On the dependencies of logical rules

Marc Bagnol', Amina Doumane?, and Alexis Saurin? *

L IML, Université d’Aix-Marseille, bagnol@iml.univ-mrs.fr
2 PPS, CNRS, Université Paris Diderot & INRIA,

{amina.doumane,alexis.saurin}@pps.univ-paris-diderot.fr

Abstract. Many correctness criteria have been proposed since linear
logic was introduced and it is not clear how they relate to each other.
In this paper, we study proof-nets and their correctness criteria from
the perspective of dependency, as introduced by Mogbil and Jacobé de
Naurois. We introduce a new correctness criterion, called DepGraph, and
show that together with Danos’ contractibility criterion and Mogbil and
Naurois criterion, they form the three faces of a notion of dependency
which is crucial for correctness of proof-structures. Finally, we study the
logical meaning of the dependency relation and show that it allows to
recover and characterize some constraints on the ordering of inferences
which are implicit in the proof-net.

Keywords: Linear logic, MLL, Proof nets, Correctness criterion, Con-
tractibility, Mogbil-Naurois Criterion, Permutability of inferences

1 Imntroduction

The benefits of Curry-Howard. Since the discovery of Curry-Howard correspon-
dence [2], that is of the deep connections between logical proofs and computer
programs, programming language theory and proof theory have been tightly
intertwined.

Among the numerous and fruitful back-and-forths between proofs and pro-
grams, linear logic [3] certainly has to stand as exemplary. Girard indeed
introduced system F [4] while working on second-order arithmetics. This system,
independently rediscovered by Reynolds [5], features a polymorphic A-calculus
(or second-order A-calculus).

About fifteen years later, Girard established the coherent semantics of system
F [6] which elaborates on Berry stable semantics [7]. Coherent spaces led to a
decomposition of the implication connective which, in turn, is the cornerstone of
linear logic [3]: A = B = ! A—o B. This linear decomposition, observed in the
semantics of system F, turns to be syntactically reflected in a very well-behaved
proof system. A new field of thoughts was opened where linear logic concepts
radically renewed the traditional viewpoints on proofs and programs.

* An extended version with supporting proofs can be found in [1| at http://www.pps.
univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf.

http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf
http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf

On the logical side, proof nets [3,8,9] and interactive semantics (geometry of
interaction [10], game semantics [11], ludics [12]) were the first and probably
most striking novelties of linear logic. More recently, polarized logics [13], light
logics [14] and differential logic [15] turn out to impact programming theory and
provide new proof-theoretical methods to analyze side-effects, computational
complexity or non-determinism.

On the programming side, linearity impacted several problems: optimality and
sharing [16,17], computational interpretation of classical logic [18,19,13], type
system providing information about the computational complexity of the pro-
grams [20], connections between focalization and logical languages [21,22], logical
interpretation of pattern-matching [23,24], and more recently non-determinism
and probabilistic programming [25].

From linear logic to proof nets. With the above mentioned linear decomposition,
entered into the picture exponential connectives (!, ?), which control the usage of
hypothesis (via restrictions on the use of contraction and weakening structural
rules). An essential consequence of the fine-grained control on structural rules
is that various inferences for conjunction (resp. disjunction) which are usually
provably equivalent in classical logic, are no more inter-derivable in the linear
setting. Conjunction (resp. disjunction) is thus split into two connectives.
Logical constants for validity and absurdity are split as well. Those new logical
connectives can be structured in a multiplicative group (’®, ® 1, 1) and an
additive group (@, &, T, 0). Linearity allows to retain an involutive negation
(A++ = A) as in classical logic while constructive principles still holds for
some connectives. De Morgan laws thus allow to restrict the use of negation
to atomic formulas only and to consider sequents where all formulas are to the
right of the sequent, reducing the size (and to some extent the redundancy) of
the proof systems. Last, linear logic comes with a strong notion of fragments:
one can consider the fragment restricted to multiplicative connectives (with or
without logical constants), called MLL, the fragment for only multiplicative and
exponential connectives, called MELL...

Proof nets deserve a special treatment in that they probably constitute the
most original innovations of linear logic. They constitute a graphical notation
for proofs, resulting in very canonical proof objects * in which cut-elimination is
very elegant, and simple.

The beauty of proof-nets is especially striking in the multiplicative fragment
with no logical constant (also said unit-free multiplicative logic) to which the
rest of the paper will be dedicated. Actually, it is more a matter of simplifying
the presentation than a true restriction of our results since our results can
straightforwardly be adapted to MELL, thus capturing typed lambda-calculus.

Proof-nets and logical correctness. By representing of proofs as graphs instead of
more usual sequential notations, we step back from the intuition of what a proof

3 Contrarily to sequent proofs which contain a lot of irrelevant information on the
ordering of inferences which has no logical justification but the sequential nature of
sequent proofs which structure proofs as trees.

is. (Typically a reasoning which is conducted progressively, in an ordered way,
from its starting point to its conclusion, structured with intermediate lemmas
and where each step shall be logically valid.)

A consequence of proof-nets being non-sequential is that, if such a proof-
object is logically flawed (that is, if it contains some paralogism), the logical
errors may not be easily detected, contrarily to most of the deductive systems
(Hilbert systems, natural deduction, sequent calculus, deep inference, ...) where
logical correctness is purely local. One will actually speak of proof structure for
an object that looks like a proof net but that may not be logically correct.

This actually is the price to pay for the benefits of a graphical syntax and
the well-behaved cut-elimination of proof-nets: moving from inductive objects
(sequent calculus proof trees for instance) to more geometrical objects (proof
structures) where the characteristic properties are no more local but global, as
connectedness or acyclicity.

Still, proofs should primarily (and even before being computational objects)
be objects which support an assertion and allow to transmit. Considered along
these lines, the correctness problem can be rephrased as: if one communicates
a proof structure R, one must have the means to check that the structure is
logically sound and does not contain erroneous reasonings *. Potentially, the
receiver of the proof structure will be willing to have a certificate ensuring him
that the proof structure is indeed correct. The simplest idea is of course to
transmit the sequentialized proof of R but this naive approach soon reveals
its limits: not only because it rests on sequent calculus, but also because the
proof structure that we communicate will typically result from cut-elimination
processes and that is we do not have a sequentialized proof to use.

One is thus willing to have conditions on proof structures, of a graphical and
geometric nature, which ensure the correctness of proof structures, that is which
discriminate the proof structures which come from sequent proof from those
who don’t, those which are logically valid from those that may contain logical
mistakes.

Here is the true problem of correctness of proof nets, to which this paper is a
contribution. We propose a new correctness criterion which is particularly simple
and allows to tell whether a proof structure is a desequentialized sequent proof.
Our criterion simplifies that of Mogbil and Jacobé de Naurois and completely
abstracts from switchings.

Several correctness criteria have been introduced in the literature. Among
the best-known criteria, one can refer to the original long-trip criterion (LT) [3],
Danos-Regnier criterion (DR) [9], counter-proofs criterion (CP) [26,27], con-
tractibility (C) [28], graph-parsing criterion (GP) [29,30], Dominator Tree
(DT) [31] and more recently Mogbil-Naurois criterion (MN) [32].

