
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: cbchisanga@gmail.com; 
 
 
 

British Journal of Applied Science & Technology 
 
21(4): 1-16, 2017; Article no.BJAST.33531 
ISSN: 2231-0843, NLM ID: 101664541 

 
 

 

 

Statistical Bias Correction of Fifth Coupled Model 
Intercomparison Project Data from the CGIAR 

Research Program on Climate Change, Agriculture 
and Food Security - Climate Portal for Mount Makulu, 

Zambia 
 

Charles Bwalya Chisanga1,2*, Elijah Phiri2 and Vernon R. N. Chinene2 
 

1Ministry of Agriculture, Ndola, Zambia. 
2Department of Soil Science, University of Zambia, School of Agricultural Sciences, Lusaka, Zambia.  

 
Authors’ contributions  

 
This work was carried out in collaboration between all authors. Author CBC designed the study, 

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. All 
authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/BJAST/2017/33531 

Editor(s): 
(1) Ahmed Mohamed El-Waziry, King Saud University, College of Food and Agriculture Sciences, Kingdom of Saudi Arabia. 

Reviewers: 
(1) Isaac Mugume, Makerere University, Uganda. 

(2) Abdulmajeed Bashir Mlitan, Misurata University, Misurata, Libya. 
(3) Ayman G. Awadallah, Fayoum University, Egypt. 

Complete Peer review History: http://www.sciencedomain.org/review-history/19454 
 
 
 

Received 19 th April 2017 
Accepted 29 th May 2017 

Published 10 th June 2017  
 

 
ABSTRACT 
 
Although Global Climate Models (GCMs) are regarded as the best tools available for future climate 
projections, there are biases in simulating precipitation and temperature due to their coarse spatial 
resolution and cannot be used directly to assess the impact of projected climate change. The study 
objective was to investigate how bias correction methods impact the modelled future climate change 
under Representative Concentration Pathway 8.5 (RCP8.5) for 2020-2050.Reanalysisdata (1980-
2000) and bias correction approaches (change factor [CF], nudging and Quantile Mapping [QM]) 
were used to calibrate GCMs [GFDL-ESM2M, MIROC-MIROC5, MPI-ESM-MR, and NCAR-CCSM4] 
data under RCP8.5 scenarios (2020-2050) for Mount Makulu, Zambia (latitude: 15.550° S, 
longitude: 28.250° E, altitude: 1200 m). Bias correcti on methods enable the comparison of observed 
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and modelled impacts between the future climate scenarios and the baseline. A widely used bias 
correction method is the QM. QM adjusts a GCM value by mapping quantiles of the model’s 
distribution onto quantiles of the observed time series data. In spite of nudging being robust and 
easy to implement, it suppresses high-frequency variability and introduces artificial phase shifts. CF 
cannot provide information on future climate changes in high frequency variability that may be 
critical for specific impact applications such as estimates of peak discharge in hydrological 
catchments or inputs for crop models. Future climate signals shows that the number of days with 
and the amount of precipitation (mm/year) for 2020-2050 would range from 62 - 92 days and 211.9 - 
906 mm/year, respectively. On the other hand, maximum and minimum temperature would increase 
in the in the range of 1.23 - 1.97°C and 1.45 - 2.6 8°C, respectively. QM can be used for precipitation 
while the CF can be used for temperature. Nudging is a widely used technique for online bias 
reduction, where modelled fields are continuously forced toward observed climatology.  
 

 
Keywords: Calibration; change factor; bias correction; quantile mapping; CCAFS; AgMERRA; GCMs. 
 
1. INTRODUCTION  
 
Global Climate Models (GCMs) from 
Intergovernmental Panel on Climate Change 
(IPCC) Third and Fifth Coupled Model 
Intercomparison Projects (CMIP3 and CMIP5) 
are tools currently available for simulating the 
response of the global climate system due to 
increasing greenhouse gas (GHG) concentration 
[1,2]. The GCMs are used as the primary source 
of information for constructing climate scenarios 
and they provide the basis for climate change 
impacts assessments at local, regional and 
global scales. Climate information for 
assessments of future crop yields tends to come 
from Atmosphere-Ocean Global Climate Models 
(AOGCMs) [3]. The impact of climate change on 
natural resources is usually assessed at the local 
scale [4]. Despite the improvements in CMIP5 
model resolution and the description of the 
physical processes, modeling of precipitation is 
still inadequate for use in most local impact 
studies [5]. 
 
