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Abstract—

Given the Internet of Things rapid expansion and widespread adoption, it is of great concern to
establish secure interaction between devices without worsening the quality of their performance.
Using machine learning techniques has been shown to improve detecting anomalous behavior in
these types of networks, but their implementation leads to poor performance and compromised
privacy. To better address these shortcomings, federated learning is being introduced. It enables
devices to collaboratively train and evaluate a shared model while keeping personal data on-site
(e.g., smart homes, intensive care units, hospitals, etc.), thus minimizing the possibility of an
attack and fostering real-time distribution of models and learning. The paper investigates the
performance of federated learning in comparison to deep learning, with respect to network
intrusion detection in ambient assisted living environments. The results demonstrate
comparable performances of federated learning with deep learning, while achieving improved
data privacy and security.

transportation, by a massive number of unique
devices from diverse manufacturers. It has also
received attention from the medical community as

B THE INCREASE in sensors, cloud and big data
analytics, as well as the need to automate and ease
processes, is contributing to the fast-paced devel-

opment of Internet of things (IoT) networks. IoT
facilitates many diverse functions that are pro-
vided for the household, industry, infrastructure,
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a promising way for early diagnosis, prevention,
treatment, and administration of drugs while the
patients remain in the comfort of their own homes
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Nevertheless, the diversity of sensors and de-
vices creates a number of issues, primarily related
to security and privacy. As health and personal
information become remotely obtainable, the risk
of violating the privacy of patients’ data and their
electronic health records increases substantially.
Also, these devices can be reconfigured or turned
off [2], which may contribute to severe conse-
quences for the patient’s health. As most network
intrusion detection systems (NIDS) cannot fully
provide the necessary protection for [oT networks
because of the ever increasing pace of new attack
types and methods [3], novel ways to detect
potential anomalies must be sought.

Recently, machine learning (ML) algorithms
have been applied for NIDS, and have shown
good results in detecting such anomalies. Because
IoT devices are limited in storage, power, and
cannot apply complex artificial neural networks
(NNs), it is necessary to have a central server
which will process the data. The centralized ap-
proach introduces several limitations, most no-
tably sharing patients’ data and compromising
their privacy. Federated learning (FL) is show-
ing great potential as a new distributed variant
that can speed up the detection and handling of
network anomalies without compromising patient
data and maintaining privacy intact. However,
the FL-based solutions lack the accuracy, robust-
ness and ubiquity compared to their centralized
learning counterparts. Moreover, the number of
works focusing on FL-based network intrusion in
ambient assisted living (AAL) environments, is
not prevalent in the literature.

This paper analyzes the aspect of anomaly de-
tection in AAL environments regarding network
intrusion by utilizing Federated Learning. It also
performs parameter characterization and attack
grouping in order to improve the models accuracy
and robustness. The structure of the paper is
as follows. Section II discusses the state of the
art in FL and Deep Learning (DL) approaches
for anomaly detection in IoT networks. Section
III presents the used dataset, the experimental
and evaluation setup, as well as the performance
metrics of interest. Section IV gives an overview
of the experiments and obtained results and com-
pares the FL and DL models. It also discusses
how grouping attacks and parameter characteri-

zation can improve the overall accuracy of the
models. Section V summarizes the paper and
presents possible future directions and improve-
ments regarding the given problem.

RELATED WORK

Conventional signature-based techniques fo-
cus on detecting already known and established
patterns, while network intrusion detection tech-
niques can detect both known and unknown at-
tacks. This implies that network intrusion de-
tection demands more computational power and
achieves lower overall accuracy in the process.
Recent research has shown that leveraging differ-
ent ML and DL algorithms for network anomaly
detection purposes is highly beneficial for build-
ing more adaptable and accurate intrusion detec-
tion systems.

Saheed et al. [4] suggest an ML-supervised
algorithm-based IDS for IoT networks. After per-
forming normalization and dimensionality reduc-
tion on the UNSW-NBI15 dataset, six different
ML models were trained. All models present an
accuracy in detection of 99%. The authors in [5]
also evaluated the possibility of using different
ML algorithms to detect security attacks in med-
ical devices. The results show that the decision
tree-based algorithms achieve the highest detec-
tion accuracy (~90%). Intelligent and dynamic
ransomware spread detection in medical cyber-
physical systems was the topic of interest in [6].
In this research, two different ML models have
proved to be successful in detecting and classi-
fying these types of attacks, with Naive Bayes
(NB) obtaining an accuracy of 99.99%. Otoum
et al. in [7] as well as the paper in [8] present
DL-based solutions which tackle IDS systems for
IoT networks. The first use a Spider Monkey
Optimization algorithm (SMO) and Stacked-Deep
Polynomial Network (SDPN), achieving an over-
all accuracy of 99.02%, while the second use deep
Q-learning-based neural network with privacy
preservation method (DQ-NNPP) and achieve an
accuracy of 93.74%.