On the structure and efficiency of correctness criteria. Danos-Regnier criterion
is certainly the most standard correctness criterion for its beauty and because it
is convenient to reason about. However, it is not efficient in order to effectively

* Or, through the Curry-Howard looking-glass, that the program is well-typed...

test the correctness of a proof structure since one shall check the connectedness
and acyclicity of 2" correction graphs, where n is the number of *® nodes
in the structure. One can hardly hope to improve this bound by restricting
the criterion to a well-chosen subset of switchings: one can indeed show that
there exist proof structures having an arbitrary large number of ’@ of which all
correction graphs but one are connected and acyclic (see [1]), unless one can
use an additional information on the topology of the net. (For instance, under
planarity assumptions one can restrict to considering only two switchings for
deciding the correctness of a proof structure [33].)

Other criteria improve on Danos-Regnier bound: for instance, the contractibil-
ity criterion [28] has a quadratic complexity while the parsing criterion [30] can
be implemented in linear time. Mogbil and Jacobé de Naurois characterized the
space complexity of the correctness problem [32].

From the point of view of their structure, some criteria, such as the parsing
or contractibility criteria, are directly related to the sequentialization process of
a proof net into a sequent proof. Other criteria, such as Danos-Regnier, use the
notion of switchings, which induce subgraphs of the proof structure on which a
certain property is tested. From this point of view, MN-criterion is slightly odd
since it uses an arbitrarily picked switching in order to build the dependency
graph.

Considering the above mentioned remark on the fact that incorrect proof
structure may have an arbitrarily large proportion of connected and acyclic
correction graphs, it is surprising that a single switching can ensure correctness.
This is the starting point of our work: we wanted to understand what was the
true use of picking a switching in MN-criterion for deciding correctness. In the
rest of the paper, we will show that the switching can be completely forgotten
and that one can reason directly on the proof structure.

Relating correctness criteria. Actually, correctness criteria usually provide us
with some specific viewpoints on the proof-theoretical or computational proper-
ties of proofs. For instance, they can (i) provide precise means to sequentialize
a proof-net into a sequent proof, or (ii) tell us about the complexity of the
correctness problem, or even (iii) say something about the structure of proofs.
Although correctness of proof-nets is now well-studied and understood, the
question of comparing and relating those criteria attracted much less attention.

Contributions of the paper. The present paper is a contribution in this direction:
we investigate a notion of dependency between inferences of a proof structure
and use it to compare three correctness criteria (C, MN and DepGraph, a new
criterion we introduce here) showing that they constitute three faces of this
dependency relation.

We reformulate Contractibility in a big-step version from which arises the
notion of dependency that one finds in MN criterion. This leads us to introduce
a new criterion, DepGraph. We then show that these three criteria, arising from
the notion of dependency, meet the three categories given above: we show that
Contractibility gives actually a sequentialization of a proof-net, MN is a criterion

with efficiency purposes and DepGraph emphasizes the structural properties of
logic since (i) it deals separately with positive and negative inferences, suggestion
possible connections with focusing, (ii) it is switching-independent, contrarily
to MN, (iv) it makes use of a well-known necessary condition for correction
following from Euler-Poincaré property [27] and finally (iv) we use its notion of
dependency in order to characterize constraints on the order of introduction of
inferences which are shared by all sequentializations of a given proof-net.

We focus on multiplicative and unit-free linear logic. Rather than a restriction
of the results, this is a matter of presentation: DepGraph criterion can easily be
extended to MELL, thus capturing typed lambda-calculus

Organization of the paper. In Section 2, we recall the basics of proof nets
and correctness criteria and dedicate Section 3 to analyzing and comparing
the three criteria mentioned above by (i) showing how contractibility is related
with sequentialization, (ii) formulating a big-step notion of contractibility, (iii)
justifying the occurrence of a dependency relation in proof-nets, (iv) introducing
a new correctness criterion, DepGraph and (iv) comparing DepGraph with MN-
criterion. We finally focus in Section 4 on the logical meaning of dependency
graphs. Due to lack of space, proofs are omitted but can be found in an extended
version with supporting proofs and more material, available online in [1].

2 Correctness problem of proof structures in linear logic

2.1 Linear logic and proof nets

MLL. In this paper, we will deal with multiplicative linear logic (MLL), which is
a fragment of linear logic. MLL formulas are built from the following grammar:

|AB:=X|X'|A0B|A%B (XeV)|

MLL is usually presented via a sequent calculus: an MLL sequent is a finite
unordered list of MLL formulas, written - I" and a proof is a tree with nodes
labelled by (az), (cut), (®), (®) and edges are labelled by sequents as follows:

- FAT FAL A
Identity Group: 1 @ ’ L (eutd
v mrenp m4,4 -4 t
Multiolicative G FAT FB,A FA BT
ultiplicative roup: (®) —— (®)
P P FA®B.LA O FasBrI

Sequent calculus induces a sometimes irrelevant order between inferences.
This is evidence by possible permutations between inferences of a sequent proof.
We recall those permutations in figure 77

Notice that cut elimination in MLL terminates but it is not confluent. Indeed,
two cut elimination paths of a proof can lead to two cut-free proofs, which are
possibly not equal, but which are equivalent modulo the previous permutations.

FA® B,C9D, T, A

FACIT DA FACIT FBY
FAaceD A P by FaeBolny 2 ©tpa
FAeBCeD AL FA®B.CoD. LAY
- A,B,C,D,T - A,B,C,D,T
FAsB.C.D.T FAB,CeD, T O
- AsB.CeD.T ° FAsB.CsD.T O

- B,C,D, A FAT FBCD,A
AT FBCOsD.A Y FAeBCD.LA Y
(®) %)

(
FA®B,C%D, T, A

(®)

Fig.1: KEY CASES OF INFERENCE PERMUTATIONS IN THE SEQUENT CALCULUS.

Proof structures and proof nets. Proof nets are canonical representations of MLL
sequent proofs quotienting them by the previous permutation rules, resulting in
a confluent cut-elimination and other very good properties. Proof structures
allow to present MLL proofs in a non-sequential way and therefore those objects
are not inductively presented anymore which makes the checking of the logical
correctness of those object challenging, calling for correctness criteria.

In the following, we shall consider only cut-free proof structures. Indeed, cut
behaves exactly as ® from the view point of correctness and therefore introduces
no difficulty nor interesting aspects in our developments.

Definition 1 (Proof structure). A proof structure is a finite undirected graph
where vertices are labelled by the names of MLL inference rules or the special
label ¢ (for the conclusions of the proof) and edges are labelled with formulas
of MLL. Moreover, edges which are adjacent to a vertice are partitioned into
premises and conclusions according to the following rules:

e Nodes of label ® (resp. '2) have two premises and one conclusion. If A is
the label of the first premise and B the label of the second premise, then the
conclusion is labelled A ® B (resp. A9B);

e Nodes of label ax have no premise and two conclusions. If the label of the
first conclusion is A, the label of the second conclusion is A ;

e Nodes of label cut have two premises and no conclusion. If the first premise
is labelled A, the second premises is labelled A ;

o Nodes labelled ¢ have one premise and no conclusion®.

e Every edge is premise of one of its endpoints and conclusion of the other.