Although GCMs are regarded as the best tools 
available for future climate projections, there are 
biases in their outputs due to coarse spatial 
resolution (50 km or even more). This means 
they cannot be used directly at local or regional 
scale for impact studies, particularly in the tropics, 
where orographic and climatic conditions vary 
significantly across relatively small distances [6]. 
The biases are the deviation of GCM output from 
the observations [7,8]. It has been reported by 
researchers such as [9] that errors in GCM 
simulations outputs relative to historical 
observations are large. Therefore, statistical 
downscaling methods such as delta-based 
approaches [10–12] and stochastic weather 
generators (Long Ashton Research Station 
Weather Generator [LARS-WG]) [13] are used to 

generate future climate scenarios with high-
spatial resolution for a point or station data (local-
scale variables) [14,15]. A scenario is a coherent 
internally consistent and plausible description of 
a possible future state of the world [2,16]. 
Statistical downscaling is an empirical approach 
that establishes statistical relationships between 
predictors (pressure, geopotential height, 
humidity) and predictand (temperature, 
precipitation) variables [17]. 
 
Evaluating the potential impact of climate change 
on society requires scenarios that accurately 
project future climate [18]. Many statistical bias 
correction approaches have been developed and 
are being utilized to remove systematic model 
errors [19]. According to [6], it is important to 
bias-correct and downscale the raw climate 
model outputs in order to produce climate 
projections that can be used in impact studies 
such as agricultural modeling. [20] noted that 
statistical bias correction is commonly applied 
within climate impact modeling to correct climate 
model data for systematic deviations of the 
simulated historical data from observed time 
series data. The bias correction methods are 
based on transfer functions which are generated 
to map the distribution of the simulated historical 
weather data to that of the observed time series. 
Statistical Bias Correction (BC) need to be 
performed to better match the GCM outputs to 
the observed daily time series data [21]. The BC 
approach corrects the projected raw daily GCM 
output using the differences in the mean and 
variance correction between GCM and 
observations in a baseline or reference period [6]. 
The bias correction methods are designed to 
bridge the gap between the information that is 
provided by the climate modeling community and 
the GCM output required for quantitative climate 
impact projections [20]. 
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Correcting and accounting for biases in climate 
model output is vital in producing reliable climate 
model simulations. Any method for correcting 
biases in the GCM outputs requires a baseline or 
reference data sets and the bias adjustment 
quality is thus restricted by the quality and 
availability of the observed time series or 
reanalysis data. Three different calibration 
approaches are used to produce reliable daily 
climate for future periods under the CGIAR 
Research Program on Climate Change, 
Agriculture and Food Security (CCAFS) - Climate 
portal interface (www.ccafs-
climate.org/data_bias_corrected/) and these are: 
(a) 'nudging' (bias correction) [3], (b) change 
factor (CF) (delta-based approach) [3,6,22]; and 
(c) Quantile Mapping (QM) [4,23]. The nudging 
bias-correction and change factor approaches 
work well for non-stochastic variables such as 
temperature. Temperature is non-stochastic or a 
continuous variable as it can assume all possible 
values in the possible range while precipitation is 
a discrete variable. The QM is a more 
sophisticated approach for bias-correcting 
stochastic variables such as precipitation and 
solar radiation as elaborated by [6]. All the three 
bias correction methods are used for adjusting 
the bias in GCMs. 
 
The CF is a simple downscaling method that 
uses the average values of observations and 
predictions [24]. [24] noted that the CF method is 
implemented simply by scaling the average 
change factor to each day. Due to its simplicity, it 
has been used in many climate related bias-
correction applications. Correction for bias using 
the CF changes only the average, maxima and 
minima of the climatic index in the scenarios, 
while all the other properties, such as the number 
of wet/dry days and the variance of temperature 
remain unchanged. The QM scheme on the other 
hand, corrects GCM outputs based on the 
Cumulative Distribution Function (CDF) with a 
statistically good match. This method has been 
widely employed to correct the biases in GCMs. 
It has limitations in capturing extreme values 
beyond the range of the observed time series 
data. Nudging bias correction approach adds the 
difference between AOGCM and observed time 
series data in a baseline to the future AOGCM 
data to correct the mean bias [25]. However, this 
method uses the AOGCM distributions of daily 
climate, aspects which may also need correcting 
such as the temporal correlation. Nudging as 
reported by [26] is robust and easy to implement, 

but suppresses high-frequency variability and 
introduces artificial phase shifts. Both CF and 
QM have better computational efficiency and 
have the ability to handle higher order moments 
than other physical-based approaches [19]. 
 
