Conference paper Open Access

Query and Keyframe Representations for Ad-hoc Video Search

Markatopoulou, Foteini; Galanopoulos, Damianos; Mezaris, Vasileios; Patras, Ioannis

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Markatopoulou, Foteini</dc:creator>
  <dc:creator>Galanopoulos, Damianos</dc:creator>
  <dc:creator>Mezaris, Vasileios</dc:creator>
  <dc:creator>Patras, Ioannis</dc:creator>
  <dc:description>This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.</dc:description>
  <dc:subject>Video search</dc:subject>
  <dc:subject>Zero-shot learning</dc:subject>
  <dc:subject>Visual analysis</dc:subject>
  <dc:title>Query and Keyframe Representations for Ad-hoc Video Search</dc:title>
Views 257
Downloads 177
Data volume 137.5 MB
Unique views 225
Unique downloads 175


Cite as