To any M LL proof 7, one associates a proof structure [r]. Any proof-structure
which is image of a sequent proof in this way will be called a proof net.

® We shall often omit those nodes in the graphical representation of nets: they will be
depicted as pending edges.

Definition 2 (Proof net). The proof structure corresponding to an MLL
proof 7 is defined by induction on the structure of m and by case on the last
inference rule of m:

o az rule : the proof net corresponding to = A, AL is the graph containing a
single node ax with out-going arrows labelled with A and A+ which connect
the ax node with two conclusion nodes:

A At
e cut rule : if Ry and Rs are the proof nets associated with the two subproofs
rooted in the premises of the cut rule, the proof met associated with the

complete proof is obtained by adding a node labelled cut between the edges
corresponding to occurrences of the cut formulae:

e ® rule : if Ry and Ry are proof nets associated with the subproofs rooted
in the premises of the ® rule, the proof net associated with the complete
proof is obtained by adding a ® node connected to the edges labelled with the
formulas involved in the inference rule and by connecting the outgoing edge
to a conclusion node:

BN

A B
\&/

A®B

e 2 rule : if Ry is the proof net associated to the subproof rooted in the premise

of the rule, the proof-net associated with the complete proof is obtained by

adding a2 node connected to the edges labelled with the formulas involved in
the inference rule and by connecting the outgoing edge to a conclusion node:

AQ AL
Fig.2: A PROOF STRUCTURE WHICH IS NOT A PROOF NET.

Remark 1. In the graphical representation of proof nets, we put arrows on edges
to represent the information on premise/conclusion, but we consider the graph
as undirected, in particular with respect to any notion such as paths, cycles, ...

2.2 Correctness criteria

The graph in figure 2 is indeed a proof structure but it cannot be associated
with a MLL proof. A proof structure therefore does not necessarily correspond
to a sequent calculus proof; such a proof structure is called non-sequentializable.
There is a number of methods to distinguish sequentializable proof structures —
proof nets — from non sequentializable ones; such methods are called correctness
criteria.

Several correctness criteria have been introduced in the literature. In the rest
of this section, we shall present Danos-Regnier (DR) criterion which is one of
the most popular criteria; then we present Contractibility and Mogbil-Naurois
(MN) criterion which we will compare in the next section.

2.3 Danos-Regnier Criterion

Definition 3 (Switching). A switching of a proof structure R is the choice,
for every *® node of the graph, of one of its premises. More formally, a switching
of R is a map from the 2 nodes of R to {l,r}.

Given a switching s of a proof structure R, a > node n will be said to be
switched to the right (resp. to the left) if the right premise (resp. left) has been
selected, that is if s(n) =1 (resp. r).

Definition 4 (Correction graph). A Correction graph S(R) of a proof
structure R and a S of R is the undirected graph defined as:

1. its nodes are those of R;

2. its edges are (undirected versions) of R edges where the edge of R corre-
sponding to the left (resp. right) premise of a ’® node n is an edge S(R) if,
and only if, S(n) = (resp. 1);

3. labels of S(R) are those of the corresponding edge in R.

Definition 5 (Danos-Regnier criterion (DR)). A proof structure satisfies
the Danos-Regnier criterion if every correction graph is connected and acyclic;
in that case, it is said to be DR-correct.

Note that the statement of Danos-Regnier criterion does not refer explicitly
to sequentializability of a proof structure in a sequent calculus proof.

Theorem 1. A proof structure is a proof net if, and only if, it is DR-correct.

Proof. See [9]. O

2.4 Contractibility

Contractibility criterion expresses a topological property of the proof structure,
more precisely of an underlying graph structure, the paired graph which contains
just enough information to distinguish premises of a '@ from the other edges.

Definition 6 (Paired graph). A paired graph is given by a graph G = (V, E)
together with a set P(G) of paired edges, that are undirected pairs of edges
which share at least one endpoint. A node which is the endpoint of paired edges
is called a paired node, the other endpoints are called the premises.

Remark 2. Note that a paired node may have 0, 1 or 2 premises.

Definition 7 (C(R)). To a proof structure R, one associates a paired graph,
written C(R), which is simply R together with the set of paired edges given as
the set of pairs of edges which are premises of a ’® node.

Example. We show below the unique proof net R,g,. for the sequent - avat
and the paired graph C(Rygq,1) which is associated to R,g,1 (paired edges are

distinguished by a ~):
(ax)
o o
\
avat

Definition 8 (Contraction rules). One defines two graph-rewriting rules on
paired graphs as follows (note that in both rules the two nodes shall be distinct):

Ry : — e Ry : — °

Definition 9 (Contractibility). A proof structure R is contractible if
C(R) =" e.
Contractibility characterizes proof nets, it provides a correctness criterion:

Theorem 2. A proof structure is a proof net if, and only if, it is contractible.

Proof. See [28]. O

2.5 Mogbil-Naurois criterion

We shall first present Mogbil-Naurois criterion, one of the most recent correctness
criteria which characterized the space-complexity of the correctness problem.

Definition 10 (Elementary path). A path in a undirected graph is elemen-
tary when it does not enter twice the same edge.

Definition 11 (Dependency graph of a correction graph). Given R a
proof structure and S a switching of R, the dependency graph of S(R), written
D(S, R) is an oriented graph (V, E) defined as follows:

e The set of nodes V' consists in the set of conclusions of '8 nodes of R together
with an additional node s.
o Let x be a’® node in R, x, (resp. x;) its right (resp. left) premise in R.
o There is an edge (s — x) in E if there exists an elementary path
xy, ..., & in S(R) which goes through no '® node.
e Let y be another 2 node in R. There is an edge (y — x) if there exists
an elementary path xy, ..., z, in S(R) containing y.

Definition 12 (SDAG graphs). A graph G is SDAG if:

e it is acyclic and
e it contains a node s, the source node, such that all nodes of G are accessible
from s.

Definition 13 (Mogbil-Naurois Criterion). A proof structure satisfies the
Mogbil-Naurois criterion (MN) if there exists a switching S such that:

e D(S,R) is SDAG of source s;
e S is connected and acyclic.

Such a proof structure is said MIN-correct.
Theorem 3. A proof structure is a proof net if, and only if, it is MN-correct.
Proof. See [32]. O

One notices that dependency graphs are defined on correction graphs and thus
they depend on the switching. Compared to Danos-Regnier, the use of switchings
in (MN)-criterion is quite odd: it only requires to analyze one switching and
the corresponding correction graph. Moreover, the choice of this switching is
itself arbitrary. It is therefore natural to wonder what is the exact role of this
switching: is it really necessary? We answer this question in the following by
going back to the origin of the idea of dependence, which was already present
in the contractibility criterion as we shall see in section 3. From that point, we
state a dependency-graph based criterion which does not rely on any switching.