The Agricultural Climate Forecast System 
Reanalysis (AgCFSR), Global Risk Assessment 
toward Stable Production of Food (GRASP), 
Agricultural Modern-Era Retrospective Analysis 
for Research and Applications (AgMERRA), 
Princeton, WFD and WFDEI are six widely used 
datasets to "calibrate" daily outputs of GCMs 
from the IPCC CMIP5 [6,27–30]. The AgCFSR 
and AgMERRA climate forcing datasets provide 
daily, high-resolution, continuous, meteorological 
series over the 1980-2010 period and they are 
designed for applications examining climate 
variability and climate change in agricultural 
modeling [27]. The six datasets (Table 1) are 
bias-corrected from existing reanalysis datasets. 
The reanalysis involves reprocessing 
observational data spanning a long historical 
period using a consistent analysis system to 
produce a dataset that can be used for agro-
meteorological and climatological studies. The 
CCAFS-Climate data portal provides global and 
regional future high-resolution climate datasets 
that serve as a basis for assessing the climate 
change impacts and adaptation in a variety of 
fields including biodiversity, agricultural and 
livestock production, and ecosystem services 
and hydrology [6]. The study objective was to 
investigate how bias correction methods impact 
the modelled future climate change under 
Representative Concentration Pathway 8.5 
(RCP8.5) for 2020-2050. 
 
2. MATERIALS AND METHODS  
 
2.1 Study Site 
 
The study site was Mount Makulu, Zambia 
(latitude=15.550° S, longitude=28.250° E, 
altitude=1200 m) as presented in Fig. 1.The site 
is characterized by a wet and dry tropical and 
sub-tropical climate modified by altitude [31]. 
Additionally, on the basis of rainfall and 
temperature patterns, the year is divided into four 
seasons: the Hot Season (September to 
October), the Rainy Season (November to 
March), the Post Rainy Season (April and May), 
and the Cool and Dry Season (June to       
August) [31]. 
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Fig. 1. Location of Mount Makulu within the Agro-Ecological regions of Zambia 
 

2.2 Data Sources 
 
The climate data used in this study is from 
CCAFS-Climate based on GCMs from                       
CMIP5 multi-model dataset that informed                       
the IPCC Fifth Assessment under     
Representative Concentration Pathway 8.5 

(RCP8.5) (Table 1). It was calibrated using 
Agricultural Modern-Era Retrospective Analysis 
for Research and Applications (AgMERRA) 
observations (Reanalysis) and bias correction 
approaches: change factor (delta-based 
approach), bias correction and quantile mapping 
[3,4,6].  

 
Table 1. Observational reanalysis datasets 

 
Dataset Based on Period Resolution Reference 
AgCFSR The Modern-Era Retrospective 

Analysis for Research and 
Applications (MERRA). 

1980-2010 0.25°×0.25° [27] 

AgMerra The Climate Forecast System 
Reanalysis (CFSR) 

1980-2010 0.25°×0.25° [27], [32] 

GRASP ERA-40 1961-2010 1.125°×1.125° [28] 
JRA-25 

Princeton Reanalysis-1 1948-2008 0.25°×0.25° [29] 
WFD ERA-40 1958-2001 0.5°×0.5° [30] 
WFDEI ERA-Interim 1979-2009 0.5°×0.5° [30] 

Source: [6] 
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2.3 AgMERRA Dataset 
 
Historical climate data for daily rainfall, minimum 
and maximum temperature from the AgMERRA 
Climate Forcing Dataset for Agricultural Modeling 
[27,32] was used as the baseline data. The 
datasets are stored at 0.25°×0.25° horizontal 
resolution (~25km), with global coverage and 
daily values from 1980-2010 in order to form a 
"baseline or current period" climatology. 
Furthermore, [32] elaborated that the AgMERRA 
climate forcing datasets were created as an 
element of the Agricultural Model 
Intercomparison and Improvement Project 
(AgMIP) to provide consistent, daily time series 
over the 1980-2010 period with global coverage 
of climate variables required for agricultural 
models [32,33]. These datasets were designed to 
be useful for AgMIP coordinated, protocol-based 
studies of agricultural impacts ranging from 
biophysical process studies to global agricultural 
economic models [33]. 
 
