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Developing an accurate crop yield predicting system at a large scale is of paramount importance for agricultural re-
source management and global food security. Earth observation provides a unique source of information to monitor
crops from a diversity of spectral ranges. However, the integrated use of these data and their values in crop yield pre-
diction is still understudied. Here we proposed the combination of environmental data (climate, soil, geography, and
topography) with multiple satellite data (optical-based vegetation indices, solar-induced fluorescence (SIF), land sur-
face temperature (LST), andmicrowave vegetation optical depth (VOD)) into the framework to estimate crop yield for
maize, rice, and soybean in northeast China, and their unique value and relative influence on yield prediction was
assessed. Two linear regression methods, three machine learning (ML) methods, and one ML ensemble model were
adopted to build yield prediction models. Results showed that the individual ML methods outperformed the linear re-
gression methods, the ML ensemble model further improved the single ML models. Moreover, models with more in-
puts achieved better performance, the combination of satellite data with environmental data, which explained 72%,
69%, and 57% ofmaize, rice, and soybean yield variability, respectively, demonstrated higher yield prediction perfor-
mance than individual inputs. While satellite data contributed to crop yield prediction mainly at the early-peak of the
growing season, climate data offered extra information mainly at the peak-late season. We also found that the com-
bined use of EVI, LST and SIF has improved the model accuracy compared to the benchmark EVI model. However,
the optical-based vegetation indices shared similar information and did not provide much extra information beyond
EVI. Thewithin-season yield forecasting showed that crop yields can be satisfactorily forecasted at two to threemonths
prior to harvest. Geography, topography, VOD, EVI, soil hydraulic and nutrient parameters are more important for
crop yield prediction.
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1. Introduction

Understanding the spatiotemporal patterns of crop yield, along with ac-
curately predicting those patterns are a challenging issue and a key research
area in agricultural studies (Franz et al., 2020; Li et al., 2019b). Such esti-
mates can facilitate better assessments of yield response to environmental
stresses, help to better understand the gaps between actual and potential
yields, and thus provide better information for farm resource management
(Guan et al., 2017;Ma et al., 2021).Moreover, information about crop yield
at the regional and national scales can provide important information to
food security, agricultural commodity markets, and to guide policy
decision-making (Hoffman et al., 2015; Sherrick et al., 2014).

In agriculture, crop yield is strongly influenced by various variables in-
cluding environment (e.g. climate, soil properties), genetics, and manage-
ment (Mathieu and Aires, 2018), all these factors need to be generally
considered in monitoring and forecasting crop yield through statistical or
physical simulation models. Climate data and soil properties describe the
environmental information that constrains the growing condition of the
crop, they are extensively used in crop predicting systems. However, crop
growing status is not only affected by abiotic factors, but also by biotic fac-
tors (Cai et al., 2019; Lichtenthaler, 1996; Mahlein et al., 2012). Thus, sim-
ply using environment data may not be sufficient.

Satellite remote sensing (RS) data has been widely used for crop yield
estimation across a wide range of scales and geographic locations (Guan
et al., 2017; Sakamoto et al., 2013; Sibley et al., 2014). Previous studies
have also shown better yield estimations by using satellite data or combin-
ing satellite data with environmental information than using climate data
only (Cai et al., 2019; Li et al., 2019b). In particular, the Normalized Differ-
ence Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) de-
rived from visible and near-infrared (NIR) satellite data, which provide a
general indicator of photosynthetic canopy cover or aboveground biomass,
were the most commonly used predictors for their long-time records and
recognized value inmonitoring crop conditions. However, these vegetation
indices (VIs) only utilize information from a small portion of the electro-
magnetic spectrum within optical wavelengths, the crop information they
provided is also limited. In fact, current earth observation satellites can cap-
ture crop growing conditions from a diversity of spectral ranges (Guan
et al., 2017), including visible, infrared, thermal, and microwave, satellite
observations from these data platforms provide unique information that
can describe crop growth condition from both biotic and abiotic stresses.
Solar-induced chlorophyll fluorescence (SIF), derived from a specific nar-
row range of the near-infrared band, has emerged as a proxy of plant pho-
tosynthesis (Guanter et al., 2014; Porcar-Castell et al., 2014). Some other
VIs like normalized difference phenology index (NDPI) and land surface
water index (LSWI) that use broader spectral wavelengths from visible to
shortwave infrared (SWIR) are found to have better performances in detect-
ing crop biomass and canopy water content (Dong et al., 2015; Xu et al.,
2021). The thermal RS data, a direct measurement of land-surface temper-
ature (LST), can capture heat stress and drought impact on yield variations
(Johnson, 2014; Khanal et al., 2017), it was also considered to be an alter-
native to air temperature in data-limited regions (Heft-Neal et al., 2017).
Microwave data with longer wavelength bands, either passive or active, is
commonly referred to as vegetation optical depth (VOD) using microwave
radiative transfer models (Jackson and Schmugge, 1991; Vreugdenhil
et al., 2016), this indicator provides frequency-dependent information re-
lated to the crop canopy density, biomass, and water content of vegetation
(Liu et al., 2015; Momen et al., 2017). VOD estimates from long wave-
lengths (e.g. C, L or P-band) are generally more sensitive to deeper vegeta-
tion layers while VOD estimates from short wavelengths (e.g. Ku-, X-band)
are more sensitive to leaf moisture content (Chaparro et al., 2018; Konings
et al., 2019; Tian et al., 2018). Satellite data from a single platform or com-
binations of several platforms were extensively used in crop monitoring,
however, crop yield estimation using the whole set of the available spectral
bands has been comparatively less studied (Guan et al., 2017).

