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Abstract 

George E Andrews derived formula for the number of smallest parts of partitions of a positive integer n. In this paper 
we derived the generating function for the number of smallest parts of all partitions of n utilizing r-partitions of n. We 
also derive the generating function for Ac(n) , the number of smallest parts of the partitions of n which are multiples of 
c and also to evaluate the sum of smallest parts of partitions of n by applying the concept of r-partitions of n. 
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1. Introduction

We adopt mostly the common notation on partitions used by Andrews [1] as given below. 

A of a positive integer  is a finite non-increasing sequence of positive integers  such that

 and is denoted by , rn  ...321  or  ,...,, 321

321

fff    when 1 repeats f1

times, 2 repeats f2 times and so on. The are called the parts of the partition. In what follows  stands for a partition

of n ,  1 2 1 2, ,..., , ...r r          . 

 

1 if 0,

number of of if ,

0 if is negative.

n

p n partitions n n N

n




 



1.1. Ex: partitions of 7. 

7 6 1 5 1 1 4 1 1 1 3 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1

5 2 4 2 1 3 2 1 1 2 2 1 1 1

4 3 3 3 1 2 2 2 1

3 2 2

                    

         

     

 

partition n
1 2, ,..., r  

1

r

i

i

n


  1 2, ,..., rn   

i
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If nr 1  then  nr  is the set of partitions of n with r parts and its cardinality is denoted by  npr . A partition of 

n with exactly r parts is called r – partition of n. We define
 

 
0 if 0

number of  of if  0
r

r or r n
p n

 r partitions n r n

 
 

  

 

If nr 1  then  nr  is the set of partitions of n with r parts and its cardinality is denoted by  npr . A partition of 

n with exactly r parts is called r – partition of n. We define
 

 
0 if 0

number of  of if  0
r

r or r n
p n

 r partitions n r n

 
 

    

1.2. Ex: 3-partitions of 8 

6 1 1, 5 2 1, 4 3 1, 4 2 2, 3 3 2.           

  nspt denotes the number of smallest parts including repetitions in all partitions of . 

  i nr spt denotes the number of smallest parts in all r partitions of n. 

Verification of the above illustration by 3 partitions of 10 having second smallest parts.  

8 1 1, 7 2 1, 6 3 1, 6 2 2, 5 4 1, 5 3 2, 4 4 2, 4 3 3.                 

2. Generating function for spt(n)  

The generating function for the number of smallest parts of all partitions of positive integer n is derived by Andrews [2]. 
By utilizing r partitions of n, we present a formula for finding the number of smallest parts of n. 

2.1. Theorem 

     
1 1

,
k t

spt n p k n tk d n
 

 

    

 Where  d n is the number of positive divisors of n

 

2.1.1. Proof 

Let  11 2

1 2 1 2 1( , , ... , ) = , ,..., ,l l

r ln k
        

 be any r partition of n with l distinct parts.(1) 

Case 1 

Let lr t  which implies r t k    

Subtract all 'k s , we get  11 2

1 2 1, ,..., l

ln tk
    

   

Hence  11 2

1 2 1, ,..., l

ln tk
    

   is a  r t partition  of n tk with 1l -  distinct parts and each part is 

greater than or equal to 1k  .  

n

thi
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Therefore the number of r partitions with smallest part k that occurs exactly t times among all r partitions of n 

is  1,r tp k n tk    

Case 2 

 Let lr t  which implies r t k  
 

 

Omit 'k s from last t  places, we get  11 2

1 2 1, ,..., ,l l t

ln tk k
      

 
 

Hence  11 2

1 2 1, ,..., ,l l t

ln tk k
      

  is a  r t partition  of n tk  with l  distinct parts and the least part 

is k .  

 Now we get the number of r partitions with smallest part k that occurs more than t times among all r partitions

of n is  ,r tf k n tk  . 

Case 3 

 Let lr t  which implies all parts in the partition are equal.  

The number of partitions of n with equal parts is  which is equal to thenumber of positive divisors of n. Since the 

positive number of divisors of n is   ,d n  the number of partitions of n with all parts are equal is  d n .  

1 if |
where

0 otherwise

r n
 





 

 From cases (1), (2) and (3) we get r partitions of n with smallest part k that occurs atleast t times is 

   , 1,r t r tf k n tk p k n tk        

 , (2)r tp k n tk     

From [2], the number of smallest parts in partitions  of n is 

     
1 1

, .
k t

spt n p k n tk d n
 

 

  
 

The above illustration is verified from the following partitions of 8. 

8, 7 1, 6 2, 5 3, 4 4, 6 1 1, 5 2 1, 4 3 1, 4 2 2, 3 3 2, 5 1 1 1,

4 2 1 1, 3 3 1 1, 3 2 2 1, 2 2 2 2, 4 1 1 1 1, 3 2 1 1 1,

2 2 2 1 1, 3 1 1 1 1 1, 2 2 1 1 1 1, 2 1 1 1 1 1 1,

1 1 1 1 1 1 1 1.

                

                   

                   

      
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2.2. Theorem 

   1,r rp k n p n kr   (3) 

2.2.1. Proof 

Let 1 2( , , ... , ),r in k i      be any r partition of n . 