2.4 Statistical Downscaling of Precipita-

tion and Temperature 
 
The GCMs are tools used to project future 
climate change information. An actual bias 
correction was performed with daily data from 
four GCMs (GFDL-ESM2M, MIROC-MIROC5, 
MPI-ESM-MR, and NCAR-CCSM4) output and 
AgMERRA site observational data for three 
different metrics; projected change, rainy days 
and time series. Basic bias correction methods 
include an adjustment of the mean value by 
adding a temporally constant offset, or by 
applying an associated correction factor to the 
simulated data. This additive or multiplicative 
constant quantifies the average deviation 
between the simulated and the observed time 
series over the historical period. The daily                       
GCM data were calibrated using observations 
(Reanalysis) and bias correction approaches: 
delta (change factor), nudging (bias                      
correction) and quantile mapping. In this study, 
two windows were used, 1980-2000 as                  
baseline and 2020-2050 as future climate 
scenario period. The methods described below 
were applied to the baseline to produce 
calibrated projections of future climate change 
scenarios.  
 
2.4.1 Bias correction (BC) approach 
 
The BC approach corrects the projected raw 
daily GCM output using the differences in the 

mean and variance correction between GCM and 
baseline daily time series data [6,21]. The bias-
correction method corrects for both the mean 
values and temporal variance correction of the 
GCM output in accordance with the observations 
is as reported by [25,34] and represented by the 
equation below. The bias-correction procedure 
for the GCM output could be applied to correct 
both the historical and future periods. 
 

��� = 

�����	
��	 +
��, ��������
��, �������� (����(�) − �����	
��	) 

 
Where ��,���	
��	  and ��,���	
��	  represent the 
standard deviation (�) in the baseline period of 
the daily GCM output and observations, 
respectively. 
 
2.4.2 Change factor (CF) 
 
In this approach, the raw GCM outputs current 
values are subtracted from the future simulated 
values resulting in “climate anomalies” which are 
then added to the present day observational or 
historical monthly dataset [21]. As defined by [21], 
change factor is a ratio between values of current 
climate and future GCM simulations. Change 
factor methods are techniques of combining the 
coarse-resolution change ‘signal’ from GCM 
outputs with finer-resolution observed datasets. 
This method is quick and convenient and 
produces data that look like observed weather 
datasets [35]. The change factor is the simplest 
bias correction method, which consists of adding 
the mean change signal to the observations as 
presented in the equation below. This method is 
applicable to any kind of variable but it is 
preferable not to apply it to bounded variables 
such as precipitation, solar radiation and wind 
speed because values out of range could be 
obtained. The CF assumes the daily variance 
correction is of the same magnitude in the future 
and baseline periods and the corrected daily time 
series data is computed by the equation below 
which considers changes in variance as reported 
by [34]. 
 

�� = 

����� + ��,���
��,���	
��	 (����	
��	(�) − �����	
��	) 

 
Where ��,���  and ��,���	
��	  represent the 
standard deviation (�) in the future time period of 
the daily GCM output and observations, 
respectively. 
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2.4.3 Quantile mapping (QM) 
 
Quantile-quantile mapping (QM) utilizes the 
empirical cumulative distributions of the observed 
and modeled precipitation for the downscaling [5]. 
GCM-simulated values are “mapped” by quantile 
onto historical observed data and each simulated 
quantile value receives its own adjustment. The 
Quantile Mapping (QM) is a more sophisticated 
approach for bias-correcting stochastic variables 
such as precipitation and solar radiation as 
reported by [6]. Furthermore, [6] that GCM 
outputs are known to have a “drizzle problem,” 
too many low-magnitude rain events as 
compared to observations and they do not 
capture realistic interannual variance correction 
associated with events such as El Niño and La 
Niña. GCM outputs are bias-corrected for 
monthly totals and wet-day frequency using 
qmap library written in R statistical software. This 
ensures realistic daily and interannual variance 
correction. QM is routinely applied to correct 
biases of climate model simulations compared to 
time series data [36]. Furthermore, where time 
series data are of similar resolution as the 
climate model, QM is a feasible approach. In the 
case where observations are of much higher 
resolution, QM also attempts to bridge this scale 
mismatch. [24] stated that the QM method 
minimizes the differences between the 
observed/predicted data based on empirical 
probability distributions as presented in the 
equations below. 
 

!(� ≤ # ≤ $) = % !(#�),
�&'(&)

 

 

*(#) = !(+ ≤ #) = %!(#�)
,&'

, 
 

-� = *.�/0(*��(12�)), 
 

Where *.� is the cumulative distribution function 
of the observed daily data for day i, *�� is the 
cumulative distribution function of the simulated 
data from historical simulations, and 12� and -� are 
the simulated and transformed (bias-corrected) 
data, respectively, for day i (2). [24] described 
that the transformed predictions have the same 
probability distribution with the observations, but 
QM has a limitation in generating distributions on 
a monthly basis due to the small number of 
available data points. 
 