Generally, two yield prediction methods have been widely used: the
physical simulation models and the statistical models. Physical-based crop
2

models estimate yield by dynamically simulating crop growth and yield for-
mation processes (Jeong et al., 2022; Jones et al., 2017; Rosenzweig et al.,
2014), even powerful, these models require extensive locally crop specific
biotic and abiotic inputs, limiting their applicability in large-scale yield
modeling (Kang and Özdoğan, 2019; Lecerf et al., 2019). Statistical models
are widely used in operational large-scale crop yield forecasting systems
due to their simplicity, fewer inputs required, and relatively high predictive
power when sufficient training data are available (Chipanshi et al., 2015;
Johnson, 2014; Li et al., 2019b). Comparatively, statistical machine learn-
ing (ML) models have complex functions and abilities to handle compli-
cated relationships between the predictors and the target variable
(Johnson et al., 2016; Ma et al., 2021), thus the approaches have been in-
creasingly employed in the research fields of agriculture in recent years
(Cao et al., 2021; Schauberger et al., 2020).

Given the public availability of global environmental data and various re-
mote sensing products across a diverse spectral range, each of them can pro-
vide unique information and offer new opportunities for agricultural
monitoring. Several questions regarding the integration and use of these
data remain: (1) How much information can the environmental and satellite
data provide to the crop yield prediction andwhat combinations of these data
will achieve the best performance? (2) What is the performance of various
satellite data in predicting crop yield and how to combine them for crop
yield predictions in northeast China? (3) How does the within-season crop
yield forecasting perform with the progression of growing season and more
data available? In this study, we used environmental data including climate,
soil, geography, and topography and a diverse set of satellite data introduced
above to build two linear regression models (partial least-square regression
(PLSR) and least absolute shrinkage and selection operator (LASSO)), three
machine learning models (stochastic gradient boosting (SGB), support vector
regression (SVR), and random forest (RF)), and one ML ensemble model for
yield prediction of three major crops (maize, rice, and soybean) across north-
east China. The end-of-season yield modeling using different methods and
different combinations of inputs was conducted to quantify the contributions
of the environmental and satellite data in determining crop yield, the within-
season yield forecasting was conducted to analyze the model performance
with crop growth progression and more input information. The results of
this study will facilitate the synergistic use and development of new genera-
tion satellite RS products, and provide valuable information for crop yield
forecasting system development.

2. Materials

2.1. Study region

Our studywas conducted in the Northeastern region of China, which in-
cludes the Heilongjiang province, the Jilin province, and the Liaoning prov-
ince, the total area is about 0.79million km2 (Fig. 1). Northeast China is the
leading grain production region in China with a crop planting area of 0.26
million km2, which occupies more than 15% of the total crop planting area
in China, about one-fifth of the national grain is produced here. The major
crops are maize, soybean, and rice, the sum of the planting area of these
three crops exceeded 90% of the total crop planting areas in Northeast
China (Hu et al., 2021; You et al., 2021). On the other hand, Northeast
China is one of the most susceptive areas to climate change of China. It
spans the warm temperate zone, the mid-temperate zone, and the cold tem-
perate zone from south to north, with annual accumulated air temperatures
above 0 °C range from 2000 to 4200 °C·day and annual precipitation rang-
ing from 500 to 800 mm. The meteorological disasters, such as droughts,
floods, and cold damage, have become more frequent with the increase in
climatic variability, which makes northeast China to be one of the areas
with the greatest fluctuation in grain yields in China.

2.2. Crop yield

We obtained harvested yield for maize, rice, and soybean from the
agricultural statistical yearbook of each statistical division (http: //



Fig. 1. The statistical division, spatial distribution of maize, rice and soybean cultivation area in northeast China.
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www.stats.gov.cn) from 2003 to 2018 (unit: kg/ha). According to the
data availability, the crop yield was collected at the county-level in
Jilin province and Heilongjiang land reclamation system, and the crop
yield of Liaoning province and Heilongjiang province was collected at
the city-level. To reduce potential uncertainty in our following models,
a quality check was firstly conducted to identify and filter the outliers,
the yield records that fell outside the reasonable range (the mean plus
or minus two times the variance) were discarded, the statistical division
where the total crop fraction below 10% were also abandoned. Overall,
a totally of 2265, 1688, and 2117 yield records for maize, rice, and soy-
bean respectively were selected at the research areas of this study
(Fig. 1).
3

2.3. Satellite remote sensing data

2.3.1. MODIS VIs
Three satellite VIs, including Enhanced Vegetation Index (EVI),

Normalized Difference Phenology Index (NDPI), and Land Surface Water
Index (LSWI), were used in this study. EVI is a widely-used VI based on
the leaf red-edge spectral feature in the red and NIR spectral bands. The
EVI is similar to the NDVI, but sensitive to higher canopy leaf area index
and less affected by atmospheric aerosol impacts (Huete et al., 2002).
Here we use EVI from the NASA Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD13A3 (Collection 6) record, with
monthly repeat and global 1 km spatial resolution. NDPI uses a weighted

http://www.stats.gov.cn
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red-SWIR combination to replace the red band in the NDVI, it has proven to
have good performance in alleviating the adverse impact of soil back-
ground while keeping high sensitivity to canopy water content and
above-ground biomass (Wang et al., 2017; Xu et al., 2021). LSWI is calcu-
lated as normalized ratios between NIR and SWIR bands, due to the sensi-
tive of SWIR bands to soil/leaf water content, LSWI is widely employed to
monitor the water content changes in crop leaves (Xiao et al., 2006).
NDPI and LSWI used in this study were extracted from the daily MODIS
MCD43A4 product at 500 m spatial resolution. All these MODIS data pre-
processing was implemented on the GEE (Google Earth Engine) platform
(https://earthengine.google.com/).

EVI ¼ 2:5� NIR − Redð Þ
NIRþ 6� Red − 7:5� Blueþ 1

(1)

NDPI ¼ NIR − 0:74� Red þ 0:26� SWIRð Þ
NIRþ 0:74� Red þ 0:26� SWIRð Þ (2)

LSWI ¼ NIR − SWIR
NIRþ SWIR

(3)

where Blue, Red, NIR, and SWIR represent the atmospherically-corrected
surface reflectance in blue, red, NIR, and SWIR bands, respectively.