However, these algorithms also have their
drawbacks, mainly because of the centralized
approach. Having the entire dataset on one server
can be computationally expensive and time-
consuming. In addition, data signatures can be
very large in size, so it can be very difficult
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to collect the data in an efficient and real-time
manner. In most network intrusion and detection
scenarios, swift detection is of utmost impor-
tance. Moreover, this can compromise security
and privacy when transferring data from IoT
nodes to the server and vice versa. As such, FL
[9], which enables distributed training of models,
has emerged as a potential and adaptable strategy
that can address these drawbacks.

The authors in [10] designed LocKedge, an
FL-based IDS for IoT networks, which detects
anomalies at the edge layer. Nevertheless, when
evaluated on the BoT-IoT dataset, the FLL. model
achieved lower performances than a DL model.
Rahman et al. [11] tried to keep data privacy
intact, while suggesting a new FL-based system
for IoT intrusion detection. However, the evalua-
tion process on the NSL-KDD dataset shows an
oscillating accuracy of around 83.09%, which is
not substantial for real-time IDS purposes. The
authors in [12] utilize homomorphic encryption,
as well as a convolutional neural network for the
development of a distributed IDS system based
on FL. The model is tailored to analyze and
block only DDoS traffic on satellite-terrestrial
networks. The authors in [13] also develop an
FL model to deliver real-time anomaly detection
of DDoS attacks in IoT networks, which is based
on the gated recurrent unit (GRU) concept. Both
models in [12], [13] exhibit high accuracies, but
are tailored only for a specific type of attack, and
lack ubiquitous applicability.

The related FL works primarily focus on
a limited number of attacks, such as DDoS,
which significantly limits their applicability to
real-world scenarios. This is highly detrimental
for classification purposes, since anomaly detec-
tion systems require diverse and updated data
in order to foster high accuracy and robustness.
This work presents a novel FL solution based
on anomaly detection that builds upon the weak-
ness of the state of the art works. It achieves
satisfactory performances for a large plethora of
IoT-based attacks, and it is comparable to the
results achieved by DL. Also, to the best of
the authors’ knowledge, this work is the first to
focus on anomaly detection-based NIDS in AAL.
Additionally, the paper presents a novel idea for
grouping attacks based on their similarity, which
can significantly improve the performance of
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the FL-based network intrusion detection (above
98%), while preserving the detection capabilities
for different types of attacks.

DATASET AND METHODOLOGY

This section provides insight related to the
dataset of interest. It also gives a thorough expla-
nation of the system architecture, as well as the
design of the DL model. Moreover, it introduces
the specific performance metrics of interest.

Used dataset

For the purpose of this research, we used a
publicly available dataset called “ToTID20” [14].
The testbed is a typical AAL environment, which
includes a camera, a smartphone, a home speaker
(AI speaker) and several computers. By simulat-
ing network traffic and monitoring at different
time periods, researchers were able to create the
dataset and then extract 83 network features from
the pcap files using Wireshark [15].

The distribution between the normal network
traffic and the different types of anomalies is
as follows. The Normal category is about 28%,
compared to the rest of the dataset. The rest of the
dataset contains attacks normally found in an IoT
environment, such as: Mirai UDP flooding (con-
tributing with 183,554 instances or 22.5%), Mi-
rai Hostbruteforce (121,181 instances or 14.8%),
DoS SYN flooding (59,391 instances or 7.3%),
Mirai HTTP flooding (55,818 instances or 6.8%),
Mirai ACK flooding (55,124 instances or 6.8%),
Scan Port OS (53,073 instances or 6.5%), Man
in the middle (MITM) ARP spoofing (35.377 in-
stances or 4.3%), Scan Hostport (22,192 instances
or 2.8%) and Bot (1,966 instances or 0.2% of the
whole dataset).

System architecture and NN model

The proposed FL system architecture is given
in Figure 1la. It is constructed of two main
components; i) FL clients (AAL environments)
and ii) central server. The FL clients train a local
model on-site using their local data. After specific
number of local epochs the FL clients send the
trained models (i.e., model weights) to the central
server. The central server aggregates the received
models by averaging each model weight across all
clients, known as Federated Averaging (FedAvg)
strategy. The updated model is then sent back
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Figure 1. FL system architecture and data flow (left), and DL model architecture (right)

to the clients, completing one FL round. The
process is repeated for a number of rounds, until
achieving the required performances or model
convergence. As such, the FL approach does not
share nor exposes any information from the AAL
dataset and environment, fostering high level of
privacy.