3 On the three faces of contractibility

Despite the wide diversity of correctness criteria, their relationship remains
poorly studied in the literature. In this section, we shall investigate the con-
nections between three criteria: Mogbil-Naurois, Contractibility and DepGraph
which is a new criterion that we introduce in the remainder.

3.1 Contractibilty and sequentialization

Before relating contractibility with the other two criteria, we make clear that it
gives a genuine sequentialization. To do this, we simply label nodes of the paired
graph of the proof structures with open proofs containing context variables.
These open proofs correspond to partial sequentializations, which become larger
and larger as contraction progresses, until reaching a full MLL proof. More
precisely, these open proofs are constructed on sequents with context variables,
generated by the following syntax (F is a formula and I'? is a context variable):

S= 0 | SF | SI7

We consider these sequents up to commutativity. Open proofs are constructed
by the following syntax:

— (ax) LS l_SlaA |_S2,B "S,A,B
(®) —— (®)
- A At FS.S.A®B FS AsB °

Given a proof structure R, the labelled paired graph C;(R) is obtained by
applying the following rules:

A B |[FAT] FBI}
&) —
AeB | FA®B, I Iy

A®B

=N
A A ? A®B

Labeled contractibility rules become:

FAT
m

Ry : R | — 0 FAT

Fu[r/T2,]

9 FATY
v

When a proof structure is actually a proof net, the node at which its paired
graph contracts is labeled by one of its sequentializations. For example, if we
consider the proof structure and its paired graph given in figure 3, the contraction
steps (figures 4 to 9) lead to a sequentialization of this proof net. This is formally
expressed in the following proposition:

Proposition 1. Let R be a proof structure. If C(R) contracts (by rules Ry and
Rs) to a point, then by following the same contraction path, C;(R) contracts to
a point whose label is a sequentialization of R.

B, I, +C,I} B, CY IEgon

FBQC,I5, TS

?
FBY9CH, IigeoL

B®C

FA,B®C, I'hiomsc) FAL TR BRSO Ih oo
FA®(B® C), Ligigo) FA*®(BY9CH), I, ThigoL

Fig.3: A PROOF NET AND ITS LABELED PAIRED GRAPH.

Notice that two different contraction paths may lead to different sequential-
izations of a proof net.

3.2 Big-step contractibility

We reformulate Contractibility in a big-step fashion to highlight the intrinsic
notion of dependency present in this criterion.

Fig.4: FIRST STEP OF LABELED CONTRACTION

Fig. 5: SECOND STEP OF LABELED CONTRACTION

Fig. 6: THIRD STEP OF LABELED CONTRACTION

Fig.7: FOURTH STEP OF LABELED CONTRACTION

Fig.8: FIFTH STEP OF LABELED CONTRACTION

Fig.g: SIXTH AND LAST STEP OF LABELED CONTRACTION

One defines a new graph-rewriting rule R as follows:

Definition 14 (Big-step Contraction R). An elementary cycle can be con-
tracted to a point if it contains exactly two paired edges that are paired together
that are adjacent in the cycle.

*——0

This new notion of contractibility is easily seen to correspond to usual
contractibility and thus induces a correctness criterion expressed as:

Theorem 4. A proof structure is a proof net if, and only if, contraction R can
be applied until:

e 1o paired edges are left and
o it leads to a tree of unpaired edges.

3.3 Towards dependency graphs

This version of contractibility criterion induces a natural dependency relation
between the "® nodes of the proof structure: when the premises of a *® node are
connected by a path that does not go through any premise of an other ’® node
(see figure 10), one can contract directly this path; these are the nodes connected
at the source in the dependency graph of MN-criterion. When, on the contrary,
the path from the premises of a ’® node (’®1) goes through one of the premises of
another ’® node (’92) (see figure 10), we say that 21 depends on 95 because 1
can only be contracted if /94 is contracted before. In this way, we can construct

e B1

Fig.10: VARIOUS DEPENDENCY CONFIGURATIONS.

a dependency graph which looks like the dependency graph of MN criterion,

but this one is built directly on the proof structure rather than on a correction
graph. The first condition of big-step contractibilty criterion says simply that
this graph is SDAG. We will see how to transform the second condition in order
to get a full correction criterion. Before moving to the study of this new criterion,
let us simply remark that one can actually define a dependency relation between
9 nodes of a proof structure R and any set of nodes of R as follows:

Definition 15 (Dependency graph of a proof structure, relatively to
a set of nodes). Let R be a proof structure and N a set of nodes of R. We
denote by P the set of ' nodes of R. The dependency graph of R relatively to
N, Dn(R), is the oriented graph (V, E) defined as follows:

o V=NUPU{s} where s is an additional node.
e Let p be an element of P.
e There is an edge (s — p) in E if the premises of p are connected by an
elementary path in R which goes through no '@ node.
o Let g be an element of V. There is an edge (¢ — p) if the premises of
p are connected by an elementary path containing q which does not go
successively through the two premises of a 2 node.

Remark 3. The intuition underlying this extended notion of dependency graph
is that in big-step contractibility, the contraction of the paired graph depends
not only on depdencies between paired edges, but also on the fact that the ®
nodes on the cycles actually can be contracted to a point (with no loop), thus
making a ’@ node depend on a ® node.

Notation. The previous definition has two natural instances: when we take N
to be the set of the 2 nodes of a proof structure N, Dy(R) is a graph which
expresses the dependency relation between '® nodes only. We note it by D (R).
When N is taken to be the set of all '@ and ® nodes of a proof structure, Dy (R)
is a graph which expresses the dependency relations between the "2 nodes and the
other %9 and @ nodes. We denote it by Dy g(R).

In the following we shall consider only D (R) until section 4 where Dsg g(R)
will be considered. When there is no ambiguity will shall omit the subscript.

3.4 DepGraph criterion

As said before, the first condition of big-step contractibility expresses that Dy (R)
is SDAG: the existence of a contractibility sequence ensures that there is some @
node having a cycle that does not contain any paired edges which is the condition
to be connected to the source, while the acyclicity condition ensures that we will
always find a ’® node with a cycle that can be contracted.

To get a full correction criterion, we will make use of a graph-theoretic
property called Euler-Poincaré lemma, as suggested by Girard in [27].

Definition 16. Let G be an undirected graph and n,e be its numbers of nodes
and edges. We set xg =n — e and call this quantity the characteristic of G.

R =

"
\S

D(R) = D(R') =) s
\ | 7 f

Py

Fig.11: EXAMPLES OF DEPENDENCY GRAPHS.

Theorem 5 (Euler-Poincaré Lemma). Let G be an undirected acyclic graph
and cg be its number of connected components. The following equality holds:

XG = CG-

Proof. By induction on the number of edges in the graph.

If the graph contains no edge, there are as many connected components as
there are nodes in the graph (e = 0 and n = ¢) and the equality is trivially
satisfied.

Assume the equality holds for acyclic graphs with & edges and let G be an
acyclic graph with k + 1 edges. By removing one edge e from G, obtaining
the acyclic graph with k edges G., we remark that the number of connected
components of G, has increased by one while its number of edges has decreased
by one: xg + 1 = x¢’ and cg + 1 = c¢. By induction hypothesis xo = ¢ and
thus xg = cg- a

Proposition 2. For every correction graph G of a proof net, one has xg = 1.