2.3.2. Satellite-based SIF data
A newly developed monthly 0.05° global SIF product (collected from

https://cornell.box.com/s/gkp4moy4grvqsus1q5oz7u5lc30i7o41) re-
trieved near 740 nm spectral window was used in this study (Wen et al.,
2020). The fine-resolution and long-term SIF product was downscaled
and harmonized from the 1° SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY (SCIAMACHY) SIF dataset and the 0.5°
Global Ozone Monitoring Experiment 2 (GOME-2) onboard MetOp-A de-
veloped at German Research Center for Geosciences (GFZ) SIF dataset
using machine learning techniques, the harmonized SIF dataset was then
validated using ground-measured SIF, and found good consistent with the
tower SIF in terms of both magnitude and timing. Moreover, the
dataset also demonstrated the capability in characterizing plant stress dur-
ing droughts and heatwaves while preserving the spatial and temporal var-
iability contained in the original SIF dataset.

2.3.3. MODIS LST
Satellite daytime and nighttime land surface temperature (LST) data

were collected and extracted from the thermal infrared bands-based
MODIS Aqua product (MYD11B3), which provides monthly data with a
5600 m spatial resolution (Wan et al., 2021). The daytime and nighttime
MODIS LST from Aqua has an overpass time of 1:30 PM and 1:30 AM
(local time) respectively which approximates the maximum and minimum
temperature of a day, and each LST pixel value in the MYD11B3 is a simple
average of all the corresponding values from the daily LST collected during
the month period. The product was collected from the NASA's Earthdata
search client website (https://search.earthdata.nasa.gov/).

2.3.4. Vegetation optical depth (VOD)
Weused a new series of satellite passive-microwave-based VOD product

(VODCA) with 0.25° spatial resolution and daily frequency (Moesinger
et al., 2020). The product combines VOD retrievals that have been derived
from multiple sensors (Special Sensor Microwave/Imager (SSM/I), Micro-
wave Imager on board the Tropical Rainfall Measuring Mission (TMI),
Advanced Microwave Scanning Radiometer - Earth Observing System
(AMSR-E), WindSat, and AMSR2) using the Land Parameter Retrieval
Model (Owe et al., 2008), and produces three separate VOD products for
microwave observations in different spectral bands, namely the K-band
(18.70 or 19.35 GHz), X-band (10.65 GHz), and C-band (6.93–7.30 GHz).
4

2.4. Environmental data

2.4.1. Climate data
The climate variables were extracted from the China regional surface

meteorological feature dataset (He et al., 2020). The dataset was produced
by merging a variety of data sources, including Princeton meteorological
forcing data, Global Land Data Assimilation System (GLDAS) data, The
Global Energy and Water Cycle Experiment-Surface Radiation Budget
(GEWEX-SRB) shortwave radiation dataset, Tropical Rainfall Measuring
Mission (TRMM) satellite precipitation analysis data and China Meteoro-
logical Administration (CMA) station data and has a temporal and spatial
resolution of 3 h and 0.1°, respectively. The dataset incorporated CMA sta-
tion data, therefore, it is more accurate in China compared with other
datasets and is generally preferable for modeling studies in China (Chen
et al., 2011; Liu and Xie, 2013). The primary climate variables utilized in
this study included mean temperature (Temp), precipitation (Pre), specific
humidity (Shum), and shortwave radiations (Srad) and were acquired from
theNational Tibetan Plateau/Third Pole Environment Data Center (https://
data.tpdc.ac.cn).

2.4.2. Soil data
Soil properties are also critical for plant growth and have significant im-

pacts on crop yield. The soil physical and chemical attributes used in this
study were extracted from the 1 km resolution China soil properties and
soil hydraulic parameters dataset (http://globalechange.bnu.edu.cn),
which was derived from 8979 soil profiles and the Soil Map of China
using the polygon linkage method (Dai et al., 2013; Shangguan et al.,
2013). We considered nine topsoil (0–4.5 cm) soil properties and two soil
hydraulic parameters in our study, including bulk density (BD), cation ex-
change capacity (CEC), soil texture, organic carbon content (SOC), pH,
rock fragment (GRAV), porosity (POR), total phosphorus (TP), total potas-
sium (TK) saturated water content (theta_s) and saturate hydraulic conduc-
tivity (k_s).

2.4.3. Geography and topography data
In addition to the climate and soil data, we also used the geography and

topography data in our yield prediction models, the former is the longitude
and latitude of the center of each statistical division, and the latter is the el-
evation extracted from the 1 km SRTM GDEM dataset released from the
NASA Land Processes Distributed Active Archive Center (https://lpdaac.
usgs.gov/).

2.5. Crop type maps

The 10 m crop type maps in Northeast China of 2018 were used to ag-
gregate the satellite and environmental variables to the statistical division
for maize, rice and, soybean, respectively. The crop type maps are a yearly
time-series Sentinel-2 images based crop type classification product using
the random forest (RF) algorithm and a sophisticated feature selection pro-
cedure (You et al., 2021). The classification accuracy for maize, rice, and
soybean is 82%, 96%, and 79%, respectively. Details on the data for this
study are provided in Table 1.

3. Methodology

3.1. Exploratory data analysis

Before model construction, an exploratory data analysis was conducted
to reduce input dimensionality and select appropriate inputs. For this pur-
pose, simple correlation analysis was firstly performed between each
variable and crop yield. Variables that have insignificant correlation
(P > 0.01) with crop yield were discarded to avoid bias and exclude the im-
practical variables. For the remaining variables that have significant corre-
lationwith yield variations, the correlation coefficients among the variables
were calculated to identify the highly correlated variables with correlation
coefficients large than 0.85. In order to avoid bias resulting from the co-

https://earthengine.google.com/
https://cornell.box.com/s/gkp4moy4grvqsus1q5oz7u5lc30i7o41
https://search.earthdata.nasa.gov/
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
http://globalechange.bnu.edu.cn
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/


Table 1
Summary of the datasets used in this study.