2.4.4 Statistical analysis 
 

R Programming qq Plot function in car package 
was used to generate quantile-comparison plots 

using modeled and observed data for the 
baseline. Three statistical tests were used in the 
analysis: coefficient of determination (32), Nash-
Sutcliffe efficiency (NSE), root mean square error 
(RMSE) and normalized root mean square error 
(RMSEn) [24]. The 32 measures the degree of 
co-linearity between observations and 
simulations. The NSE is a normalized statistic 
that gives the relative magnitude of the residual 
variance compared to the observed variance and 
the RMSE is one of the commonly used error 
index statistics for observed and simulated data. 
RMSEn values provide a measure (%) of relative 
differences between observed and simulated 
output [37–39]. The simulation is considered 
excellent with RMSEn <10%, good if 10-20%, 
acceptable or fair if 20-30%, and poor >30% [38], 
[40]. 

 
3. RESULTS AND DISCUSSION 
 
3.1 Application and Suitability of the CF, 

QM and Nudging Bias Correction 
Methods 

 
Annual comparison of historical observed against 
QM and nudging of precipitation are presented in 
Fig 1. and statistics in Table 1. The accuracy of 
QM and nudging were >30% and considered 
poor as specified by [38,40] and this can also be 
seen in Fig. 1. A realistic representation of 
precipitation amounts in future climate 
projections from GCMs is crucial for impact and 
vulnerability assessment [41]. The correction 
coefficient between the observed and modeled 
precipitation was poor as presented in Table. 
 
The results of the observed and CF precipitation 
and temperature have similar distributions as 
presented in Figs. 2, 3, 4 and Fig. 5 The CF 
method performed better in correcting the bias of 
the annual precipitation data. The CF [21] used 
in Agricultural model Inter-comparison and 
Improvement Project (AgMIP) protocols can be 
applied to most adaptation activities. On the 
other hand, CF cannot provide information on 
future climate changes in high frequency 
variability that may be critical for specific impact 
applications such as estimates of peak discharge 
in hydrological catchments or inputs for crop 
models. Selecting the best bias correction 
method can assist in obtaining reliable projected 
precipitation changes at Mt Makulu in future 
which can be used in impact studies or as inputs 
into crop models. Statistical bias correction is 
commonly applied within climate impact 
modeling to correct climate model data for 
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Table 2. Statistical analysis of the observed versus bias-corrected daily precipitation (BC with 
and with variance correction and QM) 

 
Baseline period (1980-2000) 

 QM BC with variance 
correction 

BC without variance 
correction 

 Precip Tmax Tim Precip Tmax Tim Precip Tmax Tim 
R2 0.11 0.31 0.75 0.11 0.30 0.75 0.11 0.32 0.75 
RMSE (mm) 6.22 3.23 1.88 5.96 3.25 1.88 5.96 3.18 1.90 
RMSEn (%) 99.80 85.00 50.00 95.60 85.60 30.00 95.60 83.6 50.50 
PBIAS (%) -0.40 0.00 0.00 -43.20 0.00 0.00 -43.30 0.00 0.00 
NSE 0.00 0.28 0.75 0.09 0.27 0.75 0.09 0.30 0.74 

 
systematic deviations of the simulated historical 
data from observations. All the three bias 
correction methods can also be applied to 
seasonal forecasts, with the provision that biases 
are not only a function of time-of-year, but also a 
function of lead-time. Application of the statistical 
properties of the data is limited to the           
specific timescale of the fluctuations under 
consideration.  
 
Bias correction methods enables the comparison 
of observed time series and simulated impacts 
between the future climate scenarios and the 
baseline period [20]. Without correcting for bias 
in the simulated historical period, future impacts 
that depend on the exceedance of critical 
absolute thresholds such as temperature cannot 
be accurately described. Among the bias 
correction methodologies of climate data that are 
to serve as input data into impact models such 
as hydrological and crop simulation models, the 
QM is widely accepted. QM is able to 
appropriately bias-correct GCM output for 
monthly totals and wet-day frequency while 
ensuring realistic daily and interannual variability 
[6]. [42] reported that many bias correction 
methods have been applied in climate impact 
studies and one widely used method is the 
quantile mapping (QM). QM adjusts a GCM 
value by mapping quantiles of the model’s 
distribution onto quantiles of the observed time 
series data. It has been applied to GCM globally. 
Researchers such as [4,43] suggested that QM 
is one of the best bias correction method and 
quantile mapping on seasonal precipitation 
trends does not systematically degrade projected 
differences. As can be seen in Fig. 3, the QM 
precipitation for the baseline is different from the 
observed after applying the correction. This 
finding is supported by [43] who explains that QM 
can change the GCM trend, so much that the raw 
GCM modelled change is modified during the 
bias correction process. This effect is largely due 
to variability among GCMs. Moreover, this has 

raised concerns regarding the effect of modifying 
the precipitation change simulated by GCMs for 
water constrained regions where climate 
adaptation plans relies on projected changes in 
water resources [43]. 
 