Proof. Immediate by (DR). O
Proposition 3. Every correction graph G of a proof structure R satisfies:

XG = #axr — #®.

Proof. The result follows immediately from a simple counting;:

e N = #Har + # R+ + #condl;

e To count the edges, let us remark that every edge enters exactly one node
of the correction graph, from which we have:

a =0 X #ax + 2 X #RQ+#8 + Fconcl.
O

Putting the two previous propositions together, a sequentializable proof
structure must have one more axiom link than it has tensor links: #ax — #® = 1.

Remark 4. When a structure contains cuts, one has xyg = #ax — #Q—#-cut for
every correction graph G. The condition above becomes #ax — #® —#cut = 1.

We can finally state our new criterion, DepGraph:

Definition 17 (DepGraph criterion). A proof structure R is Dsg-correct (or
satisfies DepGraph criterion) if

e D(R) is SDAG;
e R is connected;
o #Har —#® =1

Theorem 6. A proof structure is a proof net if, and only if, it is Dy -correct.
In the following, we will show the two sides of this equivalence.
Theorem 7. Every proof net R is Dx-correct.

We show that if 7 is a sequentialization of the considered net R, every
dependence present in the dependency graph is also present in the order of
introduction graph, more precisely:

Definition 18 (Order of introduction). Let m be an MLL proof. For every
% or @ rule rp introducing formula F, we note wp the sub-tree of w rooted in
the premise of rp. We define a partial order on the formulas introduced by ’® or
® inferences in w, that will be noted <, as follows:

F <, Gif rp € g

It formalizes the relation “to be introduced above”.
The graph of this relation is noted O~ (mw) and one defines O(w) as O~ (m)
augmented by adding a vertice s and, for all vertice e in O~ (w), an edge s — e.

Proposition 4. Let m be an MLL proof and R the corresponding proof net.
Then:

D (R) € O(m)
Proof. Is a trivial corollary of proposition 5, since D (R) C D g(R). O

Lemma 1. Let w be an MLL proof. O(r) is acyclic.

Proof. Immediate (for antisymmetry: a sequent proof 7 induces a partial order
on its inferences of which O(r) is a sub-relation). O

Lemma 2. Let G be a directed and acyclic graph. If every node of G has a
parent but for one, written s, then G is SDAG of source s.

Proof. This is a basic result of graph theory. ad

We now move to the proof of theorem 7:

Proof. Let R be a proof net.

e Since R is a proof net, there exists a proof m which is a sequentialization
of R. By theorem 4, we know that D(R) C O(w). Since O(m) is acyclic, by
lemma 1, we conclude that D(R) is also acyclic. On the other hand, since R
is a proof net, (DR) ensures that every correction graph is connected. Let G
be a correction graph of R. The two premises of each *® node are connected
by a path in G, which happens to be an s-path in R. It follows that in D(R),
every node but for s has a parent. Lemma 2 ensures that D(R) is SDAG.

o A proof net is obviously connected.

e The third condition of DepGraph follows from propositions 2 and 3.

Theorem 8. If a proof structure is D -correct, then it is a proof net.

We will need a notion of dependency graphs defined on paired graphs.

Definition 19 (s-path in a paired graph). A path in a paired graph is called
an s-path if it is elementary and if it does not go successively through two edges
which are paired together.

Notation. If p is such an s-path, we also write pley, ..., e,]| or p[E] to indicate
the paired edges it contains ({e1,...,e,} and E being the paired edges occurring
inp).

Definition 20 (Dependency graph of a paired graph). Let G be a paired
graph. The dependency graph, D(G), of G is the oriented graph (V,E) defined
as follows:

o The set of nodes V consists in the set P(G) of paired edges of G together
with an additional node s.
o Let e = (eq,e2) be an element of P(G).

o There is an edge (s — e) in E if none of e1, ea are loops and the premises
of the common endpoint are connected by an s-path in G which goes
through no paired edge.

o Let f = (f1, f2) be another element of P(G). There is an edge (f — e) if
the premise(s) of a common endpoint of eq, e5 are connected by an s-path
containing f1 or fs.

Remark 5. Notice that:

o In both cases of the previous definition, when e; and e; have both of their
endpoints in common (let 11,19 be those endpoints), there is an ambiguity
on the definition of which premises we consider: n1 has {ny} as set of premises
and conversely ny has {n1} as set of premises. Anyway, in the case of an edge
(s — e) there is an empty s-path connecting either premise to itself and in
the other case we only ask that there is an s-path via f in either connecting
either of the sets of premises.

e In the case of an edge (s — e), if there is an edge (s — e), that means that
there is a s-path of the form p[@)] between the premises of common endpoints.

o In the case of an edge (f — e), if there is an edge (f — e), that means that
there is a s-path of the form p[{y;} U F] between the premises of common
endpoints.

Remark 6. Notice that, for any proof struture R, its dependency graph Di(R)
is exactly the dependency graph of its paired graph D(C(R)).

We will prove that a Ds-correct proof structure satisfies contractibility
criterion, from which the result follows. We need the following lemma:

Lemma 3. Contractibility steps preserve:

1. connectedness of the contracted graph;
2. the number n — eppe — epe (With n the number of nodes of the graph, e, the
number of non-paired edges and ey the number of paired edges).

Proof. Both rules of contractibility preserves connectedness and it is easily
checked that they also preserve n — eppe — €pe- O

Lemma 4. Let G be a paired graph and G’ be such that G —* G'. Let
{b1,...,b} be the paired edges which have been contracted and let x and y

be two nodes in G. If x and y are connected by an s-path play,...,a,] in G,
then:
e cither x and y have been merged;
o or there exists an s-path q[{ay,...,an}\{b1,...,b;m}] connecting x and y in
G

Conversely, every s-path of G’ is the residual of an s-path in G.

Proof. The result is proved by considering the different possible configurations
for one step of contraction of edges in G and has no difficulty. Extension to —*
is straightforward. O

Let us go back to the proof of the theorem:

Proof. Let R be a proof structure and G = C(R) its paired graph. We shall build
a sequence of contractions ci, ..., ¢, such that, noting G':= Go —7, G1--- =%
G,, we have the following conditions:

o the dependency graph of G; 11, D(G;11) is obtained from D(G,;), by removing
one node v which was directly connected to the source s and by linking the
source to the nodes which were only accessible from v. It is easy to see that
this transformation preserves SDAG-ness.

e D(G,) contains a single node s (and thus contains no paired node).

We proceed by a decreasing induction on the number of nodes in the graph
and suppose that we have already built the i** graph G;. Let v = (ej,e3) be a
node directly connected to the source in D(G;), the dependency graph of G;.
There exists a path p[()] connecting both premises of v. By contracting all the
edges of p[0] (by R2), the two premises of v are merged and 7 can be applied
on the paired edges v. Let ¢;+1 be this sequence of contractions and G;4+1 the
graph obtained from G; by applying ¢; ;1.

