Conference paper Open Access

Query and Keyframe Representations for Ad-hoc Video Search

Markatopoulou, Foteini; Galanopoulos, Damianos; Mezaris, Vasileios; Patras, Ioannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video search</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Zero-shot learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Visual analysis</subfield>
  </datafield>
  <controlfield tag="005">20200120173630.0</controlfield>
  <controlfield tag="001">809672</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-9 June 2017</subfield>
    <subfield code="g">ICMR 2017</subfield>
    <subfield code="a">ACM International Conference on Multimedia Retrieval 2017</subfield>
    <subfield code="c">Bucharest, Romania</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</subfield>
    <subfield code="a">Galanopoulos, Damianos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</subfield>
    <subfield code="a">Mezaris, Vasileios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London</subfield>
    <subfield code="a">Patras, Ioannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">777023</subfield>
    <subfield code="z">md5:2b78b66b9f9e9b178be9ae8d9f58654a</subfield>
    <subfield code="u">https://zenodo.org/record/809672/files/icmr17_1_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://icmr2017.ro/index.php</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:809672</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</subfield>
    <subfield code="a">Markatopoulou, Foteini</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Query and Keyframe Representations for Ad-hoc Video Search</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3078971.3079041</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
183
103
views
downloads
Views 183
Downloads 103
Data volume 80.0 MB
Unique views 176
Unique downloads 103

Share

Cite as