According to [42], QM fails to reduce frequency-
dependent climate model biases. Therefore, 
GCM biases in temporal variance may pose 
problems for impact modeling in agricultural and 
hydrological studies. Furthermore, [42] explains 
that the QM bias correction methods can 
significantly alter the GCM’s mean climate 
change signal, with differences of up to 2oC for 
monthly mean temperature. [42] noted that little 
variability in GCM tends to increase trend in QM. 
On the other hand, with too much variability in 
climate model, QM tends to reduce variability on 
all time scales, including the trend.  
 
Nudging (with and without variability) 
underestimates daily, monthly and annual 
precipitation amount during bias correction as 
presented in Figs. 2, 6 and 7. This supported by 
[26] who observed that despite nudging being 
robust and easy to implement, it suppresses 
high-frequency variability and introduces artificial 
phase lags or shifts. He further indicated that 
nudging is a widely used technique for online 
bias reduction, where modelled fields are 
continuously forced toward observed climatology. 
[26] stated that conventional nudging is widely 
used in biogeochemical ocean models. These 
ocean model simulation climatological nutrient 
distributions in order to infer net community 
production and other biogeochemical processes 
in the oceans. Bias correction as a statistical 
method fails to discriminate between the physical 
processes determining trends associated with 
anthropogenic forcing and shorter-term 
fluctuations associated with natural internal 
climate variability [42]. Bias correction is an 
integral part to downscaling of GCM output [42]. 
It is not normally expected to replicate the 
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baseline climate perfectly and hence cannot be a 
substitute for real observations to represent the 
present climate. The bias corrected data can 
contribute considerably to the preparation of 
adaptation options due to uncertainty in climate 
change signals. 
 

3.2 Empirical Quantile-Quantile (QQ) 
Plots of Modelled and Observed 
Precipitation 

 
Figs. 10, 11 and Fig. 12 shows quantile–quantile 
(QQ) plots for modelled precipitation and

  
 

Fig. 2. Raw and bias-corrected (QM, CF and 
BC methods) yearly precipitation data (mm) 

 
Fig. 3. Raw and bias-corrected (QM, CF and 

BC methods) yearly mean maximum 
temperature 

  

Fig. 4. Raw and bias-corrected (QM, CF and 
BC methods) yearly mean minimum 

temperature 

Fig. 5. Raw and bias-corrected (QM, CF and 
BC methods) yearly average temperature 

 

  

Fig. 6. Distribution of annual precipitation 
from 1980 to 2000 

Fig. 7. Distribution of annual precipitation 
from 2020 to 2050 
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temperature (QM and nudging with and without 
variance correction) against baseline observation 
for Mt Makulu. The discrepancy between the 
modelled and observed data represents the 
overall effect of model biases and the 
illustrativeness of the problem. At the lower and 
upper tails, a significant fraction of the 
discrepancy is caused by the scale mismatch 
between grid-box and local scale and this is also 
reported by [44]. Additionally, [44] elaborated that 
even in perfect boundary setting, the trajectories 
of modelled precipitation might randomly and 
systematically slightly diverge from the observed 

trajectories. Furthermore, precipitation exhibits 
high spatial and temporal variability, the temporal 
correspondence between grid-box-modelled and 
observed local-scale daily precipitation is 
relatively weak. 
 
3.3 Projected Change of Precipitation, 

Minimum and Maximum Temperature 
 
The daily time series from a selected decade for 
present day conditions (1980 - 2000) and future 
(2020 - 2050) precipitation, minimum and 

 

  

Fig. 8. Distribution of mean maximum 
temperature from 1980 to 2000 

 

Fig. 9. Distribution of mean maximum 
temperature from 2020 to 2050 

  

Fig. 10. Distribution of mean minimum 
temperature from 1980 to 2000 

Fig. 11. Distribution of mean minimum 
temperature from 2020 to 2050 

 

 
 

Fig. 12. Empirical Quantile-Quantile (QQ) plots of modelled against observed precipitation 
for Mt Makulu 
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Fig. 13. Empirical Quantile-Quantile (QQ) plots of modelled against observed maximum 
temperature for Mt Makulu 

 

 
 