Let us analyze the consequence of ¢;;1 on the s-paths of G;: since the only
paired edges that have been contracted in c¢;41 is v, the lemma 4 ensures that
for any paired node z, is p[E] is an s-path connecting two premises of z, then
there is an s-path ¢[E \ {e1,e2}] in Gy;.

There are two possible cases:

o If had v as sole parent in D(G;), it means that all s-paths connecting
premises of z in G; (we know that there is at least one such s-path) are of
the form ple;] or ples]. Those paths become s-path ¢[()] in G;41. Then z is
connected to the source in D(Gj41).

o If z had several parents {ni,...,n;} in D(G;), then its parents become

{n1,...,nk} \ {v} in D(G;y1).

D(G,41) contains the same nodes as D(G;) but for v and its edges are the
same but for the nodes which had v as single parent and are now connected to
the source.

Since the dependency graphs are SDAG at every step, there is always a node
which is directly connected to the source. This ensures that the procedure can be
applied as long as there are paired nodes. Finally, we obtain G,, which contains
no paired nodes. By applying all possible Ry reductions from G,,, we have a
graph G'.

G’ is connected (by lemma 3.1) and it cannot contain more than one node (since
it is Rp-normal).

By lemma 3.2, n— enpe — €pe has remained the same during the contraction steps
and it is therefore equal to 1 (by Dsg-correctness of G) for G'. G’ has no paired
node and thus e,. = 0 and it contains a single node, so e,y = 0 as well and G’
contains no edge at all.

We conclude that G is contractible. ad

3.5 Comparing the two notions of dependency graphs

Example on figure 12 shows that Mogbil-Naurois dependency graphs are switching-
dependent. We will show that, for proof nets, they are almost invariant: the

transitive closure of the dependency graphs induced different switchings are
all equal and are equal to the transitive closure of the dependency graph we
introduced in the previous section.

Fig. 12: SWITCHINGS § 8’ OF NET R, THE ASSOCIATED DEPENDENCY GRAPHS.

Notations. If S is a switching for a proof structure R and a a ’-link in R, we
note S, the switching S in which we have toggled the switching for a.
Given a graph D, D* is its transitive closure.

Lemma 5. Let z and a be two ’® links of a proof net R and S be a switching.

e if (z > a) € D(S,R), then (z — a) € D(S,, R)
e if (a = 2) € D(S,R), then (a — 2) € D(S,, R)

Proof. The first point follows from the fact that elementary paths between
premises of a are not modified by the toggling of a.

As for the second point: were it not the case, it would result in an elementary
path between premises Z; and Z,. of z which does not go through a in S,(R);
this path would still be in S(R), but by hypothesis we already have in S(R) an
elementary path between Z; and Z, which passes through a, those two distinct
paths between Z, and Z; in S(R) would contradict acyclicity. O

Theorem 9. Let R be a proof net and S,S’ be switchings of R. Then we have
D(S,R)* = D(S',R)*.
Remark 7. The proof relies strongly on the fact that in a connected acyclic

graph, there always exists a single elementary path between two nodes. The
result would not hold if the structure were not correct.

Proof. We show that for all switching & and ’@-link a of the structure, we
have D(S,R) C D(S,, R)*. By symmetry and since S’ = S,,...4, for a certain
sequence aj ... a, of *-links, it is enough.

Let R be a DR-correct proof structure, S of switching of R, z and a two
2-links of R. Let also y be such that (y — z) € D(S, R). We note X; and X,
the two premises of x.

If y is s, source of D(S,R), then (a — z) ¢ D(S,R) by definition. The
elementary path between X; and X, is not affected when toggling a and contains
no ’g-link, so (s — x) € D(S,, R).

Let us assume y # s, that is y is a *@-link.

If (a — z) ¢ D(S, R), the elementary path between X; and X, is not affected
when toggling a and still contains y so that (y — z) € D(S,, R).

If (a -) € D(S,R) and (y — a) € D(S, R), lemma 5 implies that (y —
a) € D(Sy, R) and (@ — z) € D(S,, R), so that (y — x) € D(S,, R)*.

Finally, if (e — z) € D(S,R) and (y — a) € D(S, R), let us note

e A; the premise of a which is contained in the elementary path between X;
and X, in S(R);

e As the premise of a which is contained in the elementary path between X;
and X, in S,(R).

Let us also note F' and G the branching points of these paths (one of them,
say G, is the conclusion of a), as shown on the following picture:

LFmT—n (where the dotted lines represent el-
' ' ementary paths which are present in
VA “y Ay both S(R) and S,(R))
?
.: G
X, X,

Since, by hypotheses (y — a) € D(S, R), y can be neither in the elementary
path connecting F' to A, nor in that connecting F' to Ay in S(R). Moreover
(y = x) € D(S, R), so that y must be in the elementary path between X; and
X, in S(R): it must be either in the path between F' and X; or in that between
G and X,.

Those two paths are still present in S,(R), and as a conclusion (y — z) €
D(S,, R). O

Finally, we have:

Theorem 10. Let R be a proof net and S a switching for R. Then: Dwg(R)* =
D(S,R)*.

Proof. Indeed, given a switching Sy, theorem 9 gives:

D(So, R) € Dg(R) = U D(S,R) C U D(S,R)* = D(Sy, R)*
S switching of R S switching of R

From this follows that D(Sp, R)* C Dw(R)* = D(S,R)*™ = D(Sp, R)* and
the expected equality. a

4 On the order of introduction of connectives in
sequentializations

In this section, we will investigate the logical meaning of dependency graphs
introduced for DepGraph criterion. A crucial step in proving that a proof net
satisfies DepGraph was to show that if 7 is a sequentialization of the considered
net R, every dependence present in the dependency graph is also present in the
order of introduction graph.

As a consequence, Dy (R) € O(R) := Ny [rj=gO(7) where O(R) can be seen
as the essence of the sequentalizations of R. It is natural to wonder whether this
inclusion can be sharpened in a characterization of O(R) relying on our notion
of dependency. Actually, D» expresses only the relationship betweep % nodes,
and it is not enough to characterize O(R). We will use instead the dependency
graph Dis g(R) to take in acount also the dependency relation between ® and ®
nodes.

Definition 21 (Subformula graph of a proof net). Let R be a proof net. The
subformula graph of R, SF(R), is the directed graph (V, E) defined as follows:

e V= PUT where P and T are respectively the set of '® nodes and @ nodes.

e Let n and m be two elements of V. There is an edge (m — n) in E if
the formula of the conclusion of m is a subformula of the formula of the
conclusion of n.

Theorem 11. Let R be a proof net. Then (Dwx(R)USF(R))* = O(R).

Proposition 5. Let m be an MLL proof and R its desequentialization. Then:
Dgg(R) € O(m).

Proof. By induction on the structure of .

e The base case of the axiom rule is trivial since Dy g(R) = O(w) = {s}.

e Assume proof w of - I, A’®B has been built from a proof v of - I') A, B.
Note R, and R, the proof nets corresponding respectively to 7 and v.
Since A’ B is below all formulas introduced by a ’@ rule in 7 and since the
order on all other formulas is the same in 7 and in v, the graph O(w) is
obtained from O(v), by adding a node A®B together with edges from the
nodes of O(w) to A B.