Category Variable (abbreviation) Spatial
Resolution

Temporal
Resolution

Time Coverage Source/Reference

Crop yield Crop yield Statistical
division

Yearly 2003–2018 Agricultural Statistical
Yearbook (http://www.
stats.gov.cn)

Satellite
data

Enhanced vegetation index (EVI) 1000 m Monthly 2003–2018 MODIS MOD13A3 EVI
product

Normalized difference phenology index (NDPI)
Land surface water index (LSWI)

500 m Daily 2003–2018 MODIS MCD43A4 NBAR
product

Solar-induced fluorescence (SIF) 0.05° Monthly 2003–2018 Wen et al. (2020)
Land surface temperature (LST) 5600 m Monthly 2003–2018 MODIS MYD11B3 LST

product
Vegetation optical depth (VOD) 0.25° Daily C-band

(2003–2018),
K-band
(2003–2016),
X-band
(2003–2018)

Moesinger et al. (2020)

Climate
data

Mean temperature (Temp), precipitation (Prec), specific humidity (Shum), shortwave
radiation (Srad)

0.1° 3 h 2003–2018 He et al. (2020)

Soil
property

Bbulk density (BD), cation exchange capacity (CEC), soil texture, organic carbon content
(SOC), pH, rock fragment (GRAV), porosity (POR), total phosphorus (TP), total potassium
(TK), saturated water content (theta_s), saturate hydraulic conductivity (k_s)

1000 m – – Dai et al. (2013), Shangguan
et al. (2013)

Geography Longitude (Lon), latitude (Lat) Statistical
division

– – –

Topography Elevation 1000 m – – NASA LPDAAC
(https://lpdaac.usgs.gov/)

Crop type
maps

Maize, rice, soybean map 10 m Yearly 2018 You et al. (2021)
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linearity of the environmental variables, the variable that has a smaller ab-
solute correlation coefficient value with crop yield in each high correlated
variable pair was discarded.

3.2. Model configuration

We used two linear regression methods (PLSR and LASSO), three ML
methods (SGB, SVR, and RF), and one ML ensemble model to develop the
crop yield models. A general description of the six models is provided in
the Supplementary Material. Prior to yield prediction, all the satellite and
environmental data were spatially resampled to 1 km using nearest neigh-
bor method and temporally aggregated to the monthly steps. Then, the
crop type maps of the three crops were resampled to 1 km and were used
on the image layers to mask out the non-target crop pixels from 2003 to
2018, and all the cropmasked satellite and environmental layers were proc-
essed to extract statistical division-level data based on the statistical divi-
sion boundaries. To evaluate the performance of the models, the ten-fold-
cross-validation method was used, the method randomly splits the whole
dataset into 10 folds, and uses 9 folds for training and 1 fold for testing.
For each model, the crucial hyper-parameters were optimized based on
the highest R2 and the lowest RMSE by ten-fold cross-validated using the
training data. Finally, the optimized models were applied to the testing
dataset and calculated the predicted R2s and RMSEs.

3.3. Yield prediction using various combinations of environmental and satellite
data

To answer the research questions proposed in this paper, three groups of
input variables were designed and applied with the two linear regression
methods and four machine learning methods. The first group was designed
to explore the contributions of either environmental data or satellite data
for predicting crop yield. We divided the potential input data into three
types of feature sets, including climate data, satellite data, and static vari-
ables (soil properties, geography, and topography data), the following six
combinations of inputs were set, they are (1) Climate only; (2) Satellite
only; (3) Climate plus satellite; (4) Static plus climate; (5) Static plus satel-
lite; (6) Static plus climate and satellite.
5

The second group was designed to identify the unique and overlapping
contributions of satellite data from a diversity of spectral bands to crop
yield prediction. Due to the recognized value and widely utilization of
EVI in crop yield estimation, the combined variables of static plus EVI
was set as the benchmark input, and the following ten combinations of in-
puts were set, they are (1) Static plus EVI; (2) Static plus NDPI; (3) Static
plus LSWI; (4) Static plus SIF; (5) Static plus LST; (6) Static plus VOD;
(7) Static plus EVI, NDPI and LSWI; (8) Static plus EVI and SIF; (9) Static
plus EVI and LST; (10) Static plus EVI and VOD. Since the three VOD prod-
ucts performed almost the same in predicting crop yield (Fig. S1), the VOD
data used in the above combinations were extracted from the C-band VOD
product. The above two groups were run on an end-of-season mode, the
predictions were conducted with the full knowledge of each combination,
and the estimation of the crop yield can be performed only once the grow-
ing season is concluded. This mode aims at analyzing the sensitivity of en-
vironmental data and satellite data from a diversity of spectral bands on the
final crop yield, obtaining an independent crop yield assessment at the end
of the season.

The third group was conducted on a within-season forecasting mode
which intends to estimate the final crop yield during the growing season,
before the harvest. All predictor variables after exploratory data analysis
and the ML ensemble method were used to develop the yield forecasting
system. The multi-source environmental and satellite variables were firstly
aggregated into six groups by different month (from April to October) for
each crop type. The forecasting events were then triggered successively at
each month, and the predictors were added with crop growth progression.
The leave-one-year-out cross validation method was used to evaluate the
model performance.

3.4. Variable importance

To demonstrate the most important predictors, the relative importance
of each input variablewas calculated using the Boruta algorithm (Kursa and
Rudnicki, 2010). Boruta is a wrapper algorithm in which several runs of
random forest regression are performed. Before each run, a shadow feature,
which is derived by shuffling the values of the original feature across data
items, is created for each feature. After each random forest run, the features

http://www.stats.gov.cn
http://www.stats.gov.cn
https://lpdaac.usgs.gov/
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that have significantly lower importance than the shadow feature with the
highest importance are classified as unimportant and removed from the fol-
lowing runs, the features that have significantly higher importance are clas-
sified as important and are included in the following runs. Boruta ends
when all features are classified either as unimportant or important or
when a specified limit of random forest runs is reached. In this study, we
run the Boruta algorithmwith a 0.99 confidence level, z-scores of mean de-
crease accuracy measure to gather permutation importance, and 100 max-
imum runs of random forest.