It is assumed that all clients have the same
NN model (Figure 1b) and use the same num-
ber of local epochs. The model consists of a
feed-forward neural network (FFNN) with two
fully-connected layers with 64 and 32 neurons,
respectively. Both layers utilize the ReLU ac-
tivation function. The two layers are followed
by a dropout layer with 0.2 rate. The output
layer is a softmax layer consisting of 10 neurons,
which represent the classes of attacks in the
dataset. In the experiments where attack grouping
is performed, the number of neurons in the output
layer is reduced to 7.

Evaluation setup and metrics of interest

The dataset consists of one normal traffic data
class and 9 different types of attacks, resulting
in 10 classes in total. The data is further split
into a training and test subset. The training subset
contains 80% of the data, while the remaining
20% are present in the test subset. The evaluation
does not incorporate any tuning of the neural
network parameters, so no validation dataset is
necessary.

For performance comparison, we use a DL
baseline. From an information theoretical per-

spective no FL model can achieve higher accuracy
than a centralized DL model, when the FL is
using the same underlying neural network. The
reason is related to the manipulation with the
dataset. Specifically, the DL model is trained on
the whole dataset, while the FL trains the local
models on portions on the dataset and then aggre-
gates them into a global model. Hence, loosing
valuable information due to the partitioning and
averaging. The DL model is based on the same
FFNN from Figure 1b. In the DL experiments,
the training dataset is used for training and the
test dataset is used for evaluation. We used a
maximum of 35 epochs to train the DL model.

For the FL, the experiments are executed with
a different dataset distribution because of the
nature of the FL itself - no data leaves the device.
Therefore, the complete data is split among 50
clients (in our case, each client refers to an AAL
environment), where every client holds a different
portion of the test and training dataset (see Figure
1a). The training subset of each client is used
to train the local models. The global model is
evaluated (in each round) using the combined test
subsets from all the clients.

In each round of the FL, a subset of random
clients is selected for local training, controlled by
the fraction fit parameter. Each of the clients uses
only 5 epochs for the training of the local DL
models. As mentioned, the FedAvg optimizer is
used for the aggregation of the local DL models
into the global FL model, which comes as a sim-
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ple, yet effective solution. After each round, the
aggregated global model weights are distributed
to the clients and used as starting point for the
local model training in the next round. In the
experiments, we use a maximum of 35 rounds
for training of the global FLL model.

By careful analysis of the dataset, it can be
concluded that many attacks are highly related
by their type and inherent family features. For
example, there are several distinct Mirai attacks
that exhibit very similar network intrusion be-
havior. As the primary goal of network intrusion
detection systems is to accurately and timely
detect attacks, it can be highly beneficial if the
system can group the attacks and improve its
detection capabilities. Since the grouping will be
done over the same family of attacks, the system
will still be able to identify the type of attack,
however, its granularity will be coarser.

The performance metrics of interest in this
study is the models’ accuracy as a function of
the number of epochs/rounds required to finish
the training. Specifically, the evaluation focuses
on the FL's accuracy in dependence of the number
of FL rounds as well as the fraction fit parameter
(i.e. percentage of FL clients used in each round).

RESULTS AND DISCUSSION

In this study, we conducted three experiments
in order to investigate the capabilities and limita-
tions of the FL model for anomaly detection in
AAL environments. The first experiment focuses
on training, testing and comparing of the FL
model with the baseline DL model. In this ex-
periment we focus on classification performances
for all 10 available classes in the dataset. The
second experiment serves to examine the benefits
of attack grouping with the aim to improve the
detection performances of the FL model. Finally,
the last experiment is concentrated on the param-
eter characterization of the FL models.

In the head-to-head comparisons between the
DL and the FL models concerning the conver-
gence, we associate training epochs for the DL
model with training rounds for the FL model.
Even though this may appear to be unfair, since
the FL additionally uses 5 epochs for the training
of the local models, the local models are trained
on a significantly smaller dataset portions (1/50).
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Models accuracy

The first experiment is used to compare the
accuracy and convergence performances of the
FL model with the baseline DL model. In this
experiment, the fraction fit parameter is fixed to
1.0, meaning that all clients are participating in
each round of the FL training process.

Figure 2a depicts the models’ accuracy in
dependance of the number of epochs (for DL)
and rounds (for FL). It can be seen that the FL
model achieves a slightly lower accuracy (~84%)
compared to the DL model (~86%) for the test
dataset. Furthermore, it can be noted that after
the 20th round, the FLL model seems to achieve
its convergence. On the contrary, the DL model
still tends to improve its accuracy as the num-
ber of epochs increases, but it encounters slow
convergence and a higher performance variability
(model instability). This result clearly shows the
benefits of using FL for anomaly detection in
AAL scenarios. At the price of slight classifica-
tion performance decrease, one can preserve the
user privacy in these scenarios, as the FL. model
does not share and expose the AAL dataset, only
the model weights. Furthermore, the FL provides
better stability (mostly due to the FFNN weights
averaging) and faster convergence.

