Towards Understanding the Origin and Evolution of Ultra-Diffuse Galaxies

Remco van der Burg CEA Saclay, France

Cristóbal Sifón, Adam Muzzin, Henk Hoekstra, KiDS & GAMA Collaborations

At the beginning of 2015...

FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

PIETER G. VAN DOKKUM¹, ROBERTO ABRAHAM², ALLISON MERRITT¹, JIELAI ZHANG², MARLA GEHA¹, AND CHARLIE CONROY³

A long history of Low Surface-Brightness galaxies...

van Dokkum et al. 2015b, after Brodie et al. 2011

- Control LSBs have been known before (Impey+88, Bothun+91, Turner+93, Dalcanton+97, ...)
- Ultra-Diffuse Galaxies (UDGs) are extremes in the size-luminosity diagram:

$$r_{eff} > 1.5 \text{ kpc}$$

$$<\mu (r,r_{eff})>\approx 25 \text{ mag arcsec}^{-2}$$

How can UDGs survive the harsh dynamical environment of galaxy clusters?

Models rely on quantitative observational constraints

A systematic study of UDGs in

8 low-z clusters

Image simulations to quantify completeness

vdBurg+16b A&A, 590, 20 ArXiv:1602.00002

- Tightened selection criteria (SExtractor & GALFIT) to keep purity high
- Estimate background statistically using "empty" fields
- 2500 selected in 8 clusters, 600 selected in 4 reference fields

What are their physical properties?

Colour-magnitude distribution

- Selection based only on morphology
- All on the red sequence -> old stellar populations
- Median stellar mass ≈ 10⁸ M_☉

See also: van Dokkum+15 Koda+15

Abundance versus halo mass

Size distribution

- Number of UDGs roughly scales linearly with halo mass

 Mass measurements: Sifón+15
- O Total stellar mass in UDGs ≈ 0.2% of total cluster stellar mass
- O Steep size distribution -> largest UDGs very rare

Radial distribution of UDGs

- Einasto parameters different from typical dark matter halo
- Where does this distribution originate from?

Radial distribution of UDGs

Total stellar-mass-weighted distribution

of quiescent galaxies vdBurg+15

Roughly follows dynamically old population in outskirts

Radial distribution of UDGs

Total stellar-mass-weighted distribution

of quiescent galaxies vdBurg+15

- O They can exist down to 300kpc (3D radius, before projection)
- O They have to be centrally dark-matter dominated
 - Are they "failed Milky-Ways"? (van Dokkum+2015)

How to explain the UDG population?

- O Tidal debris
 - Very unlikely given their smooth morphologies
- O Tidally disturbed/heated "normal" dwarf galaxies
 - O Unlikely given their extended radial distribution
- Failed Milky-Way type galaxies
 - O Still unclear why some haloes would have "failed"
 - At least some UDGs have very high masses (MW-like) (van Dokkum+16)
- O Internal processes responsible? e.g. Amorisco & Loeb 2016, Di Cintio+17

How to explain the UDG population?

- O Tidal debris
 - O Very unlikely given their smooth morphologies
- O Tidally disturbed/heated "normal" dwarf galaxies
 - O Unlikely given their extended radial distribution
- Failed Milky-Way type galaxies
 - O Still unclear why some haloes would have "failed"
 - At least some UDGs have very high masses (MW-like) (van Dokkum+16)
- O Internal processes responsible? e.g. Amorisco & Loeb 2016, Di Cintio+17

Halo measurements and studies in other environments essential to make progress

Measuring halo masses of UDGs

- O Difficult (expensive!) to use methods that rely on stellar tracers of the potential (van Dokkum+16)
 - O Using Globular Clusters may help (Beasley+16, Amorisco+16b)
- An alternative is to measure the masses of UDGs via weak gravitational lensing
 - O CFHT data were taken with weak gravitational lensing in mind
 - O Signal from Milky-Way type haloes should stand out

A first constraint on the average mass of ultra diffuse galaxies from weak gravitational lensing

Cristóbal Sifón^{1,2}, Remco F. J. van der Burg³, Henk Hoekstra², Adam Muzzin⁴ and Ricardo Herbonnet²

O Stack of 784 UDGs in 18 clusters

(ArXiv:1704.07847)

No significant detection!

Abundance versus halo mass

O Does this relation extend down to groups? And individual galaxies? (cf. Román & Trujillo 2017; Merritt+2016)

The UDG abundance from clusters to groups

O Kilo-Degree Survey (KiDS)

- vdBurg+17 ArXiv:1706.02704
- Clean r-band imaging down to 25 mag arcsec² over 1500 deg²
- O Galaxy And Mass Assembly (GAMA) spectroscopic survey
 - O 325 spectroscopic groups up to redshift 0.10 (three equatorial fields)
- O 200 deg² overlap between GAMA and KiDS

The UDG abundance from clusters to groups

- O UDGs also in groups (cf. Román & Trujillo 2017; Merritt+2016)
- Abundance scales steeply with mass

The UDG abundance from clusters to groups

- O Richness -mass relation shallower than 1:1
- O UDGs are relatively more common in more massive haloes

UDGs are relatively more common in wdBurg+17 more massive haloes ArXiv:1706.02704

- Why? Not yet clear...
- Are they a fixed fraction of the general dwarf galaxy population?
 - O Possible upturn of the luminosity function at the faint end (Popesso+05)
- O UDG properties may depend on environment
 - O Different Sérsic indices in clusters (n≈1.4) and groups (n≈2.2)
 - O Combination of different formation mechanisms?

Summary

- Abundance of UDGs in groups and clusters not yet understood
- O Constraints from a systematic study in 8 nearby clusters
 - O Steep size distribution (largest UDGs rare)
 - O Colour-magnitude distributions (old stellar populations)
 - O They follow dynamically old galaxies spatially, with central deficit

vdBurg+16 (1602.00002)

- To further test models, essential to measure halo masses, and estimate abundance in other environments
 - Weak lensing study rules out (at 2σ) that they are all "failed Milky Ways" Sifón,vdB+17 (1704.07847)
 - O UDGs are relatively more common in more massive haloes vdBurg+17 (1706.02704)
- Combination of different mechanisms to make UDGs?