4. Results

4.1. Correlation of crop yield with climate and remote sensing variables

Before exploratory data analysis, the seasonal cycles of all the input co-
variates were examined (Fig. 2). Generally, all the covariates showed a sim-
ilar pattern of mid-summer peak during the crop growing season (July–
August) but differed with onset and peak timing. EVI, NDPI, LSWI, and
VOD reached their peak in August, while EVI, NDPI, LSWI demonstrated
Fig. 2. Normalized average monthly values of satellite (left column) and climate (right
soybean (bottom), the original values were normalized to 0–1 to match their minimum

6

similar seasonal cycles, the seasonal cycle of VOD lags behind the other co-
variates both at the beginning and the end of the growing season. SIF and
nighttime LST increased faster than EVI in the green-up stage and reached
their peak in July, which was consistent with climate variables including
Temp, Prec, and Shum. The two covariates also showed similar cycles and
have earlier drops than EVI during the latter portion of the growing season,
indicating photosynthesis is susceptible to climate variations. However,
compare to SIF, the nighttime LST showed a faster increasing rate in the
green-up stage and a slower decreasing rate after the peak timing. The sea-
sonal cycles of daytime LST and Srad differed with the other covariates,
these two covariates increased earlier than the other covariates and reached
their peak in June, after that, the two covariates start to decrease with a
slow rate. The three VOD products showed similar seasonal cycles
(Fig. S2), only small difference of signal magnitude was found in July and
October.

We then conducted the exploratory data analysis by looking at correla-
tions among all the satellite/climate variables and crop yield from 2003 to
2016 (Fig. 3). The maize yield was better correlated with remote sensing
variables (EVI, NDPI, LSWI, SIF, LST, and VOD) than climate variables
column) covariates averaged for the study region of maize (top), rice (middle) and
and maximum values.



Fig. 3. Pearson correlation coefficients among statistical division-level climate and satellite variables in July (left column), August (middle column) and selected month
(month that have the highest correlation coefficient with yield, right column) as well as final harvested yield for maize (top), rice (middle) and soybean (bottom).
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(Temp, Prec, Shum, and Srad), EVI in July andAugust, LSWI inAugust, day-
time LST in October and VOD inMay showed correlation coefficients larger
than 0.3 with maize yield. The climate variables were less correlated with
maize yield with correlation coefficients smaller than 0.2, except for the
Srad inOctober. Among all the climate variables, maize yieldwasmore cor-
related with Prec in September, Temp, Shum, and Srad in October than in
the other months (Fig. 3c). Different patterns were observed for rice and
soybean, during the peak growing season (July and August), the yield of
these two crops was better correlated with climate variables (Temp, Prec,
and Shum) than the remote sensing variables (EVI, NDPI, LSWI, SIF, and
LST) (Fig. 3d, e, g,& h), while remote sensing variables in the early growing
season showed better correlations with rice and soybean yield. EVI in May,
nighttime LST in June and July, NDPI, SIF, and VOD in May showed signif-
icant correlations with rice yield (correlation coefficients larger than 0.3),
Shum and Temp in July also positively correlated with rice yield with cor-
relation coefficients larger than 0.3 (Fig. 3f). For soybean, EVI, and SIF in
July, LSWI in June, NDPI, and VOD in May showed better correlations
with soybean yield than the other variables, Shum and Temp in July also
positively correlated with soybean yield (Fig. 3i). The three VOD products
7

in May, July and August all showed significant negative correlations with
crop yield, while VOD in May has the best correlation with crop yield rela-
tive to VOD in the other months. Maize yield was slightly more correlated
with X-band VOD, while rice and soybean yield was slightly more corre-
lated with K-band VOD.

There were also strong correlations among climate and remote sensing
variables themselves. Except for the strong correlations between the three
VOD products, significant positive correlation coefficients were observed
between NDPI and LSWI and between NDPI and VOD for both maize and
soybean, respectively, Temp positively correlated with nighttime LST, day-
time LST and Shum for all the three crops. Comparedwith Temp and Shum,
Prec and Srad are less correlated with remote sensing variables.

4.2. Performance of environmental and satellite data in crop yield prediction

The first group experiment was conducted by applying the six methods
using the six combinations of environmental and satellite data from 2003 to
2018, the performance of yield prediction is shown in Fig. 4. Generally, bet-
ter performance is achievedwithmore input data. TheML ensemblemodel



Fig. 4. The model performance (R2 and RMSE) of maize (top), rice (middle) and soybean (bottom) yield prediction using the six methods and different combinations of
environmental and satellite data for the whole growing season.
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outperformed the othermodels, followed by the threeMLmodels (RF, SVR,
and SGB), the linear model based on PLSR performed the worst, indicating
the non-linear relationship between yield and different variables. Static,
satellite, and climate data together as inputs achieved the best performance,
which explains 72%, 69%, and 57% of maize, rice, and soybean yield vari-
ability, respectively. For all the experiments, climate data only as input had
the worst performance, explaining 53%, 44%, and 36% of maize, rice, and
soybean yield variability, respectively. Satellite data only as input achieved
much better performance than climate data, improved more than 10% of
yield prediction ability compared to climate data, indicating satellite data
with expanded spectral ranges can provide more information than climate
variables to reflect crop growth. For maize and soybean yield prediction,
the combined use of satellite and climate data as inputs achieved higher
performance than the individual data, demonstrating unique valuewas pro-
vided from both the two datasets. Adding static variables to the satellite or
climate data as inputs also showed better performance than individual
input, while models with static plus satellite data as input outperformed
8

models with static plus climate data, but slightly underperformed the
model with all the variables, indicating that the static variables, climate
data, and satellite data contain complementary information that is worth
exploiting jointly, satellite data used in this study cannot replace climate
data for maize and soybean yield prediction in northeast China. However,
for rice yield prediction, even static variables improved the prediction
performance by adding them to the individual input, we notice that
almost equivalently performance was achieved between satellite data
and climate+satellite data and between static+satellite data and static
+climate+satellite data, indicating that climate data does not add extra
contributions beyond satellite data for rice yield prediction.