Figures 2¢ and 2e show the confusion matri-
ces for the DL and the FL. models, respectively.
The results show that most of the misclassifica-
tions of both models occur between classes 1,
4, 5 and 6, which correspond to similar types
of attacks, i.e., the Mirai attacks. Intuitively, this
indicates that grouping the Mirai types of attacks
into one class would improve the anomaly clas-
sification performances.

Attack grouping

The second experiment groups the four Mirai
classes into one class, leaving the dataset with
seven distinct classes. This also decreases the
number of nodes in the final layer of the FFNN.
Same as in the first experiment, the fraction fit
parameter for the FL model is set to 1.0. Figure
2b shows the head-to-head comparison of the
DL and the FL model in terms of accuracy
and convergence when applying the Mirai attacks
grouping, while Figures 2d and 2f show the
DL and FL confusion matrices for this case,
respectively.
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Figure 2. DL and FL models experiments. For confusion matrices c) and d) the classes go as follows: class
0 represents normal traffic; classes 1, 4, 5 and 6 represent the distinct Mirai attacks; class 2 - DoS; class 3 -
Scan Port OS; class 7 - Scan Hostport; class 8 - MITM; class 9 - Bot. For confusion matrices d) and f) classes

1, 4, 5 and 6 have been grouped to class 1 (Mirai).
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The results clearly show that the attack group-
ing substantially improves the accuracy of both
DL and FL models, and it is also noticeable that
the grouping has more benefits for the FL. model.
Specifically, the performance difference between
the DL and FL models is smaller, compared to
the case when there is no attack grouping. Fur-
thermore, the FLL model tends to improve its per-
formance even after the 20th round. The reason
behind this behavior can be found reconsidering
the confusion matrices in Figures 2c¢ and 2e
(without the Mirai grouping). It is evident that the
FL model is more affected by misclassifications
between the Mirai types of attacks. In specific,
due to the similarity between these attacks and
the substantially smaller datasets (1/50), the local
models fail to learn the differences between the
Mirai classes. Therefore, the grouping of the
multiple Mirai classes into one, results in more
substantial performance gain for the FL. model.

FL parameter characterization

The final experiment focuses on the parameter
characterization of the two FL models, i.e., the
FL model using all classes and the FL model
using the Mirai grouping. Besides the number
of rounds, this experiment also investigates the
fraction fit parameter and its contribution to the
accuracy and the convergence of the models.
The fraction fit is an important parameter in
federated learning, since it controls the client
selection and the stochasticity of the learning
process. Randomly choosing a subset of clients
in each training round reduces the computation
and communication overhead and can reduce the
overfitting in the resulting global FL model. The
results are obtained for three fraction fit parameter
values: 0.2, 0.6 and 1.0. In particular, a fraction
fit of 0.2 means that in each round of the feder-
ated learning, only 20% randomly chosen clients
participate in the FL training (i.e., 10 randomly
selected clients out of 50 in our case).

Figures 3a and 3b show the convergence and
accuracy results for both FL models, with respect
to the fraction fit parameter. Similar behavior can
be observed for both FLL models, i.e., the fraction
fit does not significantly impact the accuracy
and convergence performances for the chosen
problem of anomaly classification. Only minor
differences (<0.3%) can be seen between the
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different choices of fraction fit. However, there
are few important considerations that should be
noted. A smaller fraction fit provides a slightly
better convergence rate for smaller number of FL
rounds (<10). A fraction fit of 0.6 provides the
best accuracy when the number of FL training
rounds is above 15, e.g., the FL. model with Mirai
grouping achieves accuracy of 98.3% at round 25.
The fraction fit of 1.0 seems to experience some
minor model overfitting. In conclusion, the results
clearly show that there is an optimal fraction fit in
the trade-off between accuracy, convergence and
FL overhead.

CONCLUSION

This paper discusses the applicability of FL
for network intrusion detection for AAL environ-
ments. The paper also introduces the concept of
attack grouping in order to improve the overall
detection performance of the FL models. The
analysis show that FL achieves very similar per-
formances to its DL counterpart, without sharing
any personal and patient’s data. Additionally, the
results show that the attack grouping significantly
improves the detection accuracy of both DL and
FL, with FL having a larger benefit from the
grouping process.

Further work will include implementing some
security mechanisms (e.g. differential privacy)
to the FL models and evaluating the trade-off
between privacy and accuracy. New federated
learning optimizers can also be tested and evalu-
ated on the same and new AAL datasets. Another
potential venue for future exploration is the sys-
tem level specifics of FL, with respect to band-
width efficiency, noisy data and computational
overhead.
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