On the other hand, Dwg(R-) is obtained from graph Dsy g(R,) by adding
a node A®B together with some edges leaving nodes of Dy g(R,) and
pointing to A’®B. Indeed, one cannot create new edges between nodes of
D o(Ry) since it would mean that there exists an elementary path between
the corresponding @ nodes in m which was not present in v. Such a path
would certainly go successively through the left and right premises of node
A9 B, which would be absurd. Moreover, there exists no edge from A®B
towards nodes of v since, here again, an elementary path justifying such an
edge would consecutively visit both premises of node A’® B which is absurd.

By induction hypothesis, one has Dy g(R,) C O(v). By the preceding
remarks, one concludes that Dy g(Rr) C O(m).

e Assume proof 7 of - I’ A ® B has been obtained from proof m; of - I A
and proof my of H A, B. One shall note R, R;, and R,, the proof nets
corresponding to 7, m and 5.

It is easy to see that O(r) is obtained from the union of O(m;) and O(ms),
by adding a node A® B together with edges from the nodes of O(m) and
O(’]Tg) to A@B

Moreover, Dsg g(Rx) is the union of Dw (R,) and Dsy g(R,) together with
a node A® B. Indeed, if there is an elementary path between the premisses
of a ’@ node, it will necessarily contain a cycle since it must visit twice node
A ® B. Again, this is absurd.

By induction hypothesis, one has Dy g(Rr,) C O(m) and Dy g(Ryx,)
O(m2). By the above considerations, one can conclude that Dsy g(Rx)
O(n).

c
c

O

Corollary 1. Let R be a proof net. One has (Dwpg(R) U SF(R))* C O(R).

Proof. By applying lemma 5, and by using the fact that for every proof net R
and every MLL proof 7 such that [7] = R one has SF(R) C O(n) and O(nw) is
closed by transitivity, we obtain that (D g(R) U SF(R))* C Ny (=gO(7). O

To prove the other inclusion, we will use the fact that two MLL proofs have
the same proof net if and only if they are obtained from each other by the
permutation rules introduced in section 2.1. More precisely, we will make use of
the two following lemmas, proven in the long version of this paper:

Lemma 6. Let @ be an MLL proof and ri, ro two consecutive rules in =
introducing the formulas I, and F5, such that r1 is above ro. If r1, o are not
permutable, then:

(F1 — F3) € O([n])

Definition 22. Let m be an MLL proof and ri,ro two inference rules in
introducing the formulas Fi and Fs, such that rr, is above rp,. We note by
|ra,r1[the sequence bottom-up of inference rules lying between r1 and ro in the

branch of m connecting r1 and ro. The distance between ry, ro in 7, noted by
dr(r1,12), is the length of Jra,r1[. The minimal distance between r1, ra, noted

by dp(r1,12), is defined by: dp,(r1,v2) = inf, [y)=(x)dv(r1,T2).

Lemma 7. Let m be an MLL proof and ry, ro two inference rules in © in-
troducing the formulas Fy and F5, such that ri is above ro. We assume that
dr(r1,r2) = dp(r1,v2). If v is an inference rule introducing a formula F in 7
such that r €]ra, 1|, then (Fy — F) € O([n]).

Proof. By induction on d,(r;,r).

e If d;(r1,r) =0, one has that r is just below ry. r; and r are not permutable,
if they were, this would contradict the minimality of 7. By applying lemma
6, one concludes that (F} — F) € O([n]).

e Suppose that d.(r1,r) > 0. One can permute r with the derivations above
it until an inference rule r’ introducing a fomula F’ which does not permute
with it. One has r’ € [r;,r[otherwise the minimality of = would fail. By
applying lemma 6 to r and r’ one has (F' — F) € O([rn]). Moroever, one
has d(r1,r') < d(r1,r), we can apply the induction hypothesis on r; and
r’ to get that (F; — F') € O([n]). By transitivity of O([r]) we get that
(F1 — F) € O([n]).

O

We can finally prove the following (see [1] for a detailed proof):
Proposition 6. Let R be a proof net. One has O(R) C (D g(R) U SF(R))*.

Proof. We show by induction on d,,(r1,r2) that for any two inference rules rq
and 7 introducing respectively the formulas Fy and Fs, one has: (F} — F3) €

O(R) = (F1 — Fy) € (Dgg(R) USF(R))* .

e Suppose that d,,(r1,r2) = 0 and let 7 an MLL proof such that d,,(r1,r2) =
dr(r1,r2). If (F1 — F3) € O(R) then r; is above ry in 7. If ry and ry were
permutable in 7, this permutation would lead to an MLL proof v where
ro is above ry which contradicts (Fy — Fz) € O(R). There are only two
reasons why ry and ry are not permutable, we will show that (Fy; — Fy) €
(D g(R)USF(R))* in both cases:

e F) is a sub-formula of Fy: one has (Fy — Fy) € SF(R) and then (F; —
£) € (Dpe(R) USF(R))".

e F is of the form A® B, F5 is of the form C*9D and mp, -the sub-tree of
7 rooted in ro- is of the form:
FI%@’B;C%?’D,F,A (r2)

Let 7, the sub-tree of 7 rooted in ry and Ry be the proof net of 7, . The
formulas C' and D are conclusions of the proof net R;. By D R-criterion
on Ry one has that C' and D are connected by an elementary path wich

does not go successively through the two premises of a *? node. Moroever,
this elementary path goes necessarily throught A®B since R; is obtained
by linking [v1] and [v2] via A®B. Since C and D are the premisses of the
® node C’¢D in m, we conclude that (Fy — F») € (Dpg(R)USF(R))*.

e Suppose that d,,(r1,r2) > 0 and let 7 an MLL proof such that d,,,(r1,r2) =
dr(r1,r2). If (F; — F») € O(R) then r; is above ry in 7 and the sequence
considered bottom-up of inferences between ry and ro in 7, |ro,rq[, is of the
form |ro,r1[= r,]r,r1[where r is an inference rule introducing the formula
F. If r and ro were permutable, this would contradict the minimality of
7. By applying lemma 6 we have (r — rs) € O(R). Moreover, one has
obviously d,,(r,ry) = 0. We can now apply the induction hypothesis to r
and ry to conclude that (F — Fy) € (Dgg(R) U SF(R))*. Furthermore,

by applying lemma 7, one has (F; — F) € O(|r]). As one has obviously
dm(r1,1) < dip(r1,re), we finally conclude, by induction hypothesis, that
(F = F3) € (Dgg(R) USF(R))*.