Fig. 14. Empirical Quantile-Quantile (QQ) plots of modelled against observed minimum 
temperature for Mt Makulu 

 
maximum temperature from the AgMERRA, 
respectively are compared against the GCMs 
ensemble mean. The results are presented in 
Figs. 1, 2 and Fig. 3. The methods described 
above were applied to the historical observations 
(reanalysis) to produce calibrated projections of 
future climate (2020-2050). For many scenarios, 
there is consensus on the direction of change 
such as a warming climate due to increasing 
greenhouse gases, but the models may differ 
greatly on the projected magnitude of the change 
as observed in Figs. 1-15. One widely used 
method in bias-correcting precipitation is quantile 
mapping (QM). The total monthly precipitation 
from the baseline and GCM output under 
quantile mapping (Fig. 20) are not significantly 
different. The figure below shows that the 
minimum and maximum temperature for the 
2020-2050 times slice indicates an increase in 
temperature. The GCM multi-model averaging or 
ensemble for mean annual mean minimum and 
maximum temperature and precipitation total are 
plotted for all bias correction methods. [45] 

observed that the ensemble mean serves to filter 
out biases of individual models. There is some 
evidence that the multi-model mean field is often 
in better agreement with observations than any 
of the fields simulated by the individual GCMs 
which supports continued reliance on a diversity 
of modeling approaches in projecting future 
climate change and provides some further 
interest in evaluating the multi-model mean 
results [45]. 
 

3.4  Annual Change in Mean Temperature 
and Total Precipitation 

 
The number of days with precipitation and the 
precipitation amounts (mm/year) during the 
baseline are 86 days and 753 mm/year, 
respectively as presented in Table 2. The 
number of days with precipitation and the 
precipitation amounts (mm/year) for the future 
scenarios ranges from 62 - 92 days and 211.9 - 
906 mm/year, respectively. Results indicated that 
the number of days with precipitation would 
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decrease while the amounts of precipitation 
would increase during the time slice 2020-2050. 
On the other hand, calibration results for 
precipitation show that they will be an increase in 
the amount of precipitation when quantile 
mapping is used by 9.1% (Table 2.).  
 

The Change Factor (CF) approaches 
overestimate the number of days with 
precipitation and the amount during the baseline 
due to inherit biases. The use of nudging and CF 
shows that the amount of precipitation during 
2020 - 2050 would decrease in the range of 
71.86% to 3.90%. Future climate changes in 
CMIP5 GCM emission scenarios are largely 
uncertain. It is normally difficult to project climate 
change signal accurately for the future, 
especially precipitation, hence uncertain 
precipitation and temperature values in the 
original GCMs introduced uncertainties in the 
generated future scenarios [46]. Only the 
Quantile mapping method is able to reduce the 
errors in the high- and low-precipitation 
characteristics and this finding is supported by 
[47]. These findings agree with [48], who noted 
that that utilizing climate model projections poses 
a challenge for climatologists, crop modeler and 
decision makers. Projections from a set of 
models often exhibit considerable scatter and 
may even differ on the sign of a future climate 
change (a location would become wetter or drier). 
Three bias correction methods have been used 
in this study and the baseline and future climate 
signals are different. [47] stated that these “bias 
correction” methods have been developed in an 
attempt to minimize the biases associated with 
GCM outputs. [49] showed that the uncertainty 
due to the choice of calibration methodology is a 
significant contributor to the uncertainty in future 
climate scenarios to be used as inputs in crop 
simulation models. Utilizing different types of 
calibration methods on different GCM outputs is 
vital to produce climate data that would ensure 

robust and reliable crop growth and yield 
projections. 
 
The mean minimum and maximum temperatures 
during the baseline are 15.44°C and 28.88°C, 
respectively (Fig. 1 and Fig. 2). Results from the 
GCM outputs show that there would be an 
increase in temperatures in the range of 1.23-
1.97°C for the minimum and 1.45 - 2.68°C for the 
maximum. This study has used an ensemble 
mean and this supported by [48] who reported 
that the multi-model average/ensemble is the 
most commonly cited single estimate of future 
climate scenarios. In spite of the multi-model 
ensemble being a single estimate of future 
climate [48] reiterated that the availability of GCM 
output from climate model ensembles of the 
CMIP5 has greatly expanded information about 
future projections but unfortunately, there is no 
accepted blueprint for utilizing these outputs.  
 