Subtracting k from each part, we get  1 2, ,..., rn kr k k k        

Hence  1 2, ,..., rn kr k k k       is a r partition of n kr . 

Therefore the number of r partitions of n with parts greater than or equal to 1k  is  .rp n kr
 

2.3. Illustration 

Let 9, 2 and 3n k r   . 

       

 

       

 

   

1, 2 1,9 3,9 3 3 3
3 3

Hence 3,9 1
3

9 2.3 3 1 1 1
3 3

Hence 3 1
3

Hence 1, .

k nr

p

n krr

p

p k n p n krr r

  

  

      



      



    

Further we also derive generating function for the number of smallest parts of all partitionsof n utilizing r partitions

of n. 

2.4. Theorem 

 
 

 

 
1

1 1

1
.

1

n

n n

n
n n

q q
spt n q

q q

 


 




   

2.4.1. Proof 

From theorem (1) we have 

     

 
1 1

,

where is the number of positive divisors of .

k t

spt n p k n tk d n

d n n

 

 

  
 

       

 

    

1 1 1 1

1 1 1

, since

First replace 1 by , then replace  by in 3

1

r r

k t r r

r

k t r

p k n tk d n p n p n

k k n n tk

p n tk r k d n

   

   

  

  

   

 

    

 



 
From (4) 
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 
 

 

1

1 1 1 1 1

since
1

r tk r k k
n

k
n k t r kr

q q n
spt n q k

q q r

      

    

  


    

 1 1 1 1 1

tk rk k

k
k t r kr

q q

q q

   

   

 


 
 

 
 1 1 1 1 1

r
k k

tk

k
k t r kr

q q
q

q q

   

   

 
  
  
 

  
 

 
 
 1 1 1

1 1
11

r
kk k

kk
k r kr

qq q

q qq

  

  

  
     
   
  

  

 

 
 
 1 1

1
1

r
kk

k
k r r

qq

qq

 

 

 
  
 
 

 
 

 1 0

1
from [1]

11

k

r kk
k r

q

q qq



 

 
  

  
 

 

 1 0

1

11

k

r kk
k r

q

qq




 

 
  

  
 

 

 

 

 
1

1

1

1

k

k

k
k

q q

q q










 

 

 

 
1

1

1

1

n

n

n
n

q q

q q









  

3. Corollary 

 The generating function for  cA n , the number of smallest parts of the partitions of n which are multiples of c is  

 
 

 

 
1

1 1

1

1

cn

n cn
c cn

n n

q q
A n q

q q

 


 




 
 

To evaluate the sum of smallest parts of partitions of n by applying the concept of r-partitions of n, we propose the 
following theorem. 

 

3.1. Theorem 

 The generating function for the sum of smallest parts of the partitions of n is  
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 
 

 

 
1

1 1

1

1

n

n n

n
n n

nq q
sum spt n q

q q

 


 




 
 

3.1.1. Proof  

From [3] we have the sum of smallest parts  sum spt n of the partitions  of a positive integer n is 

     

 

 

    

1 1

1 1 1

1 1 1

,

where is sum of positive divisors of .

,

First replace 1 by , then replace  by in (3)

1

k t

r

k t r

r
k t r

sum spt n k p k n tk n

n n

k p k n tk

k k n n tk

nk p n tk r k







 

 

  

  

  

  

  

 

 

   





  

Hence the generating function for the sum of smallest parts of the partitions of a positive integer n is 

 
 

 

1

1 1 1 1 1 1

r tk r k k
n

k
n k t r kr

kq kq
sum spt n q

q q

      

    

 


   from [4] 

 1 1 1 1 1

tk rk k

k
k t r kr

kq kq

q q

   

   

 


 
 

 
 1 1 1 1 1

r
k k

tk

k
k t r kr

q kq
kq

q q

   

   

 
  
  
 

  

 

 
 1 1 1 1

1 1
1

r
k k

tk

k
k t r kr

q kq
kq

q q

   

   

 
    
  
 

  

 

 1 0

1

11

k

r kk
k r

kq

q qq



 

 
  

  
 

 

 1 0

1

11

k

r kk
k r

kq

qq




 

 
  

  
 
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 

 

 
1

1

1

1

k

k

k
k

kq q

q q











 

 

 

 
1

1

1

1

n

n

n
n

nq q

q q










 

 
 

 

 
1

1 1

1

1

n

n n

n
n n

nq q
sum spt n q

q q

 


 




 
 

4. Conclusion 

The formula for the number of smallest parts of partitions of a positive integer n was first derived by George E Andrews. 
In the present article we derived the generating function for the number of smallest parts of all partitions of n utilizing 
r-partitions of n. We also derived the generating function for Ac(n) , the number of smallest parts of the partitions of n 
which are multiples of c and also to evaluate the sum of smallest parts of partitions of n by applying the concept of r-
partitions of n.  

There are many such applications. A straightforward one is that partitions can be used in statistical mechanics to count 
available states to many-particle bosonic/fermionic systems and in the calculation of their "partition" functions. 
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