4.3. Performance of multi-source satellite data in crop yield prediction

We further conducted the second group experiment using static plus sat-
ellite data with various spectrum bands from 2003 to 2018 (Fig. 5). The
benchmark model with static plus EVI as input has a lower R2 performance



Fig. 5. The model performance (R2 and RMSE) of maize (top), rice (middle) and soybean (bottom) yield prediction using the six methods and different satellite data for the
whole growing season.
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than that of static plus all the satellite variables, indicating that other satel-
lite data beyond EVI provide added value in explaining crop yield variabil-
ity. For maize yield prediction, static plus LST performed better than the
other RS variables with the highest R2, followed by static plus SIF, models
with these two combination inputs all showed higher R2s than the bench-
mark models (Fig. 5a). Static plus LSWI or NDPI or VOD achieved a
worse performance than the benchmark model, static plus VOD has the
worst performance with the lowest R2. For rice yield prediction, static
plus SIF, static plus LST, and static plus EVI showed equivalent perfor-
mance, while static plus NDPI performed the worst with the lowest R2

(Fig. 5b). For soybean yield prediction, static plus LST performed best
than the other RS variables, followed by static plus LSWI, which performed
better than static plus EVI, static plus VOD performed the worst (Fig. 5c).

To further explorewhich satellite variables beyond EVI providedunique
value for crop yield prediction, we rerun the models by adding one or two
satellite variables into the benchmark model, with results shown in Fig. 6.
For maize, all the combinations with more satellite variables achieved bet-
ter performance than the benchmark model (Fig. 6a), indicating each satel-
lite variable beyond EVI can provide added value in explaining crop yield
variability. Adding SIF to the benchmark model improved the prediction
performance the most, the R2 was improved from 0.65 to 0.70 for the en-
semble model, the use of LST also improved the benchmark model obvi-
ously, with R2 of 0.69 for the ensemble model. The combined use of EVI
with NDPI and LSWI or VOD only improved the performance slightly,
9

varying from 0.01 to 0.02 increases in the predicted R2. For rice, the yield
prediction performance was only improved by adding SIF or VOD into
the benchmark model (Fig. 6b), although the improvement is slight with
a 0.01 to 0.02 increase in the predicted R2. Adding NDPI, LSWI, and LST
into the benchmark model did not improve the prediction performance, in-
dicating no unique information was provided to the benchmark model. For
soybean, improvement of yield prediction was observed in the case of
adding each satellite variable except for VOD into the benchmark model
(Fig. 6c), adding LST to the benchmarkmodel improved the prediction per-
formance themost, the R2was improved from0.54 to 0.57 for the ensemble
model, no added value of VOD for soybean yield prediction was observed
relative to the benchmark model.

4.4. Within-season forecasting performance

The third group experiment was conducted to analysis the within-
season forecasting performance for the three crops at different months,
the time series R2 achieved by the ML ensemble model from April to Octo-
ber are shown in Fig. 7. In general, the model performed poorly during the
early growing season. Along with crop growth and development, the pre-
diction accuracy gradually increased as more information became avail-
able, and model performance became stable since July (for rice) and
August (for maize and soybean) when crops transit from the vegetative
stage to the reproductive stage. Moreover, crop yields can be satisfactorily



Fig. 6. The model performance (R2 and RMSE) of maize (top), rice (middle) and soybean (bottom) yield prediction using the six methods and different combinations of
satellite data for the whole growing season.
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forecasted at around two to three months prior to harvest for maize (R2 =
0.70, RMSE = 1.05 ton/ha), rice (R2 = 0.69, RMSE = 0.70 ton/ha), and
soybean (R2 = 0.57, RMSE = 0.40 ton/ha).

4.5. Feature importance of predictor variables

The feature importance of each predictor variables was used to reflect
the contribution of different predictors to predict yield. According to the
Boruta algorithm, all predictor variables after exploratory data analysis
were confirmed important to predict crop yield. The relative importance
of the top 50 predictor variables for yield prediction of the three crops
was shown in Fig. 8. In general, the longitude, latitude, DEM, EVI, and
VOD in several months were ranked the top and identified more important
than other variables, soil properties like GRAV and theta_s were also highly
ranked, indicating their strong ability to explain crop yield variations. Yield
prediction accuracy was less affected by precipitation and shortwave radia-
tion in northeast China for their lowly-rank among all the variables.
10
However, other variables explain yield varied for different crops. For
maize, EVI in July and August, VOD in May and June were ranked the
most important, followed by longitude, latitude, DEM and LSWI in August,
climate variables were identified less important and ranked in the middle-
latter portion of all the variables, Temp in September and October, Shum in
October, and Srad inAugustwere rankedmore important than the other cli-
mate variables. SOM, CEC, TK, BD, and nighttime LST were also identified
less important (Fig. 8a). For rice, VOD in May, June, July, and October,
DEM, EVI in July were top-ranked, nighttime LST in May, NDPI in April,
and soil nutrition indicators (TK, SOM) were also identified as important
variables, climate variables were lowly ranked with Shum in October,
Temp in July were more important than the other climate variables
(Fig. 8b). For soybean, VOD and static variables were dominant in the top
important variables, specifically, VOD in April, May, and June, longitude,
latitude, DEM, soil texture (SI and CL), and soil nutrition indicators (TK,
TP, and SOM) were highly ranked. Beyond that, EVI in July and August,
SIF in July and daytime LST in August were also highly ranked. For climate



Fi
g.