O

5 Conclusion

Comparing correctness criteria. We have seen that Contractibility, Mogbil and
Naurois’ criterion and DepGraph are three faces of the same notion, dependency.
More precisely, those three criteria can been understood as different concrete
implementations of a proto-criterion related with dependency relation, along
the different points of view developed in the introduction: we showed that
(i) Contractibility gives actually a sequentialization of a proof-net from which
arises dependency, (ii) MN is a criterion with efficiency purposes (working on
the generalized dependency graph, it is not clear how to stay in NL since it
requires to remember which premise of a ’® node has been visited, thus justifying
the seemingly odd choice of a switching) while (iii) DepGraph emphasizes
structural properties of logic by clearly separating conditions on ’¢ inferences
from other inferences and by unveiling the meaning of its dependency graph
which correponds (when considered together with the subformula relation) to
the order of introduction of inferences common to all sequentializations of a
given proof-net.

This last point actually evidences an intresting fact. While they are com-
pletely parallel proof objects, proof-nets contain enough logical dependency to
allow for the retrieval of inherently sequential information. Indeed, by computing
the dependency relation we can extract the true logical causality of sequential
proofs.

Future works. The present work suggests two main directions for future works:

e The separation between positive and negative inferences which is the cor-
nerstone of DepGraph criterion suggests connections with focusing. While

proof-nets and focalized proofs are the results of diverging choices of proof-
theoretical design (parallelism versus hypersequentiality), this suggests that
they actually may be different aspects of the same phenomenon as already
advocated in the study of multi-focusing [34].

Another direction concerns the development and the validation of our
comparative study of proof-nets. Indeed, the prototypical classification
we suggested is mainly built on empirical considerations and we plan to
investigate it more systematically in the future, in particular by considering
connections with other criteria which seems to be related with the notion of
dependency such as Di Giamberardino and Faggian’s work on jumps [35], or
Murawski and Ong’s work on dominator’s trees [31].

References

1.

w

=

11.
12.
13.
14.
15.

16.

17.

Bagnol, M., Doumane, A., Saurin, A.: long version of this submission. available at
http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf

. Howard, W.A.: The formulae-as-type notion of construction, 1969. In Seldin, J.P.,

Hindley, R., eds.: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus,
and Formalism. Academic Press, New York (1980) 479-490
Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1) (1987) 1 — 101

Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de
Iarithmétique d’ordre supérieur. Theése de doctorat d’etat, Université Paris VII
(1972)

Reynolds, J.C.: Towards a theory of type structure. In: Symposium on

Programming. Volume 19 of Lecture Notes in Computer Science., Springer (1974)
408-423

Girard, J.Y.: The system F of variable types, fifteen years later. Theoretical
Computer Science 45 (1986) 159-192

Berry, G.: Stable models of typed lambda-calculi. (1978) 72-89

Girard, J.Y.: Proof-nets: the parallel syntax for proof-theory. In Ursini, A., Agliano,
P., eds.: Logic and Algebra. Volume 180 of Lecture Notes In Pure and Applied
Mathematics., New York, Marcel Dekker (1996) 97-124

Danos, V., Regnier, L.: The structure of multiplicatives. 28 (1989) 181-203

. Girard, J.Y.: Towards a geometry of interaction. In: Categories in Computer

Science and Logic, Providence, AMS (1989) 69-108 Proceedings of Symposia in
Pure Mathematics n°92.

Hyland, M., Ong, L.: On full abstraction for PCF. Information and Computation
163(2) (December 2000) 285-408

Girard, J.Y.: Locus solum. 11 (2001) 301-506

Laurent, O.: Etude de la polarisation en logique. PhD thesis (March 2002)
Girard, J.Y.: Light linear logic. Information and Computation 143(2) (June 1998)
175-204

Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2)
(2006) 166-195

Gouthier, G., Abadi, M., Lévy, J.J.: The geometry of optimal lambda reduction. In:
Proceedings of the 19" Annual ACM Symposium on Principles of Programming
Languages. (1992) 15-26

Lafont, Y.: Interaction nets. In: POPL90, San Francisco, California, ACM Press
(1990) 95-108

http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

Girard, J.Y.: A new constructive logic: classical logic. 1(3) (1991) 255-296
Danos, V., Joinet, J.B., Schellinx, H.: A new deconstructive logic: Linear logic.
62(3) (1997) 755-807

Lafont, Y.: Soft linear logic and polynomial time. TCS 318(1-2) (June 2004)
163-180

Andreoli, J.M.: Proposition pour une synthése des paradigmes de la programma-
tion logique et de la programmation par objets. Thése de doctorat, Université
Paris VI (June 1990)

Miller, D.: Overview of linear logic programming. In Ehrhard, T., Girard, J.Y.,
Ruet, P., Scott, P., eds.: Linear Logic in Computer Science. Volume 316 of London
Mathematical Society Lecture Note. Cambridge University Press (2004) 119-150
Zeilberger, N.: Focusing and higher-order abstract syntax. In: POPL; ACM (2008)
359-369

Curien, P.L., Munch-Maccagnoni, G.: The duality of computation under focus. In:
IFIP TCS. Volume 323., Springer (2010) 165-181

Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully
abstract for probabilistic pcf. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL 14, New York, NY,
USA, ACM (2014) 309-320

Curien, P.L.: Introduction to linear logic and ludics, part ii (2006)

Girard, J.Y.: Le Point Aveugle: Cours de logique. Tome 1, Vers la perfection; Tome
2, Vers 'imperfection. Hermann (2006)

Danos, V.: Une application de la logique linéaire a 1’étude des processus de
normalisation (principalement du A-calcul). Thése de doctorat, Université Denis
Diderot, Paris 7 (1990)

Guerrini, S.: Correctness of multiplicative proof nets is linear. In: LICS, IEEE
Computer Society (1999) 454-463

Guerrini, S.: A linear algorithm for MLL proof net correctness and sequentializa-
tion. Theor. Comput. Sci. 412(20) (2011) 1958-1978

Murawski, A.S., Ong, C.H.L.: Fast verification of mll proof nets via imll. ACM
Trans. Comput. Logic 7(3) (July 2006) 473-498

de Naurois, P.J., Mogbil, V.: Correctness of linear logic proof structures is NL-
complete. Theor. Comput. Sci. 412(20) (2011) 1941-1957

Nagayama, M., Okada, M.: A new correctness criterion for the proof nets of non-
commutative multiplicative linear logics. J. Symb. Log. 66(4) (2001) 1524-1542
Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Fifth IFIP International Conference On Theoretical Computer Science - TCS
2008, IFIP 20th World Computer Congress, TC 1, Foundations of Computer
Science, September 7-10, 2008, Milano, Italy. Volume 273 of IFIP., Springer (2008)
383-396

Giamberardino, P.D.; Faggian, C.: Jump from parallel to sequential proofs:
Multiplicatives. In: Computer Science Logic, 20th International Workshop, CSL
2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29,
2006, Proceedings. (2006) 319-333

	 On the dependencies of logical rules Enlever les todo avant mise en ligne!!
	Introduction
	Correctness problem of proof structures in linear logic
	Linear logic and proof nets
	Correctness criteria
	Danos-Regnier Criterion
	Contractibility
	Mogbil-Naurois criterion

	On the three faces of contractibility
	Contractibilty and sequentialization
	Big-step contractibility
	Towards dependency graphs
	 DepGraph criterion
	Comparing the two notions of dependency graphs

	On the order of introduction of connectives in sequentializations
	Conclusion

