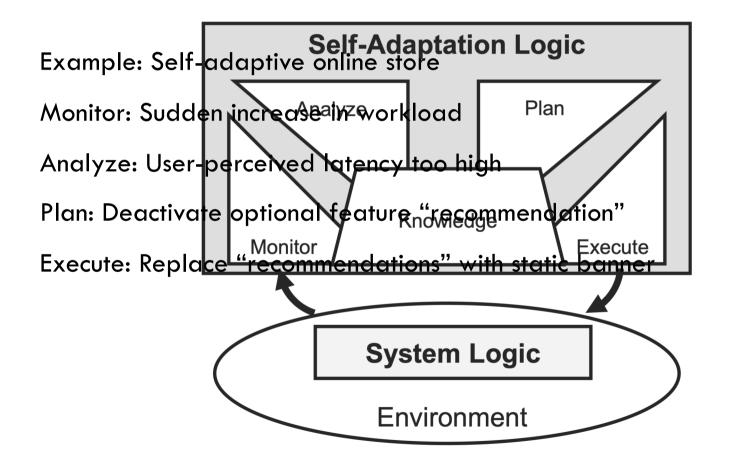
We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

Try ChatGPT 7 Read about ChatGPT Plus

FEATURE MODEL-GUIDED ONLINE REINFORCEMENT LEARNING FOR SELF-ADAPTIVE SERVICES

ICSOC 2020 (Best paper award)

From the original presentation by A. Metzger

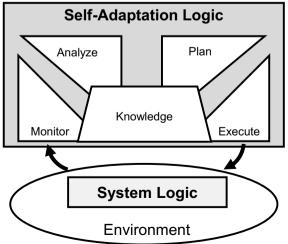


"DESIGN TIME" UNCERTAINTY

Infeasible to anticipate all future environment situations (e.g., QoS of dynamically bound services)

Difficult to precisely determine the impact of adaptation actions on QoS (e.g., exact QoS impact when adding a VM)

Simplifying assumptions (e.g., too much effort to explicitly codify all details as knowledge)



ONLINE REINFORCEMENT LEARNING (RL)

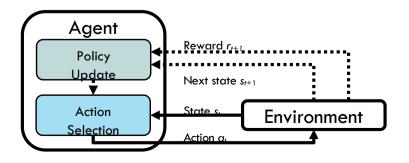
Learn suitable action selection policy via agent's interactions with environment

Agent receives reward for executing an action (here: adaptation action)

Reward expresses how suitable action was (here: QoS satisfaction)

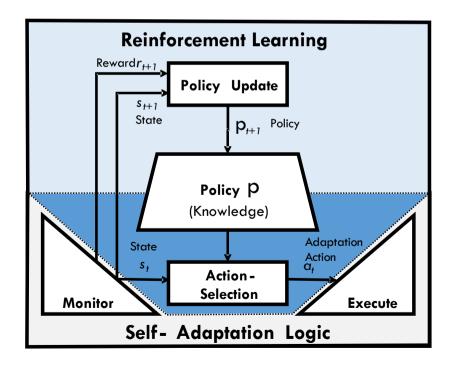
Update policy from reward signal = learn

Goal of RL: optimize cumulative rewards



ONLINE RL FOR SELF-ADAPTIVE SERVICES

Combining MAPE-K and RL [Palm et al., 2020]



PROBLEM STATEMENT

Exploitation-exploration dilemma of RL [Sutton & Barto, 2018]

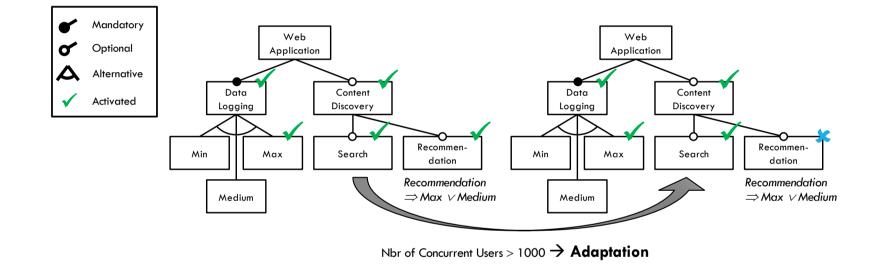
Exploit existing knowledge vs explore new knowledge

How adaptation actions are explored impacts on learning performance

Limitations of State of the Art in RL for self-adaptive services

- (1) Random exploration (ϵ -greedy)
 - Slow learning if large set of adaptation actions
- (2) Evolution-unaware exploration
 - New adaptations explored with low probability and thus late

FEATURE MODELS



Feature model expresses system configurations in compact form Concrete system configuration expressed as feature combination Adaptation expressed as runtime reconfiguration

EXPERIMENT SETUP

CloudRM – Self-adaptive Cloud Resource Management Service

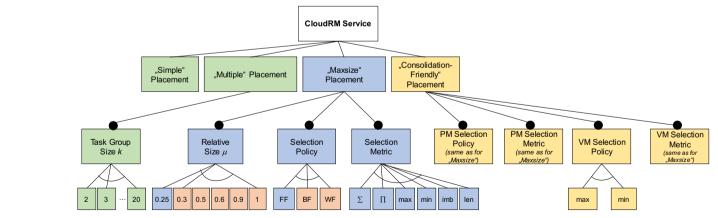
- Feature Model (Defines 344 configurations = adaptation actions)
- Real-world workload trace
 - 10,000 tasks, 29 days

Initial

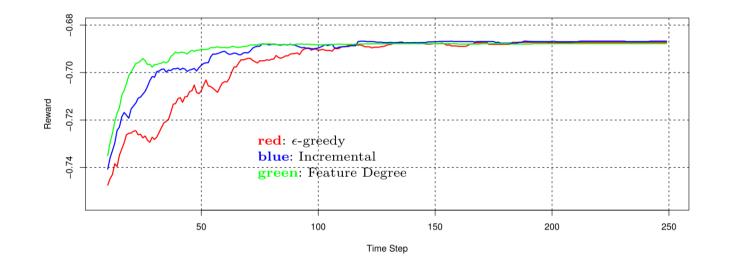
Evolution step #1

Evolution step #2 Evolution step #3

Simulated Evolution of Adaptation Space



(1) LARGE ADAPTATION SPACE



Asymptotic performance	0%
Time to threshold	48.6%
Jumpstart	1.3%
Total reward	58.8%

Energy savings	0.1%
Reduced VM migrations	7.8%

MAIN RESULTS

Exploiting structural knowledge from design time (feature models) to guide online learning for self-adaptive services

Future enhancements

- Experiments with additional systems
- Comparison of other exploration strategies and RL algorithms
- Considering changes of existing features (on top of additions and removals)
- Methodology for defining suitable feature models during design time

CONCLUSIONS

Many different possible combinations

Software engineering vs. Artificial Intelligent

More to come

- Almost any paper submitted to SE conferences embeds AI or ML
- It would be nice to know what the others think of it

Some ideas for the future

- Are we sure it is always the right way?
- Performance, quality, precision
- Ethical issues

WE ARE HIRING !!!