7.
W
ith

in
-s
ea
so
n
fo
re
ca
st
in
g
pe

rf
or
m
an

ce
fo
r
m
ai
ze

(a
),
ri
ce

(b
),
an

d
so
yb

ea
n
(c
).

Z. Li et al. Science of the Total Environment 815 (2022) 152880

11



Fig. 8. The relative importance of top 50 predictor variables for yield prediction of maize (a), rice (b) and soybean (c). The importance of each variable was based on the z-
scores of mean decrease accuracy from the Boruta algorithm.
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variables, Shum in July and October, Temp in August, September, and
October were more important than the other climate variables (Fig. 8c).

5. Discussion

5.1. Combining environmental and satellite data achieves best yield prediction

Our results showed that the combination of environmental (climate,
soil, geography, and topography) and satellite data has achieved the best
performance for predicting crop yield in northeast China, the combined
use of satellite and climate data outperformed the individual input, indicat-
ing all the three types of data provided unique information to the final crop
yield prediction. In the situation of using individual data sources, satellite
data can achieve better predictive performance than the climate data
alone, which is different from the previous studies (Cai et al., 2019). In
our study, more satellite products covering a variety of spectrum were
used, these data can provide more information beyond AGB that traditional
visible-NIR based VIs provides, such as LST can reflect the water and heat
stress of crop canopy (Johnson, 2014; Khanal et al., 2017), SIF is a good
proxy of plant photosynthesis, VOD can reflect the soil and canopy water
conditions in deeper layer (Chaparro et al., 2018; Konings et al., 2019;
Tian et al., 2018). The Pearson's correlation and feature importance analy-
sis showed that satellite data in the early-peak of the growing season were
more important and better correlated with crop yield, while crop yield was
better correlated with climate factors in the peak-late season (Figs. 3; 8).
The information provided by satellite data in the early-peak season is an im-
portant indicator for crop photosynthesis and aboveground biomass, which
reflects the accumulated historical climate effects as well as other biotic ef-
fects before and during the peak season, the newly carbon accumulated
during these periods mostly goes to the grain, which makes the satellite
data before and during the peak time highly correlated to final yield (Cai
et al., 2019; Guan et al., 2017). After that, satellite data is less correlated
12
with the yield due to the grain formation process and canopy senescence
(Cai et al., 2019). In fact, crop yield ultimately depends on grain weight,
a product of aboveground biomass and “Harvest Index” (HI), with the latter
mainly determined by themiddle-late growing season, the crop growth pro-
cesses in these periods are highly sensitive to temperature and water
stresses, which can be better reflected by climate factors than satellite
data (Guan et al., 2017). This can explain the highly negative correlations
between October shortwave radiation and temperature with maize yield,
and the highly positive correlation between July specific humidity and
July temperature with rice and soybean yield. Some other critical factors,
such as biotic stress information, can be captured by soil property, geogra-
phy and topography variables, which also contributed to explaining more
yield variability. Soil properties can provide unique information which di-
rectly influence crop water uptake and nutrient uptake, such as saturated
water content (theta_s) decides the water storage in the soil column and
thus influences crop's resistance to drought stress (Li et al., 2019a), soil
with high SOM, TP and TK provides nutrient-rich conditions which benefit
crop growth (Kravchenko and Bullock, 2000;Ma et al., 2021). Other predic-
tors like longitude, latitude, and DEM are good indicators of crop growth
environmental conditions like photoperiod, climate spatial variations (Xie
et al., 2015). Our results demonstrate the necessity of combining climate,
satellite, and other environmental data for estimating crop yield.

5.2. The unique value of multi-sensor satellite data in crop yield prediction

Our study found that additional and unique information about crop
growth can be revealed by other satellite data beyond widely used EVI. In
the spectral ranges from visible to SWIR, VIs like LSWI andNDPI have similar
seasonality congruentwith the crop growth cycle of EVI (Fig. 2), the three VIs
all shared information related to aboveground canopy biomass, combining
the three VIs together as inputs just slightly improve the model performance
compared with EVI only, thus little unique information beyond EVI was
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provided for crop yield. Comparatively, SIF achieved a better performance
than EVI for maize yield prediction and comparative predictive performance
with EVI for soybean and rice yield prediction, combining the two sources has
obviously improved the model performance compared with individual input
for the three crops. SIF is the active emission from plant chlorophyll in its
photo-machinery and has been used as a proxy of plant photosynthesis, it
was proven to be more sensitive to short-term crop stresses induced from bi-
otic and abiotic factors (Hao et al., 2021; Porcar-Castell et al., 2021), the fine
resolution SIF product used in this study has provided additional information
beyond EVI for crop yield prediction.

Among all the tested satellite data, LST had an overall best performance in
predictingmaize and soybean yield than the other satellite variables, combin-
ing EVI and LST as inputs also achieved amuch better predictive performance
than individual input. MODIS LST product is a direct measurement of canopy
temperature, it is widely accepted as an indicator of field-level crop water
stress. Healthy cropswith sufficient water were expected to have a lower can-
opy temperature than the air temperature, as water becomes limited, evapo-
transpiration decreases and canopy temperature approaches air temperature,
thus LST is superior to reflect canopy water stress and evaporative cooling
(Pede et al., 2019). LST provided unique information beyond EVI for crop
yield prediction.