3.5 Monthly Change in Temperature and 

Precipitation 
 
The CF is the simplest bias correction method 
that consists of adding the mean change signal 
to the observations. This method is applicable to 
any kind of variable but it is preferable not to 
apply it to bounded variables such as 
precipitation because values out of range may be 
obtained as documented by [50]. The ensemble 
total monthly precipitation and monthly                    
mean minimum and maximum temperature              
are presented in Figs. 3, 4 and Fig. 5. Results 
show that there would be reduced precipitation 
during 2020-2050 for all the bias correction and 
raw data except for the month of January. On the 
other hand, the minimum and maximum 
temperatures would increase. All bias correction  
method output including raw data indicates that 
the highest temperature increase would be in the 
month of November. Statistical bias correction 

 

 
 

Fig. 15. Changes in Tmax between the baseline (1980-2000) and future (2020-2050) 
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such adding the mean deviation from the 
observed data to the simulated one, often 
destroys the physical consistency of the different 

climate variables. For instance, after applying 
bias correction the temperature might be zero 
[20]. 

 

 
 

Fig. 16. Changes in Tmin between the baseline (1980-2000) and future (2020-2050) 
 

 
 

Fig. 17. Project changes in precipitation 
 

 
 

Fig. 18. Projected changes in maximum temperature 
 

 
 

Fig. 19. Projected changes in minimum temperature 
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Table 3. Number of days with precipitation and amount of precipitation (mm/year) 
 

  No of days with precip Precip amounts (mm/year) % change 
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Quantile mapping 
Baseline (1980-2000) 86 92 86 89 87 154 753 773.6 750.9 789.4 763.7 783.4           
RCP8.5 (2020-2050)   84 81 79 83 148   906.0 766.7 813.5 776.2 822.1 20.32 1.82 8.03 3.08 9.18 

Bias correction without variability 
Baseline (1980-2000) 86 70 87 90 89 126 753 237.8 349.5 732.3 461.3 455.4           
RCP8.5 (2020-2050)   62 87 82 90 119   211.9 361.1 710.8 461.6 434.9 -71.86 -52.05 -5.60 -38.70 -42.24 

Bias correction with variability 
Baseline (1980-2000) 86 70 87 90 89 126 753 239.3 349.8 731.9 460.8 455.2           
RCP8.5 (2020-2050)   62 87 82 90 119   213.7 361.1 710.4 461.2 435.2 -71.62 -52.05 -5.66 -38.75 -42.20 

Change factor with variability 
Baseline (1980-2000) 86 165 168 99 193 199 753 1533.7 1415.0 917.5 1288.9 1275.7           
RCP8.5 (2020-2050)   85 86 84 86 85   750.9 722.0 709.7 711.8 723.6 -0.28 -4.12 -5.75 -5.47 -3.90 

Change factor without variability 
Baseline (1980-2000) 86 165 168 99 193 199 753 1533.7 1415.0 917.5 1288.9 1275.7           
RCP8.5 (2020-2050)   85 86 84 86 85   750.9 722.0 709.7 711.8 723.6 -0.28 -4.12 -5.75 -5.47 -3.90 
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4. CONCLUSION 
 

Bias correction methods differ considerably and 
can influence the expected local scale or regional 
climate impacts of climate change. The daily 
GCM outputs were calibrated using observations 
(Reanalysis) and bias correction approaches. 
The three bias correction methods may widely be 
adopted for assessing calibration methodologies 
for crop modeling. Preparing adaptations plans 
due to climate change are being planned for or 
ongoing throughout the world. This study 
suggests a CF to help prepare adaptation and 
mitigation options due to the negative effects of 
climate change. Quantile mapping can be used 
to correct for bias in GCM output for variable 
such as precipitation while bias correction and 
change factor could be used for variables such 
as temperature. The most direct means of 
obtaining higher spatial resolution climate 
scenarios is to apply coarse-scale climate 
change projections to a high resolution of 
observed climate baseline using the CF method. 
The number of days with precipitation and the 
amount of precipitation (mm/year) during the 
baseline are 86 days and 753 mm/year, 
respectively. The minimum and maximum 
temperature for 1980-2000 was 15.44°C and 
28.88°C, respectively. The number of days with 
precipitation and the amounts of precipitation 
(mm/year) for 2020-2050 would range from 62 - 
92 days and 211.9 - 906 mm/year. Analysis of 
GCM outputs shows an increase in minimum 
(1.23 - 1.97°C) and maximum (1.45 - 2.68°C) 
temperature for Mount Makulu. The ensemble 
mean minimum and maximum temperature will 
be 1.60 - 1.72°C and 1.71 - 2.19°C, respectively. 
Projected future climate change has potential 
effect on future food supply. Hence, addressing 
large-scale systematic biases in climate output 
should be given higher priority for understanding 
future climate change impacts. 
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