Unlike optical VIs, which are related to the aboveground biomass, the
microwave RS data-derived VOD is sensitive to the canopy structure, the
living aboveground biomass and other plant hydraulic properties (volumet-
ric water content) (Grant et al., 2016). In our case, VOD had a worse perfor-
mance than EVI for yield prediction of the three crops, which might be
caused by the coarse spatial resolution (0.25°) that could not capture
small and localized crop features in space. However, VOD was highly
ranked among all the RS data in the crop prediction models, combining
EVIand VOD has improved the maize and rice yield prediction perfor-
mance, indicating VOD revealed other unique information beyond EVI.
Pearson's correlation showed that crop yield was highly correlated with
VOD in the early growing season (May and June), the microwave VOD
also showed a lagged seasonal cycle compared with the other RS metrics
(Fig. 2), the C-band VOD product used in this study has a lower microwave
frequency, it may contain more information from deeper canopy layers and
surface soil moisture, especially prior to canopy closure (Mateo-Sanchis
et al., 2019), indicating VOD provided useful independent information for
crop yield prediction in our study.

5.3. Ensemble model improved the crop yield prediction performance

The use of a single model to predict crop yield has become popular, our
results showed that ML methods (SGB, SVR, and RF) achieved better perfor-
mance than the linear regression (PLSR and LASSO), whichmay be attributed
to the non-linear relationships between climate, satellite variables and crop
yield that documented by previous researches (Azzari et al., 2017; Lobell,
2013), ML methods are well performed in capturing the potential complex
and nonlinear relationships between input variables and crop yields rather
than the linear regression models (Cao et al., 2021). However, the single
model will inevitable be under-fitted or over-fitted (Fang et al., 2021). Our
study showed that the single ML model can be outperformed by the ML en-
semble model. Ensemble models are proved to be effective in reducing the
uncertainty of model fitting and improving the generality and robustness
compared to single models by combining the prediction results of several sin-
gle models (Pham and Olafsson, 2019; Schwenker, 2013; Shahhosseini et al.,
2020a; Shahhosseini et al., 2020b). Thus compared to traditional yield pre-
diction methods, the ensemble method provides new opportunities for yield
predictions over a large area, future studies are still needed to explore more
robust ensemble models by integrating more ML or deep learning models
and using robust base learners.

5.4. Study limitations and future directions

This study highlighted the values of environmental and multi-source
satellite data for crop yield estimation in northeast China using linear
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regression and ML models. Nevertheless, there are some limitations and
prospectswhich should be addressed in the future study. Firstly, the current
crop maps of maize, rice, and soybean are static for all the years from 2003
to 2018. In fact, the crop planting area changes from year to year, and a
static crop map can lead to errors when we extract the area for the climate
and satellite data in modeling yield. Future studies should use crop type
maps updated annually to reduce the potential errors. Secondly, it would
be useful in the future to add more climate and satellite variables to the
yield prediction model as they may provide complementary information
to further improve the crop yield prediction, such as agro-climatic indices
obtained from direct weather data (Jiang et al., 2020; Mathieu and Aires,
2018), newly developed satellite products like near-infrared reflectance of
vegetation (NIRV), which will provide complementary information than
satellite variables that are used here (Badgley et al., 2017; Guan et al.,
2017; Peng et al., 2020), and microwave-based soil moisture products
(e.g. European Space Agency Climate Change Initiative (CCI), AMSR-E/2,
Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive
(SMAP), and Chinese FengYun-3) were also found to be important for
crop yield prediction throughout the growing season (Li et al., 2021; Zeng
et al., 2020; Zeng et al., 2015). Thirdly, most of the environmental and sat-
ellite datasets used in this study are only available at relatively coarse spa-
tial resolution (≥ 5 km), which might bring errors to the yield forecasting
models due to the inability of these sensors to resolve biomass and yield
characteristics of the heterogeneous croplands. Future studies may use sat-
ellite sensors with a higher spatiotemporal resolution including satellite
sensors in optical (e.g. Landsat, Sentinel-2, Fluorescence Explorer (Drusch
et al., 2017)) and microwave synthetic aperture radar (e.g. Sentinel-1),
which may provide more effective information in local areas. Moreover,
fusing fine temporal resolution but coarse spatial resolution satellite data
(e.g. MODIS, Advanced Very High Resolution Radiometer (AVHRR)) with
fine spatial resolution but coarse temporal resolution satellite data (e.g.
Landsat, Sentinel) into high spatial-temporal satellite data is also an alterna-
tive strategy for fine-scale cropmonitoring and yield estimation (Gao et al.,
2017; Li et al., 2018).

6. Conclusions

In this study, we investigated the relative performances of environ-
mental and multi-source satellite data for yield forecasting of three
major crops in northeast China, two linear regression approaches,
three ML approaches, and one ML ensemble method were used to
build yield prediction models with different combinations of input
variables. Our study showed that, overall, the ensemble mode
outperformed the regression and ML models, and better performance
is achieved with more input data, integrating climate, satellite, soil, ge-
ography, and topography data achieved the best performance for maize
and soybean yield prediction, while combining satellite, soil, geography
and topography data as input performed equivalently with all data in-
cluded and performed better than the other combinations for rice
yield prediction. Specifically, satellite data mainly contribute to yield
prediction in the early-peak growing season, while climate data contrib-
ute more to yield prediction at peak-late growing season. For the multi-
source satellite data, the VIs that cover spectral ranges from visible to
SWIR share similar information related to aboveground biomass, the
combined use of these VIs did not obviously improve yield prediction
performance compared to the EVI only model. Instead, the SIF, LST,
and VOD products can provide unique information rather than above-
ground biomass, improvements of model predictive skills for crop
yield at the county level were observed compared to the EVI only
model, thus we suggest to continue taking advantage of the visible-
NIR VI record, while incorporating other satellite data from a wide spec-
tral range for cropland monitoring. The within-season yield forecasting
showed that, with crop growth progression and more information be-
came available, crop yields can be satisfactorily forecasted at two to
three months prior to harvest. Geography, topography, VOD, EVI, and
soil hydraulic and nutrient parameters were identified as important
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covariates. This study provided key information to identify useful pre-
dictor variables for capturing the spatiotemporal variability of crop
yield, which provides a path to fully integrating these data to develop
robust yield forecasting systems.
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